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Abstract

In many games, the machine has become stronger than the best human players. Ma-
chines have already beaten the human World Champion in famous games like Checkers,
Chess, Scrabble and Othello. However, mankind has not been humbled by chips in all
games. The best human players are still stronger than computers in games like Go,
Poker, Chinese Chess and Hex. In this thesis, we will focus on a new way to model
single-player games in order to improve the performances of the machine.

Classically, games are described as search problems. Each game situation is consid-
ered as a node in a graph. The arcs represent legal moves from one position to another.
Solving a single-player game requires to solve a state-space problem, i.e. find one path
that leads to a solution-state of the game. The heart of this thesis consists in exploring
the idea that most single-player games can also be modelled as multi-agent systems.
The agents are no longer the players of the game as for multi-player games, but prim-
itive game elements depending on the particular game. Furthermore, instead of facing
each other, the agents collaborate to achieve a common objective. This new represen-
tation leads to new interesting resolution techniques, even more when both modelling
methods are combined. It is demonstrated on the game of Sokoban, a challenging
one-player puzzle for which mankind still dominates the machine.

For now, the best documented Sokoban solver called Rolling Stone uses single-
agent search techniques with a lot of problem-dependent improvements, and is able to
solve 59 problems of a difficult 90-problem test suite [8]. In [10], the fact that only
trivial problems can be solved by using classical state-space techniques without other
enhancements is demonstrated. Our program Talking Stones solves already 9 mazes of
the same benchmark without any problem-dependant enhancement.

This thesis will also give an original presentation of the classical state-space algo-
rithms. Usually, only a high-level description with abstract data types is given. Here
we will present all the algorithms with the semi-formal-method proposed in [4]. The
invariants specified in this work have not been taken from the literature. They have
all been reconstructed from the original idea of the algorithm in order to produce a
clear description of the latter and to prove its correctness. This approach has led to
a contribution for the A* algorithm. The practical performances have indeed been
improved for a particular implementation choice of practical interest.
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Chapter 1

Introduction

Games have always fascinated mankind and attracted the attention of the AI research
community. Writing game-playing programs is not just a diverting activity, it also has
many applications in real-life problems. Indeed, when facing a problem humans often
act as if they would be playing a game: they consider a number of different moves
on their way to solve the problem. Some people consider even the life as a big game,
where every alive being tries to maximize his well-being.

1.1 State-Space Representation

Classically, games are described as search problems. As an example, consider the game
of Connect-Four. Given any game configuration, there is a finite number of moves
that a player can make. Each of them leads to another position, which will allow the
opponent a finite number of responses, and so on until it ends with a win or a tie. We
can therefore represent the game of Connect-Four by considering each board situation
as a node in a graph. The arcs in the graph represent legal moves from one board
situation to another. These nodes correspond thus to different states of the game
board. The resulting structure is called a state-space graph.

Figure 1.1: Portion of the state space for Connect-Four
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Chapiter 1 1.1 State-Space Representation

A path between two nodes of a graph is a sequence of arcs, such that the end point
of any arc is the beginning point of the following one in the sequence. The problem of
finding a particular path in a state-space graph is called a state-space problem. Figure
1.1 shows that starting the construction of the state-space graph with an empty board
will lead to a graph representing all the possible games of Connect-Four.

1.1.1 Single-Player vs Multi-Player Games

Solving a single-player game requires to solve one state-space problem. Indeed, the
game starts in a particular state and the program has just to find one path that leads
to a goal node, i.e. a solution state of the game. The moves to play are then given
by this path. This document mainly focuses on single-player games. As we will see,
even if only one state-space problem needs to be solved, this will be far from trivial for
interesting games.

In two-player games, the problem is not as easy, as finding one path that leads
to a win does not really help. Indeed, this path will contain positions where it is
the opponent’s turn. He will therefore have the freedom to decide what to play, not
necessarily the moves of our winning path. In practice, two-player games are attacked
with the minimax algorithm, but this is not covered in this document focused on single-
player games 1. The problem becomes even harder when the number of opponents
grows.

1.1.2 Size of the Search Space

Obviously, the size of the search space plays a crucial role for solving state-space prob-
lems. Intuitively, the depth of the solutions is also an important factor. The size of the
search space of Connect-Four depicted in Figure 1.1, has been estimated at 1014 [1]. It
seems thus impossible to visit all states in reasonable time. We need more ingenious
search strategies.

The problem of the size of the state-space graph is not specific to the game of
Connect-Four. Indeed, all the interesting games are characterized by a huge search-
space. A few more two-player examples are the game of Chess, where the state-space
has been estimated at 10120, which is a number larger than the number of molecules in
the universe or the number of nanoseconds that have passed since the big bang [12],
and the game of Go, where the size is even larger than for Chess, i.e. 10170 for the
classical 19 × 19 board [16]. A Single-Player example is the game of Sokoban, which
will be the main focus of this document, and where the state-space is a cyclic graph
estimated at 1098 [10].

1.1.3 Search Strategies

Many different algorithms have been created for exploring search spaces. They can be
separated in two complementary groups:

1for more information about the minimax algorithm and its variants consult for example [2].
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Chapiter 1 1.3 The New Modelling Method

• Blind methods, or uninformed search methods, do not use any problem-dependent
information to guide through the search. They explore the state-space in a pre-
defined way that is the same for all state-space problems.

• Heuristically informed methods use heuristics to determine in which order the
different paths should be analyzed, i.e. to explore the most promising ones first.

A heuristic is a problem-dependent set of expert-rules for selecting lines that have
a high probability of success. Heuristics are not foolproof: even the best game strategy
can be defeated. For Connect-Four, the heuristic could for example be a function that
favors paths leading to board configurations where the player’s tokens are strongly
connected together and the opponent’s ones are dispersed all around the board.

The most popular strategy that uses heuristics is called the best-first search strategy.
Humans use this natural strategy every day. For example, when planning to visit an
old friend in another town, humans do not take the charts of all the existing roads
of the world and explore all the possible combinations of roads until they found the
best one leading to the desired destination. Instead, they use their experience to find a
near-optimal route. When humans play games, they do not consider all possible moves
in every possible position: they examine only moves that experience has shown to be
effective. So heuristics can be seen as models of the experience of a problem.

Nevertheless, for some difficult games, machines are still far from beating humans
and the research community mainly tries to do it with the existing modelling methods,
focusing on new resolution methods. This document will instead introduce a new
method, which seems to have never been tried till now. Actually, the main focus of
this document will consist in proving that this method may lead to new interesting
techniques and testing it on the game of Sokoban.

1.2 Multi-Agent Systems

According to [15], for game theorists a game is an abstraction of a situation where
players, or agents, interact by making moves. Based on the moves made by the players,
there is an outcome, or payoff, to the game. Standard games such as Poker and Chess
are games in this sense. The game theorist’s notion of game, however, encompasses far
more than what we commonly think of as games. Standard economic interactions such
as trading and bargaining can also be viewed as games, where players make moves and
receive payoffs.

1.3 The New Modelling Method

The heart of this thesis consists in exploring the idea that most single-player games can
also be modelled as multi-agent systems. The agents are not, as usually, the players of
the game, but more primitive game elements depending on the particular game. This
leads to new interesting resolution techniques. This means thus that it will even be
possible to solve single-player games using this multi-agent modelling approach.

3



Chapiter 1 1.3 The New Modelling Method

1.3.1 The Game of Sokoban

The new game-modelling method will be demonstrated on a particular game: the game
of Sokoban. This choice is not random. First, it is a one-player puzzle which has not
been solved yet by the AI community. For now, the best documented solver called
Rolling Stone uses single-agent search techniques with a lot of problem-dependent
improvements, and is able to solve 59 problems of a difficult 90-problem test suite [10].
Furthermore, man still dominates machine in this domain.

