
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Human Problem Solving: Sokoban Case
Study

by

Petr Jarušek
Radek Pelánek

FI MU Report Series FIMU-RS-2010-01

Copyright c© 2010, FI MU April 2010

Copyright c© 2010, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Human Problem Solving: Sokoban Case Study

Petr Jarušek Radek Pelánek

Faculty of Informatics

Masaryk University Brno, Czech Republic

April 13, 2010

Abstract

We describe a case study in human problem solving for a particular problem – a

Sokoban puzzle. For the study we collected data using the Internet. In this way

we were able to collect significantly larger data (2000 problems solved, 780 hours

of problem solving activity) than in typical studies of human problem solving. Our

analysis of collected data focuses on the issue of problem difficulty. We show that

there are very large differences in difficulty of individual Sokoban problems and

that these differences are not explained by previous research. To address this gap

in understanding we describe an abstract computational model of human problem

solving, a metric of a problem decomposition, and formalization of a state space

bottleneck. We discuss how these concepts help us understand human problem

solving activity and differences in problem difficulty.

1 Introduction

Human problem solving is influenced by many parameters, e.g., formulation of rules,

number of items that need to be held in working memory, or familiarity with problem

domain. But even when all of these intuitive parameters are fixed, there can still be large

differences in problem difficulty. We study human behaviour during Sokoban problem

solving and we show that even for a set of very similar problems the differences in

difficulty are significant and not explained by any simple problem parameter. Why do

these differences occur?

Understanding this phenomenon is important not just for providing insight into

human cognition, but it also has several applications. Humans and computers solve

1

problems in different ways and have complementary strengths [22]; to built tools for

human-computer collaboration we need to understand what makes problems difficult

for humans. Another application is for teaching and training (e.g., with intelligent tutor-

ing systems [3]). Humans enjoy problem solving, but only when faced with problems of

adequate difficulty, i.e., neither too boring nor too difficult. To recommend appropriate

instance of problem we need to be able to evaluate its difficulty.

1.1 Human Problem Solving

Problem solving encompasses many different activities. The main classification is into

well-structured problems and ill-structured problems [23]. Well-structured problems

have clear boundaries and sharply defined situations, rules, and goals (e.g., proving

mathematical statement, optimizing logistic operation). Ill-structured problems are de-

fined more vaguely (e.g., writing a book).

A typical example of well-structured problem are logic puzzles. Puzzles contain all

important information in the statement of the problem (and hence do not depend on

knowledge), are amenable to automated analysis, and are also attractive for humans.

The use of puzzles has a long tradition both in computer science (particularly artificial

intelligence) [20] and cognitive psychology [21, 23].

Human problem solving has been studied for a long time, starting by a seminal

work by Simon and Newell [21]; for a recent overview see [17]. Relevant to this work

is particularly research concerned with puzzles which can be directly expressed as state

space traversal, e.g., Tower of Hanoi puzzle [14], river crossing problems [11], Water jug

puzzle [4], Fifteen puzzle [18], and Chinese ring puzzle [15].

This work is concerned with analysis of human problem solving activity on the

Sokoban puzzle with the special focus on the issue of problem difficulty. As opposed

to previous research, which has been based only on small samples of human problem

solving activity in laboratory setting, we employ large scale data collection through In-

ternet. The data are collected via web portal which contains a simulator of the puzzle.

People log into this portal and try to solve provided puzzles. All their actions (including

their timing) are saved and stored into a database on the server.

This approach has certainly some disadvantages over the standard ‘laboratory’ ap-

proach to experiments with human problem solving, particularly we do not have a di-

rect control over our subjects. Nevertheless, we believe that the advantages significantly

outweigh these disadvantages. We have been able to collect large number of data about

2

Figure 1: Example of two difficult Sokoban puzzles. The median solving time for the

left problem (further denoted S071) is 43 minutes, for the right one (denoted S356) it is

49 minutes.

human problem solving activity: more then two thousand completed games. Almost

three hundred people solved Sokoban on the portal and spent 785 hours with solving.

This is much more than would be feasible with the classical laboratory approach. More-

over, the experimental setting is cheap and the data collection rather fast.

1.2 Sokoban

Sokoban is a logic puzzle which has simple rules and yet incorporates intricate dynam-

ics and great complexity for both humans and computers. Example of the puzzle is in

Figure 1. There is a simple maze with several boxes and one man. The goal is to get the

boxes into the target squares by pushing one box at a time.

