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Abstract. Sokoban is a classical, widely acclaimed, logic computer puzzle game. Despite
it’s simple set of rules the complexity of its mazes is overwhelming. This paper describes
Willy, our first attempt to solve Sokoban puzzles, and our study of the underlying imple-
mentation difficulties of a Sokoban search agent: the very large search space and the state
transitions that create unsolvable situations. Willy uses a search algorithm, IDA* and a
good heuristic, Minmatching and then uses techniques to reduce the search space: removal
of unsafe positions from the map, hash tables to prevent loops, macro moves to merge to-
gether multiple states into a single state and finally relevance cuts to attempt to make only
relevant moves.

1 Introduction

Sokoban is a computer puzzle game in which the player pushes boxes around a maze in order
to place them in designated locations. It was originally published in 1982 for the Commodore 64
and IBM-PC and has since been implemented in numerous computer platforms and video game
consoles [1] .

Fig. 1. Level 1 of the original PC version of Sokoban (adaptaded from [1]).

While Sokoban is just a game, it can represent a robot moving boxes in an actual warehouse and
as such, it can be treated as an automated planning problem. Sokoban is an interesting problem
for the field of artificial intelligence largely due to its difficulty. It has been proven NP-hard [2]
and PSPACE-complete [3] . Sokoban is difficult due to its branching factor of 4 (up, down, left,
right) and the huge depth of the solutions that averages 260 [4], resulting in approximately 3.4 x
10ˆ156 states. In practice, in our test set, the median search space size is only around 10ˆ18 [5].
Search space size alone is note necessarily a good indicator of the difficulty of a problem since it
does not reflect the decision complexity [8], which in the case of Sokoban can be assumed to be
high [5]. Additionally, a move may leave the puzzle in a state in which it is impossible to solve it,
creating a state of deadlock.



2 Problem Formulation

In Sokoban, the player has to push boxes in a maze into goals. There are as many goals as there
are boxes but all goals and all boxes are equal, in other words, there’s no difference between
pushing one box or the other to a given goal. The player can only push a single box at a time and
is unable to pull. Under certain situations, it is possible to place the puzzle in a state in which
it becomes impossible to solve. An easy example is when the player pushes a box into a corner
where it becomes permanently immobilized, if that corner is not a goal, then the problem becomes
unsolvable.

Fig. 2. Example of Deadlocks (adapted from [5]).

3 State Representation and Test Suite

The mazes and their state are represented by text characters:

– space, a free square
– ’#’, a wall square
– ’$’, a box
– ’.’, a goal square
– ’@’, the player

This representation of the mazes is the same that was used in Rolling Stone [6] and comes
from XSokoban [7].

Fig. 3. Representation of the initial state of Level 1 shown in Figure 1.

Internally, Willy also uses other symbols:



– ’*’, a box on a goal
– ’ !’, the player on a goal
– ’x’, an unsafe square
– ’+’, the player on an unsafe square

Less complex maps were created by reducing the number of boxes and goals in some of the maps
obtained from XSokoban [7]. This was done in order to allow for quicker tests to be performed on
Willy and the solutions implemented.

4 Search Algorithm

The search space of sokoban has a large search space with few goals, located deeply in the tree.
Furthermore, one can have a lower-bound heuristic. These properties point to an informed search
that finds sparsely distributed goals in a huge search space: Iterative Deepening A* [5].

4.1 Iterative Deepening A*

Iterative Deepening A* (IDA*) combines a depth-first iterative-deepening with the best-first
heuristic search A*. At each iteration, IDA* performs a depth-first search, cutting off a branch
when its total cost, g + h, where g is the cost to reach the current node and h is the expected cost
to reach a solution (heuristic), exceeds a given threshold. This threshold starts at the estimate of
the cost of the initial state, and increases for each iteration of the algorithm. At each iteration, the
threshold used for the next iteration is the minimum cost of all values that exceeded the current
threshold.

Not only does IDA* find a cheapest path to a solution and use far less space than A*, but it
expands approximately the same number of nodes as A* in a tree search. IDA* is optimal in terms
of solution cost, time, and space, over the class of admissible best-first searches on a tree [9].

4.2 Lower Bound Heuristic: Minimum Cost Matching

Willy uses the same lower bound heuristic of Rolling Stone [6] which estimates the number of box
pushes needed to solve a Sokoban problem. This can be very hard to estimate accurately since
puzzles can require complex maneuvers to solve such as pushing boxes through and away from
goal squares to make room for other boxes.

For each box there is a minimum number of pushes required to maneuver that box into a
particular goal. This minimum occurs if there are no other boxes in the maze. Since only one box
can go to any one goal and all boxes must go to a goal in order to solve the puzzle, the problem
is to find the assignment of boxes to goals that minimizes the sum of these distances (the total
cost). This heuristic is called Minmatching [5]. The weight in the edges of the graph is the distance

Fig. 4. Minmatching example (adapted from [5]).

between the box (or stone) and the goal it links. If it is infinite, that means that it is impossible
to push that box into that goal.