Second, an unlimited set of different starting positions can be created by varying
the size and the difficulty of the component problems. Different solving methods are
therefore easy to compare, as there will always exist a test-set that can highlight the
limits of the solving strategies. In this paper, we will compare our results to Rolling
Stone’s ones on the same 90-problem benchmark. The latter can be found at [6] with
their results. Chapter 3 will be dedicated to this game, explaining notably why it is so
challenging. Let us just give the simple rules of the game yet, in order to be able to
explain the contributions of this document in the domain.

A Sokoban maze is a grid composed of unmovable walls, free squares, exactly one
man, and as many stones as goal squares. The player controls the man and the man
can only push stones (not pull). Furthermore, only one stone can be pushed at a time.
The objective of the game is to push all stones on goal squares.

Figure 1.2: A Sokoban maze and a particular solution: b4-c4-d4-e4-f4-g4-g3-g2-f2-
e2-d2-c2-c3-c4-b4-b5-c5-c4-d4-e4-f4-g4-g3-h3-i3-i4-h4-g4-f4-e4-d4-e4-f4-g4-g3-g2-f2-
e2-d2-c2-c3-c4. The corresponding stone-moves notation of the solution: f4-g4-h4,
c3-c4-c5-d5, h4-g4-f4-e4-d4-c4-c5.

For a better understanding of the game, a solution to the problem of Figure 1.2 is
given. It is first described as an ordered list of coordinates of the squares that the man
must pass by, to bring all the stones on goal areas (starting with the initial square of the
man). A shorter notation giving only the lists of the stone-moves is also provided. Note
that this notation makes the implicit hypothesis that each stone-move of the solution
is valid, i.e. that the man can reach the square adjacent to the stone to effectively
make the push.

4



Chapiter 1 1.3 The New Modelling Method

The idea of the new multi-agent representation is that every stone of the maze can
be seen as an agent whose aim is to reach one of the goal squares, and the global goal
is to find a solution for which everyone achieves his objective. It is also possible to
impose some kind of optimality like minimizing the global number of agent moves. In
this view of the problem, the man is only a puppet which can be called by the stones
when they want to be pushed. It is important to note that the multi-agent notion
which has been introduced is only conceptual and that it does not imply multi-agent
programming. We will write an algorithm which requests a central solver to decide the
order of the stones to be solved. This work presents thus solely a new way to view the
problem which leads to new interesting resolution ideas.

We will define a particular subclass of Sokoban mazes that has been completely
solved by a protocol based on our pure multi-agent representation. Intuitively, a maze
is in this class if the stones are solvable one by one. Only one problem of our 90-problem
benchmark is in the subclass (problem 78) and can be solved by this protocol. This is
not surprising, as problems that are directly solvable stone by stone are uncommon in
difficult benchmarks. Instead of elaborating other protocols for solving more general
problems with the pure new multi-agent modelling approach, another idea has been
developed.

As it is often the case in AI, trying to understand how the human player solves
problems helps to find new algorithms. In the case of Sokoban, one of the talents of
the human player consists in recognizing very soon in the resolution process that he
can reach a configuration that is easy to solve (stone-by-stone). This suggests a new
solving method for difficult games.

The method consists in using a classical state-space algorithm, but one in which
the nodes whose corresponding state of the game is solvable by the new multi-agent
modelling approach are defined as success nodes. This means that when the search
reaches such a node, the search terminates successfully. The solution is then obtained
by appending the solution path found by the state-space algorithm to the solution
found by the multi-agent modelling method.

The offspring of success nodes are no longer reachable and can be considered to have
been pruned out of the state-space. In practice, the size of the state-space will decrease
substantially. On the other hand, more computation time is needed at each node as
the multi-agent modelling approach is called for each node to determine whether it is a
success node. However, the time lost by these calls is largely compensated by the time
won by having less nodes to visit. Our program Talking Stones implements this idea.

At the time being, our program Talking Stones is not a contribution in the domain of
Sokoban. It solves only 9 mazes of the benchmark whereas the state-of-the-art program
Rolling Stone solves 59. However, the latter is based on the IDA* algorithm with a lot
of really interesting problem-dependent enhancements. These are presented in [10] and
it is well explained why each of them contribute to a substantial decrease of the search-
tree size. On the other hand, the fact that no problem of the benchmark can be solved
with the pure IDA* approach without these enhancements, even with a clever heuristic,
is also demonstrated in [10]. We have not implemented these enhancements yet and
we plan to inject them within our new method in future works. As Rolling stone has
enjoyed tremendous progress by adding them to its initial pure IDA* approach (from
0 mazes solved to 59), we hope to benefit from the same kind of progression.

5



Chapiter 1 1.3 The New Modelling Method

1.3.2 Classical State-Space Techniques

The classical state-space techniques can be reused in this approach, as tools that agents
can use to solve subproblems of the game. For this purpose, the most popular best-first
search algorithm will be intensively used: the A* algorithm [13, 14]. The latter will
therefore be studied very carefully in this work. Note that even if the algorithm is
presented in many AI books, it is often only presented at a rather high level and the
fact that there exists a variety of possible practical implementations depending on the
problem is often hidden 2.

This thesis will give an original presentation of the A* algorithm in particular and
more generally of all the classical state-space algorithms. Usually, only a high-level
description with abstract data types is given. Here we will present all the algorithms
with the semi-formal-method proposed by [4]. The invariants specified in this work
have not been taken from the literature. They have all been reconstructed from the
original idea of the algorithm in order to produce a clear description of the latter and
to prove its correctness. This approach has even led to a contribution for the A*
algorithm. For one particular implementation choice for the abstract objects, we have
discovered that it is possible to rewrite the algorithm in order to improve the practical
performances.

1.3.3 Generalization of the Method

We can decompose the new solving method for difficult single-player games in three
layers:

• The high-level layer is a classical state-space algorithm where a node is a success
node if the medium layer can solve it. The choice of the algorithm depends on
the characteristics of the game.

• The medium-level is a protocol based on a multi-agent representation of the game.
The agents are primitive game elements depending on the particular game. The
agents have to communicate together to find a common solution. They can use
the algorithms of the low-level as tools for solving subproblems.

• The low-level is a set of algorithms for solving subproblems of the game. Classical
state-space algorithms can be used but not exclusively.

We believe that it is possible for almost all games to determine primitive game
elements that have to reach some goal. In puzzles like the 24-tile puzzle, the agents
could be defined as the tiles. In this representation, each tile aims to reach its final
destination but cannot move without altering the position of other agents. In the game
of Sokoban, all the agents are instances of stones of the maze and have thus the same
characteristics. For other games however, we could define agents that have their own
personality. For the game of solitaire for example, the agents could be the 52 cards.
Each agent is now unique. Note that for such imperfect information game, we must
consider that only a subset of the agents is visible. The other agents can thus be seen
as being in an unknown queue, waiting for entering into play.

2That does not mean that the well-known variations of the A* algorithm are often hidden. It
means merely that the best way to implement the A* algorithm itself is not often mentioned.

6



Chapiter 1 1.4 Overview of the Rest of the Document

1.4 Overview of the Rest of the Document

Chapter 2 examines the most used search strategies. First, blind methods algorithms
will be presented: the depth-first search and its variants, the breadth-first search and
the iterative deepening depth-first search. Then, heuristically informed methods will
be studied: the A* and the IDA* algorithm. Usually, only a high-level description
with abstract data types of all these algorithms is given. Here we will present all the
algorithms with the semi-formal-method proposed by [4]. The invariants specified in
this work have not been taken from the literature. They have all been reconstructed
from the original idea of the algorithm in order to produce a clear description of the
latter and to prove its correctness.

Our new solving method will be demonstrated on the game of Sokoban. Chapter
3 introduces this game and give several arguments to show why this game is so chal-
lenging. The precise definition of optimal Sokoban-solutions that we have chosen will
than be given. We will justify briefly why we have chosen this definition instead of
another also commonly chosen one. This chapter will also contain a short overview of
the state-of-the-art in Sokoban programs.