We have chosen Sokoban puzzle for several reasons. The first reason is interesting-

ness. Sokoban has simple rules and intuitive visual setting; hence it is very simple to

understand. Most people find it interesting and challenging and thus are willing to

solve it voluntarily.

The second reason is availability of resources. There is a very large number of levels

of the puzzle freely available on the Internet. These available levels span wide range

of difficulty. Sokoban is also used by artificial intelligence community as a testbed for

developing single agent search techniques; many techniques and results are described

in research literature and state-of-the-art solvers are freely available (e.g., [12]).

The third reason is complexity. Despite the simplicity of the rules, Sokoban can be

very challenging for both humans and computers; the puzzle also illustrates differences

between humans and computers. There exist small instances that can be quickly solved

by computer (using a trivial brute force algorithm) but take humans hours to solve. At

3

the same time, there are also instances of the puzzle, which humans can solve but which

are beyond capabilities of the state-of-the-art artificial intelligence solvers [12].

1.3 Problem Difficulty

We focused on the issue of problem difficulty. Previous research on the problem diffi-

culty (e.g., [8, 11, 14, 15, 18]) was focused particularly on the following concepts:

• hill-climbing heuristic, which was studied for example for river crossing prob-

lems [11], Fifteen puzzle [18], and Water jug puzzle [4, 7],

• means-end analysis, which was proposed as a key concept in the “General Prob-

lem Solver” [16] and was studied for example for Tower of Hanoi puzzle,

• differences between comprehension of isomorphic problems, which focus on the

difficulty of successor generation and were studied for example for Tower of

Hanoi [14] and Chinese ring puzzle [14].

However, these concepts are not sufficient to explain differences in difficulty in

Sokoban problems. In our experiment there are very similar problems with large dif-

ference in difficulty (more than 10-fold) – whereas the problems in Figure 1 took hu-

man on average nearly one hour, other problems were solved in within few minutes.

Yet with respect to the above mentioned concepts the problems are nearly the same.

Hill-climbing is not applicable for solving Sokoban problems (except very easy ones).

Means-end analysis is applicable only in very limited sense and it is not clear how this

concept could explain large differences in difficulty of different Sokoban problems. Dif-

ferences between comprehension of isomorphic problems and successor generation also

cannot be responsible for differences in difficulty, because all instances are stated in the

same way.

1.4 Contributions

We describe a novel type of experiment with human problem solving using large scale

data collection of human problem solving activity over the Internet. Using the collected

data on Sokoban puzzle, we identify differences in problem difficulty that are not ex-

plained by previous research. To explain these differences, we develop an abstract com-

putational model of human behaviour during search through a problem state space. We

also describe a successful difficulty metric which is based on problem decomposition.

4

This technical report provides detailed description of the experiment and its results;

it is meant as a rather complete documentation of the experiment for further references.

Therefore, we also elaborate on techniques used for data analysis, particularly on our

method of state space visualization. State space visualizations let us to study of a ‘state

space bottleneck’ concept, for which we provide formalization based on network flows.

Although the concept cannot be directly used as a difficulty metric, it provides an in-

teresting insight into the issue of problem difficulty and could be useful for automated

tutoring of problem solving skills.

2 Preliminaries and Methodology

In this section we describe the Sokoban problem, its state space, and methodology of

our data collection on human problem solving.

2.1 Sokoban and Its State Space

Sokoban is a single player game that was created around 1980 in Japan1. Example of the

puzzle is in Figure 1. There is a simple maze with several boxes and one man. The goal

of the puzzle is to get the boxes into the target squares. The only allowed operation is a

push by a man; man can push only one box. For more precise description of rules see,

e.g., [1].

To analyze behavior of humans during problem solving, we explore their movement

in the underlying problem state space. State space of the game is then formalized as a

directed graph G = (V, E) where V is the set of game states and E is the set of edges

corresponding to a move of single box2. State of the game is thus given by a position

of boxes in the maze and by area reachable by a man. We denote s0 the vertex corre-

sponding to the initial position of the game. In our discussion we consider only states

reachable from the initial state.

There can be several states corresponding to a solved problem – all boxes have to be

on given position in the final state, but there can be more final states due to the position

of the man. Nevertheless, in nearly all cases there is just one final state; thus to simplify

1Sokoban is Japanese for “ware-house keeper”
2A naive formulation of a state space is to consider as a move each step of a man. This formulation

does not add any important information to the analysis and leads to unnecessary large state spaces.

