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Abstract

What determines difficulty of solving a problem? Although
this question has been studied before, we found examples
which show large differences in problem difficulty which are
not explained by concepts identified in previous research.
This differences are caused mainly by the structure of a prob-
lems’ state spaces and cannot be easily captured by static met-
rics like size of the state space or the length of a solution.
To address these unexplained differences, we propose a com-
putational model of human problem solving behaviour. We
provide evaluation of the model over large scale dataset (hun-
dreds of hours of problem solving, more than 100 problem
instances) for three transport puzzles (Sokoban, Rush hour,
and Replacement puzzle).

Introduction

Human problem solving has been studied for a long time,
starting by a seminal work by Simon and Newell (1972);
for a recent overview see (Pizlo 2007). Simon and
Newell (1972) and most of the subsequent research did use
detailed data (e.g., think aloud protocols) about few hours of
human problem solving. We use a complementary approach
that allows us to address new questions: using modern tech-
nology we collect large scale data about hundreds of hours
of human problem solving of more than 100 hundred prob-
lem instances.

In our analysis we focus on the issue of problem difficulty.
What makes a problem difficult for humans? Why do two
very similar problems differ in difficulty? These questions
are important particularly in education – choosing problems
of the right difficulty is very important to keep learners en-
gaged. Easy problems are boring, difficult problems are de-
terring (Csikszentmihalyi 1975).

There are, of course, several factors that influence prob-
lem difficulty and many of them have been studied by re-
searchers. At first, problem difficulty is influenced by the
context of problem solving. The same problem may have
different difficulty depending on the context in which it is
presented. A typical example of this is the Einstellung ef-
fect (Luchins 1942) first studied for the water jug problem.
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At second, the overall problem difficulty depends on the
difficulty of individual steps in the solution. This effect was
demonstrated particularly with the use of izomorphic prob-
lems, i.e., problems which have the same underlying struc-
ture but different cover story. Most well-known are results
for Tower of Hanoi (Kotovsky, Hayes, and Simon 1985) and
Chinese ring puzzle (Kotovsky and Simon 1990). Differ-
ent instances or representations of the same problem differ
in requirements on working memory. The load on working
memory directly influences the difficulty of overall problem
solving.

At third, problem difficulty is influenced by the overall
structure of the problem state space. Previous research has
focused on straightforward measures like the size of the state
space, the length of a solution, or the effectiveness of a hill
climbing heuristic. These metrics were studied for river
crossing problems (Greeno 1974), Fifteen puzzle (Pizlo and
Li 2005), or Water jug puzzle (Atwood and Polson 1980;
Carder, Handley, and Perfect 2008).

In this paper we report on experiments, in which we fix
most of these previously identified factors. We randomize
the order of examples, so that the order effect is minimized.
We use 40 problem instances of the same size and with the
same rules, i.e., the difficulty of individual steps is very sim-
ilar. The problems vary with respect to state space size, so-
lution length, and heuristic effectiveness, but we show that
these factors do not explain the differences in problem diffi-
culty.

We believe that these unexplained differences are caused
by the structure of problems’ state spaces. Figure 1 demon-
strates on artificial examples how the structure can influ-
ence the difficulty. Both examples have the same number
of states, edges, and the same distance from the start to the
goal state. In the example on the left, it is easy to find the
path to the goal – whatever path we choose we arrive at the
goal. In the example on the right, it is much more difficult
to succeed – we have to select the right sequence of moves
and each wrong move makes a solution path much longer.

To capture these structural differences among problems,
we propose a dynamic computational model which simu-
lates human behaviour during state space search. The model
is very abstract – it approximates human behaviour as a
mix between randomness and optimality. The model does
not provide explanation of “how people think”, it just sim-
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Figure 1: The structure of the state space can influence dif-
ficulty of problem solving.

ulates behaviour; i.e., it is a cognitive engineering rather
than cognitive science model (Gray 2008). Cognitive sci-
ence models provide a better explanation of experimental re-
sults, but they typically contain many problem specific rules
and many parameters, which makes them prone to data over-
fitting (Roberts and Pashler 2000) and unsuitable for gener-
alization. Our model operates only with the problem state
space and thus it can be easily applied to other state space
traversal problems.