Chapter 4 is dedicated to our new solving method applied to the real case of
Sokoban. We will first define a particular subclass of Sokoban problem which have
been completely solved by our multi-agent modelling approach. We will see that this
class is too particular to be interesting for itself. However, we will see that it is possible
to combine the iterative deepening algorithm that will be presented in chapter 2 with
our new method and achieve better results. We will than give a generalization of the
method and sketch how it could be used for other single-player games. Finally, different
ways to extend the method will be suggested for future works.

7



Chapter 2

Single-Agent Search

This chapter will describe classical search strategies commonly used for solving state-
space problems. Deliberately, the most important strategies have been selected, letting
other approaches in the dark. For more information, consult the references used in this
chapter: [2, 7, 12, 17]. In this document, all the algorithms will be presented with the
semi-formal method and the pseudo-code proposed by [3, 4].

2.1 Framework Presentation

2.1.1 The State-Space

Recall that a state-space problem consists in finding one path between a starting node
and a goal node of a state-space graph. If the graph models a game, the states represent
positions of the game board. The states are obviously problem-dependent. It must thus
be supposed that the following data type is given:

type STATE = "problem-dependent";

The state-space graph is of course not present in memory. The space needed for
stocking it would be too large for interesting problems. In fact, it is not necessary: each
state-space algorithm starts with a beginning node and uses a function to generate the
successors of the nodes that it wishes to expand. Typically, it is a function that
"knows" the rules of the game and can compute all the possible moves in a given
situation, obtaining the list of all the possible one-move modifications of the board.
The following data type can thus be defined and the following function must be provided
by the application:

type SUCCESSORS = list of STATE; 1

find-successors(s: STATE): SUCCESSORS;
⇒ function that returns the list of the successors of the state s.

1list can be implemented as a linked list. It would take us too far away from the purpose of this
document to explain in details how this can be done. We will restrict ourselves to specifying useful
functions and procedures for manipulating lists. For a detailed implementation of linked lists, consult
[3]. Note just that in this implementation, the constant nil is used to represent the empty list and
that we will use the same convention here.

8



Chapiter 2 2.1 Framework Presentation

Our goal is to find a solution path, i.e. an ordered list of the states through which
the game must evolve to reach a goal node. The different state-space algorithms will
in fact manipulate lots of paths before finding the target one. This will be an essential
data type of our framework:

type PATH = list of STATE;

Finding a goal node requires to know what a goal is. It depends of course of the
problem studied. The following function must therefore be given:

goal-node?(s: STATE): boolean;
⇒ predicate true if and only if s is a goal state.

2.1.2 Useful Functions and Procedures

As lists will be intensively used by all search strategies, let us directly define useful
functions and procedures that manipulate them, supposing that ELEM is the type of
the elements of the list:

• initialize-list!(var l1: list of ELEM);

⇒ procedure that initialize the list l1 as an empty list.

• insert-front!(x: ELEM; var l1: list of ELEM);

⇒ procedure that inserts the element x in front of the list l1.

• insert-back!(x: ELEM; var l1: list of ELEM);

⇒ procedure that inserts the element x at the end of the list l1.

• get-first(l1: list of ELEM): ELEM;

⇒ function that returns a copy of the first element of the non-empty list l1.

• remove-first!(var l1: list of ELEM): ELEM;

⇒ function that removes the first element of the non-empty list l1 and returns

this element.

• append(l1, l2: list of ELEM): list of ELEM;

⇒ function that returns the concatenation of the lists l1 and l2.

• empty?(l1: list of ELEM): boolean;

⇒ predicate true if and only if l1 is the empty list.

• member?(x: ELEM; l1: list of ELEM): boolean;

⇒ predicate true if and only if x is an element of l1.

A constant for the empty list is also useful:

const EMPTY_LIST = nil ;

9



Chapiter 2 2.2 Graph Search is Really Tree Search

2.2 Graph Search is Really Tree Search

In this chapter, strategies for solving state-space problems in state-space trees will be
given. In this section, the fact that graph search unfolds into tree search so that some
nodes are possibly duplicated will be demonstrated.

As explained in the previous section, the graph is not present in memory. Each
search strategy starts with the initial state of the problem and use the function find-
successors for generating the successors of previously generated nodes. The order
in which they are generated and removed from memory depends on the particular
algorithm. To be more precise, nodes are generated for expanding previously generated
paths until a path leading to a goal node is found (the first path being the one-node
path which contains only the initial state of the problem).

Conceptually, the different search strategies can therefore be seen as various ways
to explore the tree of all the possible paths that can be constructed from the initial
state of the graph. This construction is only virtual and will never be computed. It
is just useful for explaining the algorithms and proving their correctness. This section
will be organized in two complementary parts: the cases of acyclic and of cyclic graphs.

2.2.1 Acyclic Graphs

A cycle is a path that contains at least two nodes that represent the same state of the
problem and that are therefore labelled with the same etiquette (we will call such nodes
clones). Acyclic graphs are graphs that contains no cycle. The state-space graph of
the game of Connect-Four presented in chapter 1 (Figure 1.1) was an example of such
a graph. Indeed, after each move the number of chips increases and the same position
can therefore not occur twice in the course of the game (but can be reached in several
ways, i.e. by several paths).

For an acyclic graph, the number of possible paths is finite and the tree representing
all the possible paths of the graph is thus finite too. Figure 2.1 shows an example of
the conceptual construction.
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Figure 2.1: (a) An acyclic state-space graph: a is the start node.
(b) The tree of all the possible paths from a.
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2.2.2 Cyclic Graphs

Cyclic graphs contains at least one cycle. The state-space of Sokoban is an example
of such a graph. Indeed, the man can push a stone to the left, come back to push it
on its starting square, and finally come back on its own starting square, attaining the
same state of the game again.

For a cyclic graph, the number of possible paths is infinite and the tree representing
all the possible paths of the graph is thus infinite too. Figure 2.2 shows an example of
the conceptual construction.
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Figure 2.2: (a) A cyclic state-space graph: a is the start node.
(b) The infinite tree of all the possible paths from a.

The good news however is that the nodes (and in particular the goal nodes) of the
graph have all at least one clone at a finite level of the tree. This can be deduced by
the fact that the graph has only a finite number of acyclic paths that starts at the root
node. A finite tree of those acyclic paths can thus be constructed, as showed on Figure
2.3 for the graph of Figure 2.2.
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Figure 2.3: The tree of all the possible acyclic paths from a in the graph of Figure 2.2.

11



Chapiter 2 2.3 Blind Methods

Each node of the graph appears exactly once in the tree, and the infinite tree
containing also the cyclic paths is obviously only an extension of this tree. Algorithms
that visit all the nodes at a particular depth before exploring deeper nodes will therefore
terminate if a goal node exists. Algorithms with cycle detection (which avoid cycles)
will only explore the tree of the acyclic paths and terminate thus even when no goal
node exists. Some algorithms will however have no termination guarantee.

In the rest of the chapter, we will only consider the types of tree presented in this
section. The trees can therefore be either finite or contain cyclic infinite branches. No
trees with acyclic infinite branches will be considered (the only way to obtain such a
tree would consist in starting with an infinite graph, but games are characterized by
huge but finite graphs).

2.3 Blind Methods

This section presents algorithms for finding one path in a state-space tree, given no
information about how to order the choices at the nodes.

2.3.1 Depth-First Search

The easiest way to explore the state-space tree consists in using a direct depth-first
strategy. The idea of this search is simple. To find a goal node from a given node N , if
N is already a goal node the search terminates, else pick one of the children of N and
work forward from that node2. Other possibilities at the same level are memorized and
will be explored only when there is no more chance of reaching a goal node using the
original choice.