5

the discussion in the following we assume just one final state denoted sf3. We say that

a state s is “live” if there exists a path from s to sf; otherwise we call the state s “dead”.

2.2 Data Collection

To obtain data about human Sokoban solving, we used a web portal with a game simu-

lator. Simulator was implemented in Javascript; all moves during the game were sent to

the server, where they were stored into a database. We logged description of each move

and time spent before the move.

For the experiment we used 35 problems, all of them had 4 boxes and similar size.

To avoid bias from learning, we randomized order of problems for each player. Level

were given non-explanatory names (fixed prefix + random looking three digit number).

Moreover there were 4 sample training problems which players solved to gain the un-

derstanding of the problem; these training problems are not included in our analysis.

Participants were not paid and we did not have a direct control over them since the

whole experiment run over the Internet. As a motivation to perform well there was a

public results list – this is for most people sufficient motivation, and at the same time it

is sufficiently weak so that there is not a tendency to cheat.

Summary statistics about the experiment are given in Table 1. In the next section we

provide the analysis of data and show that they are sufficiently robust to be used for

research purposes.

Table 1: Summary information about data collection.
participants who solved all 35 6

participants who solved at least 20 35

participants who solved at least 1 level 294

successful attempts to solve a problem 2071

all attempts to solve a problem 21511

total time spent solving 785 hours

3This simplification is only for sake of readability of the text. Implementations of all our techniques

work correctly in the general case of multiple final states.

6

Figure 2: Correlation between median time to solve the problem and number of solvers

who solved the problem.

3 Data Analysis

In this section we provide an analysis of the collected data. The data are publicly avail-

able and can be downloaded from:

http://www.fi.muni.cz/~xjarusek/vyzkum/sokoban/sokoban.tar

3.1 Problem Difficulty

Our aim is to explain and predict difficulty of individual problems. As the first step it

is necessary to specify a fair and robust measure of difficulty. There are several natural

measures of difficulty: time taken to solve a problem, number of moves necessary to

solve a problem, number of solvers who successfully solved a problem. It turns out that

all these measures are highly correlated, i.e., it seems plausible that any single of them

sufficiently captures a concept of problem difficulty.

In the rest of the paper we use as a difficulty measure the median solving time of

successful attempts. Figure 2 shows the relation between this measure and number of

successful solvers (r = −0.95).

Figure 3 shows the distribution of solving time using the boxplot method; problems

are sorted by the median time (our measure of difficulty). The solving time median

varies from one minute to almost one hour. This result is interesting because we are

7

http://www.fi.muni.cz/~xjarusek/vyzkum/sokoban/sokoban.tar

Figure 3: Boxplot of time to solve the Sokoban problems.

working with very similar Sokoban problems – all levels have exactly four boxes and

the size and topology of the underlying maze is in all cases also very similar.

3.2 Analysis of Individual Moves

In our experiment we saved information about all moves performed by solvers (includ-

ing time taken to make the move). Here we provide analysis of these individual moves.

Based on results of this analysis we built our computational model of human problem

solving behavior (Section 5).

Although 73.8% of game-configuration are dead (i.e. states from which is impossible

to reach the goal), humans usually do not spent much time in dead states (14.5% on the

average). They can relatively quickly discover that they are in bad configuration and

restart the game.

Humans spent more time far from goal position (see Figure 4). Once humans get to

one half of the distance between the start and goal state, they finish the problem rather

quickly.

8

Figure 4: Normalized time spent in states with certain distance from goal. The bold line

is a mean over all problems, two colored lines are problems from Figure 1.

To get better insight we visualized state spaces. But even for our rather small in-

stances of Sokoban problems, whole state spaces are too big to be visualized directly,

so it is necessary to prune the state space to obtain reasonable visualization. We prune

state spaces in two ways. At first, we use only live states. This decreases the average

number of states in the visualization from 3697 to 823; most important information is

retained since humans spent most of the time in live states. At second, we cut long

back-level edges4. According to our experience in most cases there are only few long

back-level edges and their removal makes the visualizations much more comprehensi-

ble. Visualizations displayed in this paper cut off edges of length three or more, which

we consider to be a reasonable compromise between loss of information and compre-

hension of visualization.