Using the computational model we specify a metric for
rating difficulty of problems and we evaluate this metric over
the collected data. We compare this metric with other pos-
sible difficulty rating metrics, particularly with the metric
‘the length of the shortest path to goal’. Results differ for
the three studied puzzles. Based on these results we propose
new hypotheses about human problem solving.

Experiments with Human Problem Solving

In this section we describe the methodology used for data
collection on human problem solving. We also discuss the
problems that were used and we provide a brief summary of
the collected data.

Data Collection

We have performed data collection using the internet, more
specifically using own web portal through which partici-
pant solve problems. All actions of problem solvers (in-
cluding their timing) are saved and stored into a database
on the server. Before solving experimental problems, partic-
ipants solved few training problems to get acquainted with
the rules. The order of experimental problems was randomly
shuffled for each participant.

Participants were mainly university students and were not
paid for solving. Since the whole experiment was ran over
the internet we did not have direct control over participants.
As a motivation to perform well there was a public results
list – this is for most people sufficient motivation to perform
well, and at the same time it is sufficiently weak so that there
is not a tendency to cheat. Even if participants cheated, we
would be able to recognize it, as the solving time and state
space navigation would be significantly different from other
data. For a more detailed analysis of the data see (Jarušek
and Pelánek 2010).

This internet based approach has certainly some disadvan-
tages over the standard ‘laboratory’ approach to experiments
with human problem solving. Nevertheless, we believe that

Figure 2: Examples of studied puzzles

the advantages significantly outweigh these disadvantages.
We have been able to collect extensive data about human
problem solving activity: several hundreds people solved
several thousands puzzles and spent more than 400 hours
with problem solving. This is much more than would be fea-
sible with the classical laboratory approach. Moreover, the
experimental setting is cheap and the data collection fast.

Studied Problems

We focus on well-structured problems, i.e., problems with
clear objective and clear set of rules. A typical example
of well-structured problems are logic puzzles. Puzzles are
well suited for research, since they contain all important in-
formation in the statement of the problem (and hence do
not depend on the knowledge of the solver), are amenable
to automated analysis, and are also attractive for humans.
For these reasons puzzles have been used for a long time
in both artificial intelligence (Schaeffer and Van den Herik
2002) and cognitive psychology (Simon and Newell 1972;
Wilson and Keil 1999).

All studied problems are single player transport1 puzzles.
Transport puzzles can be expressed directly using the state
space terminology (Simon and Newell 1972) – states are
configurations of the puzzle, transitions are given by allowed
operations, the goal of the puzzle is to find a path from the
start to the goal state. We study three puzzles (see Figure 2
for illustration): Sokoban, Rush hour, and Replacement puz-
zle. In the following we briefly describe rules of the puzzles,
used instances, and we mention characteristics of their state
spaces and summary of results of our experiments. Sum-
mary information about puzzles and collected data is pro-
vided in Table 1.

Sokoban Sokoban is a well-known puzzle created by Hi-
royuki Imabayashi. There is a simple maze with several
boxes and one man. The goal of the puzzle is to get the

1The “transport” notation does not mean that there is necessary
some physical movement involved in solving the puzzle, but rather
that the solution is a sequence of moves.
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Table 1: Summary information about collected data. “Total time” is the total time spent by solvers to solve provided puzzles
(only successful attempts are included).

state space instances total median time to solve
problem time easiest median hardest
Sokoban large directed 35 356 hours 28 sec 10 min 56 min
Rush hour large undirected 45 46 hours 15 sec 2 min 11 min
Replacement puzzle small directed 40 55 hours 34 sec 2 min 5 min

boxes into the target squares. The only allowed operation
is a push by a man; he can push only one box at a time.
For experiments we used 35 instances, all of them with 4
boxes and similar size of the maze. Most of the instances
were selected from standard level collections. State spaces
are directed (moves are irreversible), their size ranges be-
tween 3000 to 36 000 states. Median time to solve a puzzle
is 30 seconds for the easiest instance and nearly 1 hour for
the hardest instance.