The idea of the algorithm consists in working with a list open of paths to expand
(a stack is appropriate too). Initially, it contains only one path: the path between
the initial state of the problem and itself. At each iteration, the first path of open is
extracted. If this path ends with a goal state, a solution path is found. Else, new paths
are created by extending the removed path to all successors of the terminal state, and
the new paths are added to the front of the list. The algorithm terminates when the
solution path is found (it is then the first element of open), or when open is empty (no
solution). However, we will see that for some kind of state-space trees the algorithm
will never reach one of those termination cases.

For efficiency reasons, the paths will not be represented as usually as the ordered
list of its constituting nodes from the starting to the final one. Indeed, testing if the
final node is a goal node would require time proportional to the length of the list.
Therefore, the paths will be represented in the reverse order: from the final node to
the initial one of the sequence. This leads to a constant time, as the final node is yet
the first of the list and can be accessed immediately.

2In this chapter, we will suppose that the successors are picked from left to right. Note that this
hypothesis is not constraining as the construction of the tree is only conceptual. The successors will
be generated by the function find-successors and it can be decided where they will be placed in the
virtual tree. Thus, this notion of left and right does only exist in the conceptual tree and not in the
original problem.
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2.3.1.1 Invariant

The invariant will be constructed using the following virtual coloring of the nodes:

• White nodes: nodes that have not yet been generated by the search.

• Blue nodes: nodes that have been generated but not visited. A node is said to
be visited if we know that it is not a goal node.

• Green nodes: nodes that have been visited and that have at least one blue off-
spring.

• Black nodes: nodes that have been visited and whose offsprings have all been
visited.

The strategy of the depth-first search consists in keeping all the possible path from
the root node to a blue node in open, and to order them in favor to the deepest and in
case of a tie the leftmost blue nodes. At the beginning of the algorithm, all the nodes
of the conceptual tree are white except the initial state of the problem which is blue.
At each step of the algorithm, if the first node of the first path of open (the deepest
blue node and in case of a tie the leftmost one) is a goal node the algorithm terminates.
Else, it depends on whether this node is:

• An inner node: the node is colored green and its successors are all colored blue.

• A leaf: the node is colored black as well as all its ancestor that have no blue
brother.

Figure 2.4 shows an example of the coloration after a few steps for a particular tree.
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Figure 2.4: Schematized view of the coloration before the path w-k-e-b-a will be ex-
tracted from open: (a) The state-space tree. (b) The contents of open.
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This coloration is only conceptual and will not be implemented. It is just useful for
constructing a simple invariant that helps understanding the algorithm and proves its
correctness. The strategy of the depth-first search can now be expressed as maintaining
the following invariant:

P : open is composed of all the possible paths between the root node
of the tree and a blue node (ordered in favor to paths constructed
from the deepest blue nodes, and in case of a tie the leftmost
ones). The black nodes are all the left brothers of the green
nodes and of the deepest and leftmost blue node. The white
nodes are all the offsprings of the blue nodes.

The guardian B of the loop is true as long as open is not empty and as the first
node of the first path of open is not a goal node. This means that after the loop testing
if open is empty permits to decide whether a solution has been found or not.

2.3.1.2 Program

function depthfirst(start-state: STATE): PATH;
var first-state: STATE;

first-path: PATH;
open: list of PATH;
successor-list: SUCCESSORS;

begin
initialize-list!(first-path); insert-front!(start-state, first-path);
initialize-list!(open); insert-front!(first-path, open); {P}
do not empty?(open) cand not goal-node?(get-first(get-first(open))) →

first-path := remove-first!(open);
first-state := get-first(first-path);
successor-list := find-successors(first-state);
"Add all the possible expansions of first-path with nodes of
successor-list in front of open" {P}

od; {P and not B}
if empty?(open) → depthfirst := EMPTY_LIST
¤ not empty?(open) → depthfirst := get-first(open)
fi
end.

The operation "Add all the possible expansions of first-path with nodes of successor-
list in front of open" can easily be computed. We can consider that the nodes of
successor-list are ordered from right to left. This hypothesis can again be formulated
without restriction because the tree is conceptual and the location of the successors in
the virtual tree can thus be chosen. From this, a simple loop solves the problem. At
each iteration, the first successor is removed from successor-list, a new path is created
by adding this successor in front of first-path and the created path is added in front of
open. The last added path will be the one that leads to the leftmost successor.
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The simple invariant of this inner loop can be stated as follows:

P2: successor-list contains consecutive successors of the first node of
first-path ordered from right to left and open begins with all the
possible one-node expansions of first-path created with successors
that are not in successor-list and ordered from left to right.

In fact, before the loop, successor-list contains all the successors and open begins
with no expansion of first-path. At each step, the first node of successor-list is removed
and the corresponding expansion is added in front of open. The guardian B2 of this
inner loop is true until successor-list is empty.

{P2}
do not empty?(successor-list) →

insert-front!(insert-front!(remove-first!(successor-list),first-path),open) {P2}
od {P2 and not B2}

The final code is obtained by replacing in the main code the operation "Add all the
possible expansions of first-path with nodes of successor-list in front of open" by the
code of the inner loop here above.

2.3.1.3 Termination

The termination of the inner loop is trivial. The command remove-first!(successor-list)
is executed at each iteration, so the size of successor-list will be decremented. The
loop will thus end after a number of iteration equal to the size of successor-list. As the
latter has been produced by the function find-successors and as this function returns
a finite list of successors, the number of iteration will be finite too.

The main loop is more critical. Actually, we have no termination guarantee for
general state-space trees. Indeed, if an infinite branch exists in the tree and if the first
goal node is situated to the right of the first infinite branch, it will never be found. In
fact, the nodes of the infinite branch must all be colored green before nodes situated
to the right of the branch will be considered and it would take an infinite time to color
them.

Intuitively however, if the state-space is finite this problem will not appear and the
main loop will terminate. More formally, in a finite tree, the number of possible paths
is finite. Therefore, the number of new paths that can be added to open is finite. At
each iteration, a path is removed from open and new paths are potentially added. By
construction, the same path cannot be added twice. This means that after a finite
number of iteration, it will be impossible to add new paths to open. From this point,
paths will only be removed and the size of open will decrease. The loop will terminate
when the list is empty.

The efficiency of the depth-first search algorithm will only be investigated at the
end of this section, where a comparison between the different blind methods will be
done. The condition that the tree should be finite is worrying, as it will not be the case
for many games. The program proposed in the next subsection solves this problem.
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2.3.2 Depth-First Search with Cycle Detection

This algorithm is only a slight modification of the pure depth-first algorithm where
only the finite sub-tree of the acyclic paths of the state-space tree is explored. A list
open will again be used but this time only acyclic paths will be added. To achieve this,
only the successors that have no clones in the current path will be used for expansion.

2.3.2.1 Invariant

The invariant will once again be constructed using a virtual coloring of the nodes. The
definition of the different colors remains the same but the notion of visited has changed.
A node is now said to be visited if we know that it is not a goal node or if we know
that it is a clone of one of its ancestors.

To achieve the new coloration of the nodes, the same coloring as before is used
except for the case of inner nodes. The list of all the successors of the inner node is
again generated but this time all the successors that are clones of one of their ancestor
are colored black as well as all their descendant 3. The latter are indeed all clones, as
the offsprings of a clone are also offsprings of the original node. The successors that
have not been colored black are then colored blue. If all the successors where colored
black, then the treatment that was performed on leaf nodes will be performed on this
inner node (directly after the black coloration) and the coloring mechanism continues.
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Figure 2.5: Schematized view of the coloration before the path f-e-b-a will be extracted
from open: (a) The infinite state-space tree. (b) The content of open.