To visualize the pruned state space we use automated graph drawing5. Figure 5

shows examples of resulting visualizations. The size of each state is proportional to

4Back-level edges are edges which go to lower level with respect to breadth-first search.
5Specifically the tool Pajek [5], algorithm Kamada-Kawai [13].

9

average time spent by humans in the state, the thickness of each edges is proportional

to the average number of times humans performed the given move.

Figure 5: Examples of state space visualization of the problems given in Figure 1. Size

of each vertex is proportional to average time spent by human solvers. Some edges are

omitted from the visualization (see text).

4 State Space Bottleneck

Using visualizations of state spaces of difficult levels we identified a recurring feature –

often there is a “bottleneck” (a narrow part in the state space) and people spent most of

the time in states before the bottleneck (see Figure 5). Once people find the bottleneck,

they usually quickly find a path to the final state.

Based on this observation we propose a formalization of the concept of a state space

bottleneck using network flows with non-uniform price. The concept is based only on

the structure of state space, i.e., it is not specific to Sokoban.

We are aware of only one related notion in the literature. Berlekamp et al. [6] briefly

mention the notion of a ‘narrow bridge’ while discussing an abstract map of a state

10

space of a sliding block puzzle Century. They attribute the high difficulty of the puzzle

to existence of this ‘narrow bridge’ in the state space. They, however, do not provide

any formalization of the concept.

4.1 Network Flows

A straightforward approach to formalizing the bottleneck concept is to employ graph

connectivity notions, e.g., to find a minimum cut between initial and final state. This ap-

proach however has two disadvantages. At first, a bottleneck is not absolute measure,

but rather a relative one – it is important to consider a “width” of the state space before

the bottleneck, not just a “width” of the bottleneck. At second, connectivity measures

are hard to compute. Therefore, we employ an approach based on network flows. Intu-

itively, we compute a maximum flow from the initial to final state and study in which

states the flow accumulates.

Let G be a directed graph with two distinguished vertices, a source s and a sink t,

and edge capacity function c : V × V → N .A network flow is a function f : V × V → R
with the following properties:

• capacity constraints: ∀u, v : f(u, v) ≤ c(u, v),

• skew symmetry ∀u, v : f(u, v) = −f(v, u),

• flow constraint: ∀v : v = s∨ v = t∨ Σ(u,v)∈Ef(u, v) = Σ(v,w)∈Ef(v,w).

A maximal flow can be computed by Ford-Fulkerson algorithm [9]. The algorithm

chooses an augmenting path from the source to the sink and increases the flow along

this path. This process is repeated until there is no path that can be augmented. This

basic algorithm is not suitable for finding a bottleneck, because it pumps the shortest

path through the graph to the capacity of the minimal cut (see Figure 6). We need to

make the flow more uniform. To achieve this goal we associate price with each edges

and find a ‘minimum cost maximal network flow’ [2]. Pricing function p gives every

edge (u, v) its real valued price depending on the flow f(u, v). We consider only simple

polynomial price function of the current flow f(u, v), particularly a quadratic price.

To find a minimum cost maximal network flow, we can use an extension of the Ford-

Fulkerson algorithm [2]. When choosing an augmenting path, we choose the cheapest

one with respect to price function (this can be done efficiently by Dijkstra’s algorithm).

11

Figure 6: Example of a network and maximum flow (all edges have capacity 10). Flow

computed by standard Ford Fulkenson algorithm does not identify the bottleneck; the

flow computed with non-uniform prices splits the flow among more edges and thus

finds the bottleneck.

The resulting flow spreads the flow in the wide part of state space and keeps a large

flow through the bottleneck (see Figure 6).

4.2 Bottleneck Coefficient

Even the network flow computed with respect to non-uniform price does not directly

identify bottleneck states. Particularly, states close to the initial and final state typically

have a large flow, but they should not be considered as bottleneck states. We need to

further ‘recalibrate’ the results. For each state we compute how much the flow ‘spreads’

before and after this state. Let f be the minimum cost maximal flow. We define flow

spread before vertex v (denoted sb(v)) as a maximum of minu∈p f(u) over all paths p

from the initial state to v, analogically flow spread after vertex v (denoted sa(v)) is a

maximum of minu∈p f(u) over all paths from v to the final state. Bottleneck coefficient

of vertex v is then defined as b(v) = f(v)/(sb(v)
2 + sa(v)2).

