
The Sokoban Challenge:
An Analysis on Past, Present, and Trends in Algorithms

and Heuristics for Automatic Solving of Sokoban
Problems

Juan Antonio Martín Checa

Computer Science Department

Campus Teatinos
University of Malaga
29071 Málaga, Spain

 jamcheca@telefonica.net

Abstract. Games have been since far long a matter of curiosity for Humanity,
Most of known games are nowadays immediate or easy to solve by mankind
and/or computers. However, some of them still remain a mystery, a challenge to
be accomplished. Sokoban is one of these fascinating games from which we
still have much to learn. This work introduces the game of Sokoban, analyses
the different algorithms used so far in an attempt to solve it, explains the
heuristics applied, and its learning, and last, gives an overview of the current
situation as well as upcoming research lines oriented to solve the game.

Keywords: Artificial Intelligence, Deadlock, Decomposition, Difficulty,
Games, Goal Cuts, Goal Macros, Goal Scheduling, Hash Tables, Hierarchical
Learning, IDA*, Minsmatching, Move Ordering, Overestimation, Pattern
Searches, Planning, Rapid Random Restart, Relevance Cuts, Rolling Stone,
Search Strategies, Single-Agent Search, Sokoban, Talking Stone, Tunnel
Macros.

1 Introduction

Games have always been seen as perfect subjects for exploring human reasoning
capabilities within the field of Artificial Intelligence [2]. As explained by remarkable
AI researcher Susan Epstein, there are two main reasons why research on games
should continue: human fascination with game playing, and the fact that some games
still remain unsolved [1]. One of these games, and focus of this paper is called
Sokoban.
 The term Sokoban, which in Japanese means pusher [8], is commonly translated
into English as warehouse keeper or storeman [9]. The term also applies to a game
created in1981 by Hiroyuki Imabayashi [12], which worldwide success relies on its
simple rules coupled with the significance of the player’s intellectual challenge [5].

1.1 Rules of the game

As described in [12], “the object of Sokoban is to push all stones (or boxes) in a maze
[…] to the designated goal areas.” The stones can only be pushed (not pulled) by the
warehouse keeper, for what he has to get behind them. Also, the storeman, who
equals the stones in size, is only capable of moving one stone at a time, making the
game even more challenging [9].

2 Applied algorythms

The problem of solving Sokoban is very attractive to AI researchers because of its
similarity with the design of a robot responsible for moving boxes in a warehouse.
The main issue, however, when solving Sokoban puzzles (which have been
demonstrated to be PSPACE-complete) is their NP-hard complexity [9].

Traditionally, the most extended approach to solving single-player games has been
seeing them as state-space problems. This state-space is structured as a graph in a
way that each of its nodes is a game state. A node’s successors represent those game
states reachable in one movement (or push, in the particular case of Sokoban). Then,
the natural method to solve the problem was relying on any of the so-called single-
agent search algorithms, such as IDA* (Iterative Deepening A*) [2].

However, classical search algorithms such as IDA* have been proved not to be
capable of solving non-trivial Sokoban problems by themselves. The key factor here
is the level of complexity of the specific Sokoban problem under study.

A number of factors affect directly the complexity of Sokoban problems. First, the
branching factor, meaning the number of options given a game state, is extremely
high (probably over 100). Second, and because of this, the final solution can be
particularly long. Third, the state-space can be unmanageable in size. Forth, is that
unlike in other games, deadlocks (game states from which the final solution game
state is not reachable anymore) do exist in Sokoban. Last, the enormous variety of
problems makes it necessary to adopt different strategies when solving them [2].

For all of the above, in order to be capable of solving complex Sokoban games, the
IDA* heuristic search algorithm is combined with a a number of techniques which
make use of domain-specific knowledge [9].

3 Heuristics and learning

Once we have commented on the IDA* algorithm, we will introduce two worldwide
recognized programs for solving Sokoban problems: Rolling Stone and Talking Stone,
analyzing the heuristics and strategies used on each.

3.1 Rolling Stone

Rolling Stone, developed by the University of Alberta, is considered as the best
documented Sokoban solver ever. Based on the IDA* algorythm, it is capable of
solving up to 59 complex problems from a pool of 90, when coupled with a set of
domain-specific enhancements.
 The first is minmatching, a lower bond for the number of pushes needed to solve the
maze, based on an algorithm that solves the minimum cost perfect matching in
bipartite graphs. Hash tables are also used to eliminate identical subtrees, while move
ordering produce savings in the last iteration, and deadlock tables remove parts of the
tree leading to deadlocks. Tunnel macros and goal macros reduce the tree depth. On
their side, goal cuts and relevance cuts reduce the branching factor. Pattern searches
is of special importance since they produce vast reductions in the search tree.
Overestimation is also oriented in the same direction. Finally, rapid random restart
avoids getting stuck in critical situations [12].