3As a clone has an infinite number of descendant, an infinite number of nodes will have to be
colored black. However, recall that the coloring is only conceptual. That means that no infinite
node-painting will be performed. The aim of this virtual coloration is only to model the fact that no
acyclic solution exists in the subtrees of clones and that these nodes can be excluded from the search.
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Figure 2.5 shows an example of the coloration after a few steps for a particular
infinite tree. The invariant is only a slight modification of the invariant of the pure
depth-first search algorithm:

P : open is composed of all the possible paths between the
root node of the tree and a blue node (ordered in favor to
paths constructed from the deepest blue nodes, and in
tie cases the leftmost ones). The black nodes are all the
left brothers of the green nodes and of the deepest and
leftmost blue node and all the children of the green
nodes that are clones of one of their ancestor as
well as the offsprings of those nodes. The white
nodes are all the offsprings of the blue nodes.

2.3.2.2 Program

The main code is the same as before except that the operation "Add all the possible
expansions of first-path with nodes of successor-list that are not member of first-
path in front of open" will be used instead of the other one.

This operation can be computed using a similar inner loop as before, with the
difference that at each iteration, the new path with the first successor of successor-list
is only created and added in front of open if this successor is not a member of first-path.
The invariant P2 is the same as before except that we add "all the possible one-node
expansions of first-path created with successors that are neither in successor-list nor
in first-path" instead of simply "not in successor-list". The guardian B2 is exactly
the same as before.

{P2}
do not empty?(successor-list) →

first-successor := remove-first!(successor-list);
if member?(first-successor, first-path) → skip
¤ not member?(first-successor, first-path) →

insert-front!(insert-front!(first-successor, first-path), open)
fi {P2}

od {P2 and not B2}

2.3.2.3 Termination

The termination of the inner loop can be proved with the same argument as before
because the function remove-first! is once again called at each iteration. This time only
acyclic paths are added to the list open. As we consider only infinite trees with cyclic
infinite branches, the number of acyclic paths is finite and the same argumentation as
before proves the termination of the main loop.
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2.3.2.4 Variant

Another way to achieve this algorithm consists in keeping in addition to the open list
of paths to expand, a closed list of the visited nodes. Instead of checking if a successor
is in the path from which it was generated, the closed list will be consulted. The clones
of already visited nodes will thus be detected directly.

The definition of the different colors remains the same but the notion of visited
changes again. A node is now said to be visited if we know that it is not a goal node
or if we know that it is a clone of a previously visited node. To achieve the
new coloration of the nodes, the same coloring as usually is used except for the case
of inner nodes. The list of all the successors of the inner node is again generated but
this time all the successors that are clones of a green or a black node are colored black
as well as all their descendant. The invariant P is easy to modify: the black nodes are
all the left brothers of the green nodes and of the deepest and leftmost blue node and
all the children of the green nodes that are clones of a green or a black node
as well as the offsprings of those nodes. The invariant P2 must merely be adapted for
performing the membership test on closed.

function depthfirst-cycledetection(startstate: STATE): PATH;
var first-state, first-successor: STATE;

first-path: PATH;
open: list of PATH;
closed: list of STATE;
successor-list: SUCCESSORS;

begin
initialize-list!(first-path); insert-front!(startstate, first-path);
initialize-list!(open); insert-front!(first-path, open); initialize-list!(closed); {P}
do not empty?(open) cand not goal-node?(get-first(get-first(open))) →

insert-front!(first-state, closed);
first-path := remove-first!(open);
first-state := get-first(first-path);
successor-list := find-successors(first-state); {P2}
do not empty?(successor-list) →

first-successor := remove-first!(successor-list);
if member?(first-successor, closed) → skip
¤ not member?(first-successor, closed) →

insert-front!(insert-front!(first-successor,first-path),open)
fi {P2}

od {P and P2 and not B2}
od; {P and not B}
if empty?(open) → depthfirst-cycledetection := EMPTY_LIST
¤ not empty?(open) → depthfirst-cycledetection := get-first(open)
fi
end.
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The termination of the inner and main loops are the same as for the first variant.
The membership test will take time proportional to the length of closed. As closed
contains also the states of the current path, this methods performs less efficiently than
the preceding one. However, the advantage of this method is that for some problems,
closed can be implemented as an indexed vector or a hash-table instead of a list and
that the membership test will thus take a constant time. The first variant of the
algorithm took time proportional to the length of the paths of open which are already
implemented as list and it was therefore not possible to go faster.

2.3.3 Depth-Limited Depth-First Search

Another way to ensure to termination of the depth-first search algorithm is to limit the
depth of the search. All the nodes situated deeper than the limit will be ignored and
the algorithm terminates for all type of trees (even infinite trees with acyclic infinite
branches). The problem of this method is that the goal nodes situated deeper than the
limit are also neglected. The algorithm could thus conclude wrongly that no solution
exists. It can therefore be used only when the fact that the first solution cannot be
deeper than a certain depth is known a priori.

A simple but inefficient way to implement this search strategy would consist in
modifying the classical depth-first algorithm such that paths of the same length as the
depth limit are not expanded. The inefficiency comes from the fact that computing
the length of a path takes a time proportional to its length. The classical implemen-
tation consists therefore in memorizing the length of each path of open in another list
called open-elem-sizes (keeping them both in the same list is of course also possible).
Computing the length of a new created path consists now merely in adding one to the
length of the path that was just expanded.

2.3.3.1 Invariant

The invariant will be constructed with the same coloring of the nodes as for the general
depth-first search algorithm, except that we consider that the nodes that are deeper
than the depth limit have all been colored black before the algorithm starts. As usually,
this coloration is conceptual; in this case its only purpose is to model the fact that
those nodes are ignored from the very start. The different steps of the coloring of the
nodes remain the same as for the general depth-first algorithm except that when the
successors of an inner node are black the inner node is considered as a leaf node. The
invariant can now be defined as follows:

P : open is composed of all the possible paths between the root node
of the tree and a blue node (ordered in favor to paths constructed
from the deepest blue nodes, and in tie cases the leftmost ones).
Open-elem-sizes is the list of the length of the path of open in
the same order. The black nodes are all the left brothers of the
green nodes and of the deepest and leftmost blue node. The
white nodes are all the offsprings of the blue nodes.

The guardian B remains the same as for the general depth-first search algorithm.
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2.3.3.2 Program

function limited-depthfirst(start-state: STATE; depth-limit: integer): PATH;
var first-state: STATE;

first-path: PATH;
open: list of PATH;
open-elem-sizes: list of integer;
current-size: integer;
successor-list: SUCCESSORS;

begin
initialize-list!(first-path); insert-front!(start-state, first-path);
initialize-list!(open); insert-front!(first-path, open);
initialize-list!(open-elem-sizes); insert-front!(1, open-elem-sizes); {P}
do not empty?(open) cand not goal-node?(get-first(get-first(open))) →

first-path := remove-first!(open);
current-size := remove-first!(open-elem-sizes);
if current-size = depth-limit → skip
¤ current-size < depth-limit →
first-state := get-first(first-path);
successor-list := find-successors(first-state);
"Add all the possible expansions of first-path with nodes of
successor-list in front of open and actualize open-elem-sizes"

fi {P}
od; {P and not B}
if empty?(open) → limited-depthfirst := EMPTY_LIST
¤ not empty?(open) → limited-depthfirst := get-first(open)
fi
end.

The operation "Add all the possible expansions of first-path with nodes of successor-
list in front of open and actualize open-elem-sizes" is a slight modification of the
corresponding operation of the depth-first search. The invariant P2 remains the same
except that a sentence must be added to express that open-elem-sizes must always
contain the list of the length of the paths of open in the same order.

{P2}
do not empty?(successor-list) →

insert-front!(insert-front!(remove-first!(successor-list),first-path),open);
insert-front!(1 + current-size, open-elem-sizes) {P2}

od {P2 and not B2}
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2.3.3.3 Termination

The termination of the inner loop is exactly the same as its counterparts. The termina-
tion of the main program consists again in proving that the number of different paths
that can be added to open is finite and that we will eventually reach a point where
paths can only be removed. This is clear since the depth of the search has been limited
and the explored tree is therefore finite and contains a finite number of different paths
from the root.