Bottleneck coefficient can be computed efficiently since sb and sa can be computed

easily using a simple dynamic programming algorithm. Figure 7 provides example of

resulting bottleneck coefficients for two state spaces. We see that the coefficient clearly

identifies what we would naturally call a bottleneck.

4.3 Possible Applications

Our study of bottleneck was motivated by visual analysis of state spaces of difficult

Sokoban problems. Can we use bottleneck coefficients as a difficulty rating metric?

Unfortunately, it does not seem so. A straightforward metric based on bottleneck co-

efficients (maximum over all coefficients in the state space) gives poor correlation with

12

Figure 7: Bottleneck coefficients. State space for two sample problems from Figure 1,

size of each vertex v corresponds to bottleneck coefficient b(v).

13

problem difficulty. Some problems are difficult even though the set of live states is

rather small and thus the bottleneck is not very dominant (even though it exists). Some

problems have “strong” bottleneck, but are not very difficult, since the structure of the

state space and the problem makes it easy to find the bottleneck. So to serve as a dif-

ficulty metric it would be necessary to combine the bottleneck coefficient with other

information about the structure of the state space and it is not clear how to do it.

Nevertheless, the concept of bottleneck could be useful for example for understand-

ing human behavior or for tutoring humans during problem solving. If a human cannot

solve a problem, bottleneck states can serve as useful hints, since they provide natural

decomposition of the problem. By their nature they even provide some kind of insight

into the problem structure. Their explicit identification could help humans to learn to

better understand problems. These issues require further study.

Note that the concept depends only on the state space and is completely indepen-

dent of the particular problem. Therefore it should be applicable to other problems as

well. For example, the much studied Tower of Hanoi problem does have a very strong

bottleneck in its state space; this bottleneck state corresponds to a natural problem de-

composition identified by means-end analysis.

5 Computational Model of Human Solver

In this section we describe a simple computational model of human Sokoban solving.

Our goal is to replicate only the human behavior in terms of state space traversal char-

acteristics. We do not try to model the actual human cognitive processes while solv-

ing the problem, i.e., this is cognitive engineering model rather than cognitive science

model [10]. Our model is very abstract and is based only on information about under-

lying problem state space, i.e., the model is not specific for Sokoban. In the next section

we use the model for predicting problem difficulty.

5.1 Basic Principle

Our model is based on the analysis of human behaviour as discussed in Section 3.2. At

the beginning humans explore the state space rather randomly, later, as they get closer

to the solution, they move more straightforwardly to the goal. Since humans spent most

time at live states, the basic model works only with these states and completely avoids

dead states.

14

The model starts at the initial state and then repeatedly selects a successor state.

This selection is in the basic model local and very simple – it is a combination of two

tendencies:

• random walk – select a random successor,

• optimal walk – select a successor which is closer to the goal state.

Human decisions are usually neither completely random, nor completely optimal. Nev-

ertheless, the model assumes that a weighted combination of these two tendencies can

provide a reasonable fit of human behaviour.

5.2 Model Formalization

The general principle of our model is the following. In each step the model considers

all successors s ′ of the current state s. Each successor s ′ is assigned a value score(s ′), the

sum of all score values is denoted SumScore. The model moves to a successor which is

selected randomly according to a probabilistic distribution:

P(s ′) = score(s ′)/SumScore

This general model is specified by a selection of a score function. In this report we

evaluate the basic version of the model which uses a simple function based on distance

d(s) of a state s from the goal state. The function is defined as follows (B is a single

parameter of the model – ‘optimality bonus’):

score(s ′) =

0 d(s ′) = ∞
d(s) d(s ′) 6= ∞, d(s ′) ≥ d(s)
d(s) + B d(s ′) < d(s)

Let us discuss the intuition and rationale behind this formula. The first case means

that dead states have zero probability of being visited, i.e., the model visits only live

states . The third case means that successors that lead to the solution get an ‘optimality

bonus’, i.e., they have higher chance of being selected. The use of distance from the goal

in the formula has the consequence that the relative advantage of ‘bonus’ increases as

the model gets closer to the goal, i.e., the model behaves less randomly when it is close

to the goal (as do humans).

15

Figure 8: Comparison of human visits (green) and model visits (yellow) for the problem

S356.

If B = 0 than the model behaves as a pure random walk (within live states). As B

increases the behaviour of the model converges to the optimal path. Hence by tuning

the parameter B the model captures continuous spectrum of behaviour between ran-

domness and optimality.