Rush Hour Rush hour is a well-known puzzle created by
Nob Yoshigahara. In a grid there are several cars. Each
car can move either in vertical or horizontal direction, cars
cannot be rotated. Each square of the grid can be occupied
by at most one car. The goal of the puzzle is to get a special
red car out of the grid. Experiments were performed with
45 instances, all of them using 6 × 6 grid and cars of the
size 1 × 2 or 1 × 3. Most of the instances were taken from
the standard Rush hour set. State spaces are undirected (all
moves are reversible), their size ranges from 600 to 80 000
states. Median time to solve a puzzle is 15 seconds for the
easiest instance and 11 minutes for the hardest instance.

Replacement Puzzle Replacement puzzle is a lesser-
known puzzle created by Erich Friedman. In this case we
are manipulating a sequence of symbols. Given a starting
sequence of symbols, the aim is to derive a goal sequence
by using provided replacement rules. Replacement rules are
applied one at a time; replacement can be applied on any
consecutive sequence of symbols. At any time there may
not be more than 6 symbols. Original formulation by Erich
Friedman requires that the puzzle is solved in a fixed num-
ber of steps (to ensure a single solution), we allow arbitrary
number of steps. The experiments were done with 40 in-
stances; each of them used two types of symbols and three
rules. State spaces are directed (moves are irreversible) and
their size ranges between 10 and 120 states, i.e., in this case
state spaces are much smaller than for Sokoban and Rush
hour. Nevertheless, the puzzle is still nontrivial, median time
to solve a puzzle is 30 seconds for the easiest instance and 5
minutes for the hardest instance.

Computational Model of Human Behaviour

Results of our experiment show that there are very large
differences in problem difficulty even between very simi-
lar problems. One of the causes of these differences is the
structure of underlying problem state space, as illustrated in
Figure 1. But how do we measure the structure of the state
space?

To address the impact of the state space structure on prob-
lem solving, we propose to use a dynamic computational
model. We do not try to model actual human cognitive pro-
cesses while solving the problem, but only to capture human
behaviour during a state space traversal. Our model is very
abstract and is based only on information about underlying
problem state space, i.e., the model is not specific for a sin-
gle problem.

Basic Model

Our web portal stores detailed data on human behaviour dur-
ing problem solving. Analysis of the collected data showed
that at the beginning of problem solving humans explore
the state space rather randomly, whereas later, as they get
closer to the solution, they move more straightforwardly to
the goal.

Our computational model is based on this observation.
The model starts at the initial state and then repeatedly se-
lects a successor state. This selection is very simple – it is a
combination of two tendencies: “random walk” (selection of
a random successor) and “optimal walk” (selection of a suc-
cessor which is closer to a goal state). Human decisions are
usually neither completely random, nor completely optimal.
Nevertheless, the model assumes that a weighted combina-
tion of these two tendencies can provide a reasonable fit of
human behaviour.

The general principle of our model is the following. In
each step the model considers all successors s′ of the cur-
rent state s. Each successor s′ is assigned a value score(s′),
the sum of all score values is denoted SumScore. The
model moves to a successor s′ with a probability P (s′) =
score(s′)/SumScore.

This general model is further specified by a selection of a
score function. The basic version of the model uses a simple
scoring function based on distance2 d(s) of a state s from the
nearest goal state. The function is defined as follows (B is a
single parameter of the model – ‘an optimality bonus’):

score(s′) =
{
d(s) d(s′) ≥ d(s)

d(s) +B d(s′) < d(s)

Successors that lead towards a solution get an ‘optimal-
ity bonus’, i.e., they have higher chance of being selected.
The use of distance from a goal has the consequence that
the relative advantage of the bonus increases as the model

2Note that this is not a heuristic estimate, but just a plain graph
distance in a state space. All our problems have state space smaller
than 100 000 states, so we can afford to compute exact distance for
each state.
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Figure 3: Comparison of traversal of the state space of one
of the Rush hour problems by humans (upper image) and by
computational model (lower image). The size of each state
is proportional to the time spent in a given state.

gets closer to the goal, i.e., the model behaves less randomly
when it is closer to the goal (as do humans). Figure 3 gives
an illustration of behaviour of humans and computational
model for one of the Rush hour problems.

If B = 0 then the model behaves as a pure random walk.
As B increases, the behaviour of the model converges to
an optimal solution. Hence by tuning the parameter B the
model captures continuous spectrum of behaviour between
randomness and optimality. Improvement in problem solv-
ing skills (e.g., by training or by studying worked examples)
thus corresponds to increase in the value of B.