The difficulty when using this algorithm is to chose a good depth-limit. A too small
value would lead to a high probability that all the goal nodes are ignored and a too
large value would lead to an important time complexity (non-solution paths will be
expanded very deep wasting a lot of time). The next algorithm solves this problem.

2.3.4 Iterative Deepening

To avoid the difficulty of the choice of the depth limit, we can execute the depth-
limited depth-first search iteratively by increasing the depth limit at each iteration
until a solution is found. An integer current-limit will represent the current depth-
limit. It will be initialized to zero and increased by one at each iteration. The variable
current-solution will be the returned value of the function limited-depthfirst for the
current depth-limit. Initially it will be the empty list and it will change only in the last
iteration, i.e. when it becomes the least deep and leftmost solution path. The algorithm
can then terminate and the guardian B which is true as long as current-solution is the
empty list is appropriate. The algorithm makes obviously the hypotheses that at least
one goal node exists. This is not worrying for practical games which have at least one
finite solution.

2.3.4.1 Invariant

P : current-solution is the leftmost solution path of the state-space
tree that has a length exactly equal to current-limit (empty list
if no such solution exists).

2.3.4.2 Program

function iterative-deepening(start-state: STATE): PATH;
var current-limit: integer;

current-solution: PATH;
begin
current-limit := 0; current-solution := EMPTY_LIST; {P}
do empty? current-solution →

current-limit := current-limit + 1;
current-solution := limited-depthfirst(start-state, current-limit) {P}

od; {P and not B}
iterative-deepening := current-solution
end.

21



Chapiter 2 2.3 Blind Methods

2.3.4.3 Termination

The algorithm terminates only if a goal node exists in the state-space tree. Recall
that we consider only finite trees or infinite trees with cyclic infinite branches and that
therefore at least one goal node must be situated at a finite depth if a goal node exists
in the tree.

The advantage of this method is that it finds the shortest solution path. The
algorithms seen till now did not have this convenient property. They find the leftmost
solution paths and this is not necessarily the shortest. The inconvenient of the iterative
deepening algorithm is that at each iteration, the paths previously computed have to
be recomputed again. However, in the efficiency analysis of the different blind methods
we will show that it will not affect the time complexity so much. Typically, when the
branching factor is not too small, most of the time will be spent in the last iteration
and repeated computations with lower limit values adds relatively little to the total
time.

2.3.5 Breadth-First Search

This algorithm starts with the same idea as the depth-first search algorithm: to find a
goal node from a given node N , if N is already a goal node the search is terminated,
else another node of the state-space is picked and the algorithm works forward from
that node. The difference is that the picked node is no more the leftmost child of the
node, but the closest node to the start node that was not visited yet. When several
such nodes exist, the leftmost one is conventionally chosen. Thus, if the previous picked
node is not the rightmost of a particular level, the next picked node will be its right
neighbour. Else, it will be the leftmost node of the next level. The algorithm progress
thus in breadth, level by level. Hence the name of the algorithm.

The idea of the implementation consists in working with a list open similar to the
one used by the depth-first search strategy. The only difference, is that all the expanded
paths will be added to the back of the list instead of the front 4.

2.3.5.1 Invariant

The invariant will be constructed using the following virtual coloring of the nodes:

• White nodes: nodes that have not yet been generated by the search.

• Green nodes: nodes that have been visited. From now and for the rest of the
document, the original notion of visited will be used (nodes that are known non-
goal nodes).

• Blue nodes: nodes that have been generated but not visited.

4Note that in the implementation of lists as linked lists that we have suggested, it is possible to
keep two pointers that indicates the locations of the first and the last element of the list. The function
insert-back! can thus be implemented in time constant. The only operation that needs to be done is
merely to link the last element of the list (that was linked to nil) to the new element and to link this
new element to nil.
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At the beginning of the algorithm, all the nodes of the conceptual tree are white
except the initial state of the problem which is blue. At each step of the algorithm, if
the least deep and leftmost blue node is a goal node the algorithm terminates. Else,
this node is colored green. If no blue node exists, all the nodes have been visited
and no solution exists. As usual, this coloration is only conceptual and will not be
implemented.

The strategy of the algorithm can be expressed as maintaining the invariant:

P : open is composed of all the possible paths between the root node
of the tree and a blue node (ordered in favor to paths constructed
from the least deep blue nodes, and in tie cases the leftmost
ones). The green nodes are the ancestor of the blue nodes and
the white nodes their offsprings.

Figure 2.6 shows an example of the coloration and the corresponding contents of
open after a few steps for a particular tree.
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Figure 2.6: Schematized view of the coloration before the path g-c-a will be extracted
from open: (a) The state-space tree. (b) The contents of open.

The main code is the same as for the depth-first search except that the operation
"Add all the possible expansions of first-path with nodes of successor-list to the back
of open" is used instead of the other. This can be computed by considering this time
that the nodes of successor-list are ordered from left to right. Considering the opposite
choice as for the depth-first case is not problematic. The explored tree is still conceptual
and the nodes must not be placed at the same positions than for the depth-first search.

A simple loop performs the operation. At each iteration, the first successor is
removed from successor-list, a new path is created by adding this successor in front
of first-path and the created path is added to the back of open. The paths added at
the end of open will therefore be ordered in favor to the ones containing the leftmost
successors and the invariant is preserved. The loop terminates when the list is empty.
The simple invariant of this inner loop can be stated as follows:
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P2: successor-list contains consecutive successors of the first node of
first-path ordered from left to right and open ends with all the
possible one-node expansions of first-path created with successors
that are not in successor-list and ordered from left to right.

The guardian B2 is the usual one for the actualization of open, i.e. it is true as long
as successor-list is not empty.

{P2}
do not empty?(successor-list) →

insert-back!(insert-front!(remove-first!(successor-list),first-path),open) {P2}
od {P2 and not B2}

2.3.5.2 Termination

The termination of the inner loop can be proved with the usual argument. In fact,
the function remove-first! is once again called at each iteration and successor-list will
eventually become an empty list after a finite number of steps.

The algorithms terminates if a goal node exists at a finite depth. Indeed, at each
iteration a node is colored green. Furthermore, no node is colored green before all the
nodes of the less deep levels are all colored green. As the number of nodes of each level
is finite, the level of the goal node will be reached after a finite number of steps and
finding the goal in this level will also require a finite number of steps.

If no goal node exists, the algorithm terminates if and only if the state-space tree is
finite. The fact that exactly one node is colored green at each iteration demonstrates
this fact. Indeed, if the tree is finite, all the nodes will be green after a finite number of
steps and the algorithm concludes that no solution exists. In the infinite case it would
take an infinite time to color all the nodes and the procedure would never terminate.

2.3.5.3 Variants

A variant with cycle detection can also be constructed. Limiting the depth of the
search makes however less sense as the algorithm works already level by level.

2.3.6 Efficiency Analysis

This subsection compares the main blind methods on two important measures of com-
plexity:

• The time complexity: correspond to the order of magnitude of time needed for
finding a solution. It is measured as the total amount of nodes generated by the
search strategy until a solution is found.

• The space complexity: correspond to the order of magnitude of memory used
during the execution of the algorithm. It is measured as the maximum number
of nodes that must be kept in memory during the execution of the algorithm.
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The different uninformed search methods will be compared on a generic state-space
tree for which each inner node has exactly b successors and the only solution is the
rightmost node situated at a depth d. This is the worst place possible at depth d
because we have supposed that the different strategies works from left to right. Note
that the performances of all algorithms become better when the first solution moves
to the left, but this can only occur by chance as an uninformed method cannot order
the nodes so that the most promising are explored first.

The number of nodes grows exponentially with the depth, so the number of nodes
generated by the breadth-first search strategy is 1+b+b2+b3+.... The time complexity
is thus O(bd). The breadth-first search maintains all the bd candidate paths in memory.
Those paths are composed of a maximum of d nodes and the space-complexity is thus
O(bd) too.