Figure 8 gives an example of a comparison of human and model state space traversal.

5.3 Possible Extensions

In this work we discuss and evaluate just the simplest reasonable version of the model.

Nevertheless, the model can be further extended in several ways. The extensions are

quite natural and can be done simply by extending the scoring function:

• Hill climbing heuristic (specific for the particular problem, i.e., Sokoban). For

Sokoban the natural heuristic is the total distance of boxes from goal positions.

• Use of memory (loop avoidance heuristic). The model would remember states that

were already visited and in the scoring function would prefer unvisited states.

• Exploration of dead states (with lower, but non-zero, probability than live states).

16

• Penalization of long back edges. Humans can recognize not just moves which lead

to dead states, but also moves which lead “backwards”.

Each of these extensions incorporates at least one additional parameter into the

model. With the size of our testing data (35 problems) it could be misleading to evaluate

versions of the model with more parameters due to the potential overfitting of data [19].

6 Difficulty Rating Metrics

In this section we study metrics for assessing difficulty of Sokoban problems. We dis-

cuss several types of metrics and then we provide evaluation using the data collected in

our experiment (as described in Section 3).

6.1 Metrics Based on State Space

The most straightforward approach, which was also initially proposed by Newell and

Simon [21], is to use properties of state spaces as a metric of problem difficulty. We

evaluate the following ones:

• number of states in the state space,

• number of live states in the state space,

• average “live” degree (number of live successors) of live states.

6.2 Metrics Based on Shortest Paths

The most intuitive difficulty metric is the ‘number of steps necessary to reach a solution’,

i.e., the length of the shortest path from initial to goal state in the state space. Other

metrics can be obtained as variations on this basic principle.

One of the concepts which was intensively studied in previous research on problem

solving is the hill-climbing heuristics [4, 7, 18]. This concept can be quite directly ap-

plied as a difficulty metric. The straightforward hill-climbing heuristic for Sokoban is

to minimize the total distance of boxes from their goal positions. Given this heuristic,

we can define the metric ‘counterintuitive moves’ as a number of steps on the shortest

path which go against this hill-climbing heuristic.

Similar metric is based on the number of changes of connected areas in the problem

maze. Area is a part of the maze which can be reached by a man without pushing a box.

17

Figure 9: Illustration of the ‘area change’ metric. The example shows three consequen-

tial states of a Sokoban problem. The number of areas in states is one, two, and one;

thus the ‘areas change’ metric for this sequence is computed as |1-2| + |2-1| = 2.

We define a metric ‘areas change’ as a sum of sizes of differences of areas counts on the

shortest path (see Figure 9). The metric assumes that humans are less willing to make

moves which change areas.

Another intuitively important concept in problem solving is problem decomposi-

tion. Humans are not good at systematic search, but they are good at tasks such as

abstraction, pattern recognition, and problem decomposition. If a problem can be de-

composed into several subproblems it is usually much simpler (for humans) than a

same type of problem which is highly interwoven and indecomposable (see example in

Figure 10). The concept of problem decomposition is however more difficult to grasp

than the hill-climbing heuristic.

We propose a way to formalize problem decomposition for a Sokoban puzzle. A

natural unit of ‘composition’ is a single box. Thus we can consider decomposition of a

problem into single boxes and than count as a single move any series of box pushes. We

can also generalize this idea and decompose the problem into two pairs of boxes6 and

than count as a single move any series of box pushes within the group.

Let D be a division of n boxes into several groups (at most n), in our case n = 4

and we denote the division by 4 letter string; e.g., ’ABAB’ is a division in which the first

and the third box are in group A, the second and the fourth box are in group B; ’ABCD’

is a division in which each box is in a separate group. Each edge in the state space is

labelled by identification of the group to which the moved box belongs. Let p be a path

in a state space (a sequence of valid moves). We are interested in the number of label

alternations a(p,D) along the path.

6Remember that all our problems contain 4 boxes.

18

problem decomposition

ABCD AABB ABAB ABBA

left problem 10 2 6 5

right problem 14 7 12 10

Figure 10: Example of two Sokoban puzzle; the first one can be easily decomposed into

two subproblems and is thus easy (median solving time 3:02 minutes), the second one

is rather indecomposable and thus very difficult (median solving time 53:49 minutes).