3.2 Talking Stone

Talking Stone, is a more recent Sokoban solver, created in the University of Liège.
Unlike Rolling Stone, Talking Stone is not based on a single-agent algorithm such as
IDA*, but on a multi-agent representation of each specific Sokoban problem [2],
adopting a new approach based on the concepts of decomposition, goal scheduling,
and leaning from deadlocks.
 Decomposition refers to dividing the final solution into a number of sequences of
pushes, each of which can be subdivided into two phases: extrication (which implies
the move of different stones) and storage (pushing the stone to its final location).
 Goal scheduling determines the order in which the goals (destinations) will be filled
by their corresponding stones. Basically, it could be seen as a permutation of the list
of the ‘n’ goals associated to the problem. There are two types of goal scheduling:
effective scheduling (guarantees that the goals can be filled) and consistent scheduling
(assures that no goal will ever made unreachable by those stones located on filled
goals). The goal scheduling algorithm used in Talking Stone, starts from a situation in
which all goals are filled by stones (the final solution game state) and evacuates all of
those stones annotating the pushes needed. Once all the stones are evacuated, the
algorithm takes the reverse order to solve the problem [2].
 Learning from deadlocks is still another essential characteristic of Talking Stone,
based on a classical search algorithm, leading to a significant reduction on the
branching factor.
 Finally, the solving protocol consists of four search functions. The first function in
in charge of calculating the goal scheduling based on the initial state, which is passed
to the second function, whose objective is filling all the goals as described in the goal
scheduling. A third function is the one which actually fills the actual goal. The last
function controls potential deadlocks that may arise.

4 Current status

As we said before, Rolling Stone is capable of solving 59 of the 90 Sokoban problems
in the reference suit. However, it is to be highlighted the fact that this Sokoban solver
(and so, its heuristic approach) seems to have reached its limits. Indeed, no further
research is being done on it.

Talking Stone, on its side, is currently capable of solving 54 of those problem, this
is, 5 less than Rolling Stone, with the difference that further research regarding the
rearrangement of the disposition of the goals could push that number up to 61, and
thus, defeating Rolling Stone as the best Sokoban problem solver.

Nowadays, the current situation is that some of those 90 Sokoban problems still
remain unsolved by either humans or machines [11]. Recent research [3] focuses on
the notion of difficulty in an attempt to understand how humans solve Sokoban
puzzles. Many online sites such as [6] offer executable programs for solving Sokoban
problems, while others such as [4] and [10] allow curious users to enjoy this
fascinating game. Even the Apple Store offers Sokoban for the iPhone [7]. There is no
doubt that Sokoban is more alive than ever.

References

1. AI Topics/Games, http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/Games
2. Demaret, Jean-Nöel. Hierarchical Planning and Learning for Automatis Solving of Sokoban

Problems. University of Liège, Liège.
3. Jarusek, Petr. Human Problem Solving: Sokoban Case Study. Masaryk University, Brno
 (2010)
4. Juegos de Sokoban , http://www.juegosjuegos.com/juegos_reflexion_sokoban_1.shtml
5. Junghanns, A. Sokoban: a Challenging Single-Agent Search Problem. University of Alberta,
 Edmonton.
6. Resolver Sokoban, http://jose-juan.computer-mind.com/jose-juan/Resolver-Sokoban.php
7. Smart Sokoban Free para iPhone, iPod touch y iPad en la App Store de atunes,
 http://itunes.apple.com/es/app/smart-sokoban-free/id294794649?mt=8
8. Sokoban, http://www.rodoval.com/heureka/sokoban/sokoban.html
9. Sobokan - Wikipedia, http://en.wikipedia.org/wiki/Sokoban
10. Sokoban 3- Juego de Análisis y Estrategia para Lograr la Secuencia Óptima de
 Movimientos, http://www.jugarjuegos.com/juegos/java/sokoban3/index.htm
11. Takes, F.: Sokoban: Reversed Solving Bachelor Thesis. Leiden University, Leiden (2008)
12. The University of Alberta Games Group, http://webdocs.cs.ualberta.ca/~games/