In the depth-first search category, we will not consider the pure algorithm because
it has no termination insurance and both complexities may be infinite. We will rather
study the complexities of the depth-first search limited to a depth of dmax so that d ≤
dmax. The total number of nodes of the depth-limited tree is bdmax and the nodes will all
be generated except the offspring of the solution node. The time complexity is therefore
O(bdmax). With a cycle-detection mechanism, the complexity remains generally the
same except for special state-space trees for which the number of cycle is very high.

The maximum number of nodes in memory occurs when the search has reached
the leftmost leaf. At this precise moment, the number of green nodes is dmax − 1;
i.e. all the nodes of the leftmost branch except the leaf. The number of blue nodes is
(b− 1)× (dmax − 1) + 1; i.e. each green node has exactly (b− 1) blue children except
the deepest one which has one more. The number of paths in memory is equal to the
number of blue nodes. All paths are bounded by a size of dmax. The space complexity
is therefore only O(d2

max).

The iterative deepening algorithms performs (d + 1) depth-first searches limited
respectively by a depth of 0, 1, ..., d. The maximum number of nodes in memory oc-
curs in the last iteration when the search reaches the leftmost node of depth d. The
same argumentation as for the depth-limited depth-first search shows that the space
complexity is O(d2).

The start node will be visited (d + 1) times (at each iteration), the children of
the start nodes d times (at each iteration except the first one), etc. The number of
generated nodes is thus:

(d + 1)× 1 + d× b + (d− 1)× b2 + ... + 1× bd

This gives also a time complexity of O(bd). The conclusion is that even if the
iterative deepening seems very coarse at the first glance, the regenerating of nodes
is in fact surprisingly small. It can be shown that the ratio between the number of
nodes generated by iterative deepening and those generated by breadth-first search is
approximately b

b−1
for b ≥ 2 [2]. This means that when the branching factor is high

the difference becomes practically unnoticeable. The following tabular summarizes the
conclusions:
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Algorithm Time complexity Space complexity Shortest solution
Breadth-first bd bd yes

Depth-limited Depth-first bdmax d2
max no

Iterative deepening bd d2 yes

Table 2.1: Efficiency comparison of the three main blind methods

The column Shortest solution indicates whether each algorithm finds the shortest
solution first or not. For some problems however the arcs may have different costs and
the optimal solution would not be the shortest but the one for which the sum of the
costs of the arcs is minimal. It is not possible to achieve such optimality with the pure
blind methods presented here. The A* and IDA* algorithms presented in the next
section are designed to ensure this cost-optimality.

The cost of an arc is a number which indicates how difficult it is to make the
problem evolve from the initial state of the arc to its target state. For some problems
it is indeed convenient to do so. Consider for example a path-finding application. A
robot must go from its starting point to a target point of a game area. The latter is
composed of forest, lakes and deserts. We could for example consider that it is more
difficult to travel through a forest than a desert, and even more difficult to traverse
a lake. A convenient way to model this is to associate a cost of 1 to the arcs that
represents a one-step move in the deserts, 2 in the forest and 3 in a lake. The problem
is now to find the solution-path with minimum cost.

The iterative algorithm combines obviously the best properties of breadth-first
search and depth-first search. It is thus often the best choice for practical AI problems
when the problem is not too complex. The depth-first search algorithm is also very of-
ten used. The language PROLOG for example works in depth-first manner. However,
the blind methods that we have seen make nothing to fight against the combinatorial
explosion because they consider each possibility to be equally probable. For complex
AI problems, methods based on heuristics are more appropriate. This is the subject of
the next section.

2.4 Heuristically informed methods

In chapter 1 we have seen that a heuristic is a function for selecting lines that have a
high probability of success. The search efficiency may improve spectacularly by using
clever heuristics to guide through the search. In this section, the most famous algorithm
that uses heuristics and its most important variant will be presented: the A* and IDA*
algorithms.

From now, we will suppose that a cost has been associated to the arcs of the state-
space tree. This means that a function cost(s1, s2) defines the cost of moving from
each state s1 of the state-space tree to each successor s2 of s1. If the problem does not
require to associate different costs to the arcs, the function will simply use a value of
1 for each.
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2.4.1 The A* algorithm

The A* algorithm was first presented in 1968 [13] and small corrections to the original
paper were made four years later by the same authors in [14]. The A* algorithm is a
best-first search algorithm, i.e. an algorithm that tries to explore the best candidate
in the sense of an heuristic first. In almost all sources, the A* algorithm is presented
using abstract data types.

In this document we will study the A* algorithm very carefully, using a software
engineering approach. We will first reconstruct the algorithm from the original idea
and therefore use the same abstract data types as in [13]. We will then show that
their exist different ways to implement the abstract objects and give the corresponding
theoretical performances. We will finally add our contribution by showing that for
a particular choice which is often done in practice it is even possible to adapt the
algorithm to this particular choice and improve the performances. We will also show
that it is far from trivial to decide which choice is the best. The constant factors hidden
in the theoretical performances may favor one method for some practical problems and
another for others.

The principle of the best-first search strategy is simple. It consists in keeping in
memory a set open of candidate nodes and a set closed of visited nodes. Initially, the
former contains only the root node of the state-space tree and the latter is empty. At
each iteration, the most promising node of open is extracted and added to closed. If
this node is a goal node the algorithm terminates successfully. Else, its successors are
generated and for each: if the successor is in open or closed and the existing one is as
good or better then the successor is discarded. Else, the possible old occurrences of
the successor are removed from open and closed and the successor is added to open.
The algorithm can thereafter start the next iteration with the actualized versions of
open and closed. It terminates when open is empty (no solution) or when a solution
node has been found. Note that each node has to maintain a pointer to the node from
which it was generated in order to be able to reconstruct the final solution-path.

To be more precise about the mechanism used to select the most promising node,
let us define a useful function: f(n) takes a node of the graph as argument and returns
an estimates of the cost of the optimal path that goes through this node. From this,
the extracted node of open is merely its member with the minimum f -value. The A*
algorithm is the particular best-first algorithm obtained by using the function f(n) =
g(n) + h(n); where g(n) is an estimate of the cost of the best path from the start node
to n and h(n) an estimate of the remaining cost necessary to reach a goal node. Figure
2.7 on the next page illustrates the definition of the f -function.

The term g(n) is calculated as follows: if we have to evaluate node n it means that
a path from the initial node s to node n has been found. We can use the sum of the
costs of the arcs of this path as an estimation of the optimal path from s to n. It is
indeed only an estimation as there may exist a better path from s to n not found yet
by the search. The term h(n) is more worrying, as the part of the search-space behind
node n has not been explored yet. Therefore, the function h(n) must be constructed
from the expert-knowledge of the problem. There is no general method for doing this,
as it really depends on the particular problem.
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h(n)

s
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t

Figure 2.7: Function used by the A* algorithm to estimate the cost of the optimal path
that goes from s to t via n: f(n) = g(n) + h(n).

2.4.1.1 Definition of the Abstract Data Types

The A* algorithm is constructed on two different set of nodes: open and closed. These
are abstract data types as they can for examples be implemented as lists, sorted lists,
indexed vectors, hash tables, etc. The A* algorithm needs to perform some operations
on open that have not to be executed on closed. The most interesting implementations
are thus not necessarily the same for both. This leads to a wide range of possibilities.

In the blind methods, the nodes were simply the states of the games. Both notions
have in fact been used as synonyms in the previous section. This can no longer be done
here because a node must now contain at least four different information:

1◦) STATE: the state of the game which corresponds to the node.

2◦) FATHER: a pointer to the father of the node5.

3◦) F-VALUE: the f -value associated with the node.

4◦) G-VALUE: the g-value associated with the node.