The table gives the number of ‘steps’ for different decomposition (see text). The bold

column corresponds to the decomposition provided in the figure.

Optimal solution of the problem with respect to a division D (denoted s(D)) is the

minimum a(p,D) along all paths from the initial to the goal state. This optimal solution

can be computed by the Dijkstra algorithm over an augmented state space – vertices are

tuples (s, g) where s is a state in the state space and g is an identification of a group and

edges have weights 0 or 1. Figure 10 gives results for different decompositions of the

two provided examples.

For our evaluation we use two metrics based on these concepts. At first, we use the

‘box change’ metric which is based on the division ‘ABCD’, i.e., each box is a single

group. At second, we use the ‘2-decomposition’ metric, which is the minimum number

of steps over all possible division into two groups (division ‘AABB’, ‘ABAB’, ‘ABBA’).

We also tried other types decompositions (e.g., 3-1 decomposition such as ’AAAB’), but

the results were similar to 2-decomposition and we do not report them explicitly.

19

6.3 Metrics Based on the Computational Model

The model described in Section 5 can be easily used as a basis for a difficulty metric. We

just run the model repeatedly and take the number of steps it took the model to reaching

the goal state. The average number of steps is used as a difficulty metric.

6.4 Evaluation and Discussion

Based on results from Section 3, we take as a ‘real’ measure of problem difficulty a me-

dian solving time of human solvers. Figure 11 provides scatter plots showing relation

among several of the described metrics and the real difficulty.

To quantify the quality of a metric we use correlation coefficients. Except for the stan-

dard Pearson correlation coefficient, we also measure Spearman correlation coefficient,

which gives the correlation with respect to ordering of values – for practical application

of difficulty metrics the ordering is often more important than absolute values.

Table 2 provides overview of all results. The results shown for metric based on

model correspond to the optimal choice of the bonus parameter B. Figure 12 provides

sensitivity analysis of the metric based on the computational model with respect to the

parameter – Spearman coefficient is quite stable, but Pearson coefficient is not.

Table 2: Correlation coefficients for different difficulty metrics, results given in bold are

statistically significant (α = 0.05).
type metric Pearson Spearman

state space size -0.11 -0.07

number of live states -0.17 -0.15

average “live” degree -0.24 -0.36

shortest paths shortest path 0.30 0.47

counterintuitive moves 0.52 0.69

area change 0.24 0.35

problem decomposition box change 0.51 0.74

2-decomposition 0.63 0.82

model average number of steps, B = 25 0.76 0.66

Metrics based on state space do not work at all (no statistically significant corre-

lation). The intuitively plausible metric based on length of the solution is better and

20

Figure 11: Scatter plots for 4 different difficulty metrics.

21

Figure 12: Quality of predictions of problem difficulty by metric based on the com-

putational model depending on the model parameter B (given as correlation between

human median time and average number of model steps for our levels).

further improvement is brought by Sokoban specific extension of shortest paths (coun-

terintuitive moves, area change metrics). The best results are obtained by the metric

based on problem decompositions and by the metric based on computational model.

We believe that the results of the computational model can be further improved by ex-

tensions discussed in Section 5.3, but at the moment we do not have enough data to

fairly evaluate a model with several free parameters.

7 Conclusions and Future Work

In this paper we describe a case study in human problem solving. For a particular prob-

lem – a Sokoban puzzle – we describe a method of collecting data on human problem

solving, an analysis of the collected data, an abstract computational model of human

problem solving activity, and evaluation of several difficulty metrics.

In our analysis we focus particularly on the issue of problem difficulty – differences

in difficulty of studied problems are large (more than 10-fold) even though the prob-

lems are very similar. These differences are not explained by previous research. Using

our computational model and the concept of problem decomposition we are able to

22

partially explain these differences. We also propose a concept of state space bottleneck

and provide its formalization using network flows with a non-uniform price. Although

the concept is not directly applicable for explaining differences in problem difficulty, we

believe that it provides an interesting insight into the nature of difficult problems and

that it may be useful for automated tutoring.

There are many direction for future research:

• evaluation of the computational model on other well-defined problems, particu-

larly on other “move” puzzles (e.g., Tower of Hanoi, Water jug problem, sliding

block puzzles),

• refinement of the concept of state space bottleneck,

• application and evaluation of the decomposition metric to larger Sokoban prob-

lems and to other problems,

• more detailed study of data on human problem solving, particularly study of dif-

ferences among individual solvers,

• application of results in an intelligent tutoring system [3] for training of problem

solving skills.