In order to calculate these values, a search has to be made for each box-goal pair in which all
other boxes and goals are removed from the map. This obviously means that this is a very costly
heuristic in computational terms. This cost is offset by a significant reduction in the number of
nodes that have to be searched.

Willy currently uses an inferior heuristic, making a minimum cost matching using the distance
between squares without accounting for walls.

5 Unsafe Positions

A state of deadlock is a state in which the puzzle is unsolvable. While certain deadlock states can
be hard to detect, some are very simple. For instance, if the box is pushed into a corner, it can
not be further moved. If that corner is not a goal, than the puzzle is now in an unsolvable state.
Thus it is trivial and inexpensive to mark all corners without a goal as ”unsafe” before the search
even begins. Another observation is that all the squares in a line between two unsafe positions are
also unsafe if they are positioned along a wall without goals. Since these positions remain constant
and depend only on the map itself, pushing a box into these previously marked positions can be
considered an illegal move and all the states that included them can be pruned from the search
tree [10].

Fig. 5. Unsafe positions (adapted from [10]).

6 Hash Tables

Hash tables accomplish two different tasks: avoid cycles and duplicating work by detecting previ-
ously visited nodes [5]. Willy uses the position of the boxes and the player. If any state has the
same box and player positions as another already in the hash table, it is discarded. Otherwise it
is added to the table.

7 Macro Moves

A macro is a rule or pattern that specifies how a certain input sequence should be mapped to an
output sequence. Macro moves, in Sokoban, consist in treating a sequence of moves as a single
move. Using a macro effectively removes all the moves encompassing the macro from the search
tree. Thus, the use of macro moves decreases the depth and branching factor of the search tree -
the latter occurs whenever a move is incorporated in the macro.



Fig. 6. Effect of using a hash table on the search tree (adapted from [4]).

Fig. 7. Effect of using macros on the search tree (adapted from [4]).

Fig. 8. Example of a tunnel (adapted from [5]).



7.1 Tunnel Macros

Tunnels are narrow, straight pathways through which only one stone may be pushed. When a box
is pushed, in the example, from Dc to Ec, the push is replaced by Dc-Ic. There is no way to back
out of a tunnel: either a stone is pushed out the way it came in or it is pushed from the other side
if there is another path connecting the two ends of the tunnel. Because of this, pushing a second
box into an already occupied tunnel generates a deadlock.

8 Relevance Cuts

Choosing a move that is relevant to the current state is a skill that is easy and natural for a human
user but very complex for a computer. The search algorithm considers all legal moves and thus will
consistently explore sequences of moves which a human player would never consider. Relevance
cuts is a forward pruning technique that attempts to give the search algorithm the ability to
choose which moves are relevant relatively to the previous moves [5]. The biggest drawback of this
technique is that it may lead to non-optimal solutions. Fine tuning the aggressiveness of the cuts
is therefore required.

The technique obtained good results in Rolling Stone however in the current implementation
of Willy, the cost of the pre-computation was exceedingly high and RC were disabled until further
improvements can be made.

9 Results and Conclusions

Fig. 9. Time in seconds it took to solve each map with different techniques.

Using only IDA* and a common heuristic it would take days to solve a Sokoban puzzle. Domain
specific knowledge is vital. Each technique added allowed Willy to find the solution faster, the most
significant overall improvement was adding Hash Tables.

Furthermore, the most powerful search enhancements can be linked to specific knowledge about
the particular problem instance. For example, a puzzle with a long tunnels connecting the boxes
to the goals will benefit heavily from tunnel macros. More specific optimizations can improve
performance in certain maps or even in single maps.

10 Future Improvements

Further improvement of the lower bound heuristic in Willy seems to be the most important
task ahead judging from the results obtained in Rolling Stone [5]. Fixing Relevance Cuts would
probably also yield slightly better results. There are also several techniques that are planned for
future versions of Willy.



10.1 Goal Macros

Goal macros are similar to tunnel macros. In most maps, all goals are located together, separate
from the rest of the map, and in many of those maps there is a single entrance into that area or a
small number of entrances. In those cases, once a box is pushed into the entrance, a macro can be
activated to push the box into the correct goal [5]. The correct goal can be pre-computed before
the search begins. Unlike tunnel macros, goal macros may result in non-optimal solutions.

10.2 Goal Cuts

If a move can be made that results in placing a box into a goal macro, it should be made instead
of the alternatives which are deleted from the move list.

10.3 Move Ordering

Each successive iteration of IDA* takes longer as it expands more nodes than the previous iteration.
Therefore the last iteration is potentially the longest. The objective of Move Ordering is to visit
the ”good” (according to some measure) successors first [11]. If it works, it means that the solution
is found on the left side of the tree (the first nodes visited at that depth) more often, reducing the
time it takes to complete the last iteration.

10.4 Backward Search

Backward search (or reversed search) consists in starting at the solution and searching until the
initial state is found. It has been proven to be better in certain maps [5] [10] however there
remains the problem of knowing in which maps it would be better. A possible solutions would
be starting a Backward search and stopping it after a pre-determined number of nodes searched
without finding a solution. Another solution that could be investigated would be to attempt to use
learning methods or simply heuristics to identify which maps would benefit from using backward
search instead of forward search.
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