Extensions

When the state space is directed (as is the case for Sokoban
and Replacement puzzle), it is not possible to reach a goal
state for some states – we call these states ‘dead’. Once
the model reaches a dead state, it will forever cycle in dead
states. Since this does not correspond to human behaviour,
we have to extend the model for directed state spaces. We
consider two different extensions:

1. dead states are never visited, i.e., score(s′) = 0 if s′ is
dead;

2. the model resets back to initial state when it reaches a state
without any successor or when it revisits a same dead state
for second time.

We use the first extension for a Sokoban model, and sec-
ond extension for the Replacement puzzle. This choice is
based on the collected data about human problem solving.
Humans are good at avoiding dead states in the Sokoban
puzzle, whereas in the Replacement puzzle humans do visit
dead states.

A natural extension of the model is the employment of
hill climbing heuristic (favouring moves which improve
the perceived distance between the current state and the

goal). Previous research (Greeno 1974; Pizlo and Li 2005;
Atwood and Polson 1980; Carder, Handley, and Perfect
2008) suggests that humans often use such heuristics dur-
ing problem solving. The model can be simply extended by
specifying a heuristic function3 h(s) and adding to score(s′)
a ‘heuristic bonus’ whenever h(s′) < h(s).

Analogically, it is possible to extend the basic model by
other heuristics, e.g., loop avoidance heuristic (the model
remembers states that were already visited and the scoring
function have higher values for unvisited states) or penaliza-
tion of long back edges (humans can often recognize not just
moves which lead to dead states, but also moves which lead
“backwards”).

Evaluation and Discussion

In this section we evaluate the model over the collected data.
We also discuss the interpretation of these results and de-
scribe some hypotheses that the data suggest.

Difficulty Rating Metrics

Does the computational model provide an explanation of dif-
ferences in problem difficulty? To answer this question we
formalize a metric based on the computational model and
compare it with other possible metrics. The metric based
on the computational model works as follows: for a given
problem we run the model repeatedly4 over the state space
and compute the mean number of steps necessary to reach
the goal state.

For comparison we used several other metrics, e.g., pa-
rameters of a state space (particularly size), length of the
shortest path to the goal state, and metrics based on simple
heuristics like the number of counterintuitive moves (Carder,
Handley, and Perfect 2008) that are necessary to reach a
goal. From these other metrics we report here only the
length of the shortest path, because metrics based on state
space parameters do not provide a statistically significant
correlation with problem difficulty, and metrics based on
problem specific heuristics work similarly as metrics based
on the shortest path5 and as they are problem dependent we
do not discuss them in detail.

Thus we focus on comparison of the shortest path met-
ric and the computational model metric with human solving
times. Figure 4 provides scatter plot for both metrics and Ta-
ble 2 provides summary of correlation coefficients. Except
for the standard Pearson’s correlation coefficient, we also
report Spearman’s correlation coefficient, which gives the
correlation with respect to ordering of values – for practical
application of difficulty metrics the ordering is often more

3An estimate of the distance of s from goal state, e.g., for
Sokoban a natural heuristic is the Manhattan distance of boxes from
goal positions.

4The reported results are based on 1000 repetitions. We
checked that the results are stable and are not changed by further
increase in number of repetitions.

5The only notable exception is for Sokoban puzzle where we
were able to get successful problem specific metric based on
‘chunks’ along the shortest path (Jarušek and Pelánek 2010).
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Figure 4: Scatter plots for shortest paths and model metrics. In ‘Sokoban model’ case there is one outlier which is outside the
shown plot.

important than absolute values. Moreover Pearson’s coeffi-
cient is in some cases rather unstable. This occurs particu-
larly for the Sokoban puzzle, where removal of one outlier
instance increases the Pearson’s correlation coefficient from
0.39 to 0.80. Results for Spearman’s coefficient are stable.