Acknowledgement

We thank Ondřej Bouda for assistance with the web experiment and Aymeric du Peloux,

David W. Skinner, M. Hiroshi, and Martí Homs Caussa for creating some of the Sokoban

problems which were used in our experiments.

References

[1] Sokoban wiki. http://www.sokobano.de/wiki.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and

applications. Prentice Hall, 1993.

[3] J.R. Anderson, C.F. Boyle, and B.J. Reiser. Intelligent tutoring systems. Science,

228(4698):456–462, 1985.

23

[4] M.E. Atwood and P.G. Polson. Further explorations with a process model for water

jug problems. Memory & Cognition, 8(2):182–192, 1980.

[5] V. Batagelj and A. Mrvar. Pajek – analysis and visualization of large networks. In

Graph Drawing, volume 2265 of LNCS, pages 8–11. Springer, 2002.

[6] E.R. Berlekamp, J.H. Conway, and R.K. Guy. Winning ways for your mathematical

plays. AK Peters Ltd, 2003.

[7] H.P. Carder, S.J. Handley, and T.J. Perfect. Counterintuitive and alternative moves

choice in the Water Jug task. Brain and Cognition, 66(1):11–20, 2008.

[8] M. Dry, M.D. Lee, D. Vickers, and P. Hughes. Human performance on visually

presented traveling salesperson problems with varying numbers of nodes. Journal

of Problem Solving, 1(1):20, 2006.

[9] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian Journal

of Mathematics, 8(3):399–404, 1956.

[10] W. D. Gray. The Cambridge Handbook of Computational Psychology, chapter Cognitive

Modeling for Cognitive Engineering, pages 565–588. Cambridge University Press,

2008.

[11] J.G. Greeno. Hobbits and orcs: Acquisition of a sequential concept. Cognitive Psy-

chology, 6(2):270–292, 1974.

[12] A. Junghanns. Pushing the limits: New developments in single-agent search. PhD thesis,

University of Alberta, Department of Computing Science, 1999.

[13] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.

Information processing letters, 31(1):7–15, 1989.

[14] K. Kotovsky, J.R. Hayes, and H.A. Simon. Why are some problems hard? Evidence

from tower of Hanoi. Cognitive psychology, 17(2):248–294, 1985.

[15] K. Kotovsky and H.A. Simon. What Makes Some Problems Really Hard: Explo-

rations in the Problem Space of Difficulty. Cognitive Psychology, 22(2):143–83, 1990.

[16] A. Newell and H.A. Simon. GPS, a program that simulates human thought. Com-

puters and thought, pages 279–293, 1963.

24

[17] Z. Pizlo. Human Problem Solving in 2006. The Journal of Problem Solving, 1(2):3,

2007.

[18] Z. Pizlo and Z. Li. Solving combinatorial problems: The 15-puzzle. Memory and

Cognition, 33(6):1069, 2005.

[19] S. Roberts and H. Pashler. How persuasive is a good fit? A comment on theory

testing. Psychological Review, 107(2):358–367, 2000.

[20] J. Schaeffer and H.J. Van den Herik. Games, computers, and artificial intelligence.

Artificial Intelligence, 134(1-2):1–8, 2002.

[21] H.A. Simon and A. Newell. Human problem solving. Prentice Hall, 1972.

[22] L.G. Terveen. Overview of human-computer collaboration. Knowledge Based Sys-

tems, 8(2):67–81, 1995.

[23] R.A. Wilson and F.C. Keil. The MIT encyclopedia of the cognitive sciences. MIT Press,

1999.

25

	Introduction
	Human Problem Solving
	Sokoban
	Problem Difficulty
	Contributions

	Preliminaries and Methodology
	Sokoban and Its State Space
	Data Collection

	Data Analysis
	Problem Difficulty
	Analysis of Individual Moves

	State Space Bottleneck
	Network Flows
	Bottleneck Coefficient
	Possible Applications

	Computational Model of Human Solver
	Basic Principle
	Model Formalization
	Possible Extensions

	Difficulty Rating Metrics
	Metrics Based on State Space
	Metrics Based on Shortest Paths
	Metrics Based on the Computational Model
	Evaluation and Discussion

	Conclusions and Future Work