Sensitivity Analysis and Model Extensions

The metric based on computational model is dependent on
the parameter B (optimality bonus). We have done sensi-
tivity analysis of the model behaviour with respect to this
parameter and the results show a surprising result. In all
cases the best behaviour of the model is for values of the
optimality parameter B around 25. Note that the three stud-
ied problems are quite different – their state spaces are dif-
ferent combinations of large/small and directed/undirected
types (see Table 1). Is this an accidental result caused by
our selection of problems? Or does the model and the spe-
cific value 25 of the optimality parameter tell us something
general about human problem solving?

We have also performed evaluation of the model exten-
sion with hill climbing heuristics. The hill climbing heuris-
tic is problem specific, so it is not possible to do straight-
forward comparison across different problems. Thus we fo-
cused only on Sokoban puzzle6. The correlation with human
results improved to 0.56 (Pearson’s coefficient), respectively
to 0.73 (Spearman’s coefficient).

6For Sokoban it is straightforward to specify a natural hill
climbing heuristic based on Manhattan distance of boxes from goal
positions. For the other two puzzles the choice of heuristic is not
so clear.

Differences among Problems

Table 2 shows that there are quite large differences among
the three studied problems. For Rush hour the shortest path
metric provides a good explanation of problem difficulty, in
this case the computational model metric does not bring any
improvement. However, for the Sokoban puzzle and partic-
ularly for the Replacement puzzle, the shortest path metric
provides poor explanation and in these cases the computa-
tional metric does bring an improvement.

These results thus open new interesting question: Why
does the shortest path metric sometimes provide sufficient
explanation of problem difficulty and sometimes it does not?
To answer this question it is necessary to study more than
just three different problems. Thus so far we can provide
only several hypotheses.

At first, solving times for individual instances differ more
significantly for Rush hour than for Sokoban and Replace-
ment puzzle This difference is probably caused by selection
of particular instances and by smaller variation in times for
Rush hour puzzle. Thus to certain extent the differences can
be artifacts of our experiments (it is easier for metrics to dis-
tinguish more significantly different problems), but we be-
lieve that this potential artifact can account only for small
part of differences.

At second, problems differ in their “local difficulty”. It
is much harder to imagine successor states for the Replace-
ment puzzle than for Rush hour puzzle. Thus solvers can
do more analysis and planning for Rush hour and thus the
structural differences among problems may not be that much
important.

At third, the state space of Rush hour is undirected (all
moves are reversible) whereas state spaces for Sokoban and
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Table 2: Difficulty rating of puzzle instances for our three problems using the shortest path metric and the computational model
metric.

correlation coefficient
problem metric Pearson’s Spearman’s
Rush hour shortest path 0.77 0.90

model B = 25 0.75 0.90
Sokoban shortest path 0.19 0.41

model B = 25 0.39 0.61
Replacement puzzle shortest path 0.28 0.21

model B = 25 0.57 0.49

Replacement puzzle are directed7. We believe that the issue
of directionality may be quite important in the study of prob-
lem solving. So far this issue was not adequately addressed
in previous research, as most research did focused on undi-
rected problems (Greeno 1974; Kotovsky, Hayes, and Simon
1985; Pizlo and Li 2005).

Conclusions

Using an internet, we collected large scale data about human
problem solving of transport puzzles (Sokoban, Rush hour,
Replacement puzzle). The data show that there are large dif-
ferences among difficulty of individual problem instances.
We argue that these differences are caused by global struc-
ture of problem state space and that they are not explained
by previous research. In order to explain these differences,
we develop a computational model of human behaviour dur-
ing state space traversal. The model is a simple combination
of random and optimal behaviour. It has just one parameter
and the optimal value of this parameter is nearly the same for
all three studied problems. Thus we believe, that the model
should be easily applicable to other problems.

We evaluated the model over collected data and compared
it with other metrics for difficulty rating. The results differ
for the three studied puzzles. In the case of the Rush hour
puzzle, it is easy to predict difficulty even with the shortest
path metric. For the Replacement puzzle, simple metrics do
not work and the computational model does bring a signif-
icant improvement. The results open several new questions
about problem solving, e.g., the role of directionality, or in-
teraction between difficulty of local steps and global struc-
ture.

The model can be also used for modeling improvement
in problem solving skills by training – improvement corre-
sponds to increase in the value of the model parameter B.
Preliminary evaluation using the data from Tower of Hanoi
experiment (Gunzelmann and Anderson 2003) showed that
the model can provide good fit to previously published data.
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