Note that the h-value can also be added but it is not necessary as it can be obtained
from the f - and g- values. We have chosen to keep these two values in memory instead of
the h-value plus another one because the h-value will only be calculated for determining
the f -value and serves no other purpose. In contrast, the f -value is notably needed
when the most promising node of open has to be determined, for testing if a particular
node is more promising than another, etc. The g-value of a node should also be
accessible directly as it is needed for calculating the g-value of each successor without
having to recalculate the sum of the costs of the arcs of the path from the root node to
the successor (enabling to merely add the g-value of the father to the cost of the arc
between the father and its successor).

5The root is the only node without father and this will be represented by the constant nil.

28



Chapiter 2 2.4 Heuristically informed methods

The notion of node is obviously abstract too but this is less critical than for open
and closed. Indeed, a node can simply be implemented as a record containing the four
information enumerated above. A more sophisticated implementation choice is not
needed for a structure containing only four members! We can thus define the following
data type:

type NODE = record
state: STATE;
father: NODE;
f-value: integer;
g-value: integer

end;

As the implementation of open and closed are not necessarily the same, we will
define the abstract operations that will be performed on them separately, even if the
operations of closed are conceptually the same as the corresponding operations of open.
The operations for open are:

• initialize-open!(var open: set of NODE);

⇒ procedure that initialize the set open as an empty set.

• insert-in-open!(x: NODE; var open: set of NODE);

⇒ procedure that inserts the node x in the set open.

• get-open-best(open: set of NODE): NODE;

⇒ function that returns a copy of the node with the lowest f -value of the

non-empty set open.

• remove-open-best!(var open: set of NODE): NODE;

⇒ function that removes the node with the lowest f -value of the non-empty

set open and returns this node.

• empty-open-set?(open: set of NODE): boolean;

⇒ predicate true if and only if open is an empty set.

• get-open-member(x: NODE; open: set of NODE): NODE;

⇒ function that returns the node of open with the same state as x if such a node

exists, and the constant nil else.

• erase-open-member!(x: NODE; var open: set of NODE);

⇒ procedure that removes the member x of open.

The operations for closed are initialize-closed!, insert-in-closed!, get-closed-member
and erase-closed-member!. Their definitions are the same as those of their open-
counterparts (but their implementation may be different and we must thus define them
separately to be able to recognize in which case which implementation is meant).
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2.4.1.2 Invariant

The invariant will be constructed using the following virtual coloring of the nodes:

• White nodes: nodes that have not yet been generated by the search.

• Black nodes: nodes that have been generated but are clones of a generated node
which has an f -value smaller than them or are clones of a previously generated
node with the same f -value.

• Blue nodes: nodes that have been generated but not visited (and does not satisfy
the condition to be black nodes).

• Green nodes: nodes that have been visited (and does not satisfy the condition to
be black nodes).

The strategy of the algorithm consists in keeping all the blue nodes in the open set
and all the green nodes in the closed set. At the beginning of the algorithm, all the
nodes of the conceptual tree are white except the initial state of the problem which
is blue. At each step of the algorithm, if the blue node with the lowest f -value is a
goal node the algorithm terminates. Else, this node is colored green, the list of all the
successors of the node is generated and for each:

• If the successor is a clone of a blue node or a green node and its f -value is greater
or equal, it is colored black.

• Else the successor is colored blue and its possible clones are colored black.
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Figure 2.8: Schematized view of the coloration before node j will be expanded and the
goal node m will be found.
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As usually, this coloration is only conceptual and will not be implemented. Note
that the offsprings of black nodes are not necessarily black nodes, as can be seen on
Figure 2.8 for a particular tree. The invariant can now be constructed easily:

P : open is composed of all the blue nodes of the state-space tree
and closed of all the green nodes. The black nodes are clones
of at least one blue or green node with an f -value less or equal
than them. The white nodes are the remaining nodes.

The guardian B of the loop is true as long as open is not empty and as the best
node of open is not a goal node.

2.4.1.3 Program

function a-star(start-state: STATE): PATH;
var current-node, best-node, open-member, closed-member: NODE;

open, closed: set of NODE;
solution-path: PATH;
successor-list: SUCCESSORS;

begin
current-node.state := start-state;
current-node.father := nil ;
current-node.g-value := 0;
current-node.f-value := h(start-state);
initialize-open!(open); initialize-closed!(closed);
insert-in-open!(current-node, open); {P}
do not empty-open-set?(open) cand not goal-node?(get-open-best(open).state) →

best-node := remove-open-best!(open);
insert-in-closed!(best-node, closed);
successor-list := find-successors(best-node.state);
"Actualize open and closed" {P}

od; {P and not B}
if empty-open-set?(open) → a-star := EMPTY_LIST
¤ not empty-open-set?(open) → "Generate solution path"
fi
end.

The operation "Actualize open and closed" can be concretized by a simple loop. At
each iteration, the first member of successor-list is removed. Recall that the members
of the latter are not nodes but states of the game. The node corresponding to the
removed state of successor-list must thus first be created (notably by calculating its g-
and f -values). If the created node is a clone of a node of open or closed and the clone
has an f -value smaller or equal then the created node is ignored. Else, the possible
clone is removed from open or closed and the created node is inserted in open. If we
note open0 and closed0 the contents of open and closed before the loop, we can define
the invariant as follows:
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P2: successor-list contains the states of some successors of best-node.
open contains open0 plus all the successors of best-node whose
states are not in successor-list except those that are clones of a
node of open0 or closed0 with an f -value greater or equal than
the f -value of the clone and minus all the elements of open0

that are clones of a successor of best-node whose state is not
in successor-list and have an f -value greater than the one of
the successor. closed contains closed0 minus all the elements of
closed0 that are clones of a successor of best-node whose state is
not in successor-list and have an f -value greater than the one of
the successor.

In fact, before the loop, successor-list contains all the successors of best-node and
open and closed are exactly open0 and closed0. At each step the first state of successor-
list is removed and if the corresponding node is a clone of a node of open or closed and
its f -value is greater or equal then the node is ignored else the node is added to open
and its possible clones are removed from open and closed. The guardian B2 is true as
long as there are successors to treat, i.e. as long as successor-list is not empty.

{P2}
do not empty?(successor-list) →

current-node.state := get-first(successor-list);
current-node.father := best-node;
current-node.g-value := best-node.g-value

+ cost(best-node.state, current-node.state);
current-node.f-value := current-node.g-value

+ h(remove-first!(successor-list));
open-member := get-open-member(current-node, open);
closed-member := get-closed-member(current-node, closed);
if (open-member 6= nil cand open-member.f-value ≤ current-node.f-value) or
(closed-member 6= nil cand closed-member.f-value ≤ current-node.f-value)
→ skip

¤ (open-member = nil cor open-member.f-value > current-node.f-value) and
(closed-member = nil cor closed-member.f-value > current-node.f-value)
→ insert-in-open!(current-node, open);

if open-member = nil → skip
¤ open-member 6= nil → erase-open-member!(open-member, open)
fi;
if closed-member = nil → skip
¤ closed-member 6= nil → erase-closed-member!(closed-member, closed)
fi

fi {P2}
od {P2 and not B2}

32



Chapiter 2 2.4 Heuristically informed methods

The operation "Generate solution path" is much more simple to implement. The
idea of the implementation consists in keeping in memory a variable current-node which
is initially the goal node that has just been found and a variable solution-path which
contains initially the path between the goal state and itself. At each iteration, the
father of current-node becomes the new current-node and its state is added in front of
the solution-path. The loop terminates when current-node is the root node and this is
achieved by using a guardian B3 which is true as long as the father of current-node is
not the constant nil. From this, the invariant is easy to define:

P3: current-node is a node of the optimal solution path and solution-
path is the path between the state of this node and the state of
the goal node.

current-node := get-open-best(open); initialize-list(solution-path);
insert-front!(current-node.state, solution-path); {P3}
do current-node.father 6= nil →

current-node := current-node.father;
insert-front!(current-node.state, solution-path) {P3}

od; {P3 and not B3}
a-star := solution-path

2.4.1.4 Termination

The termination of the two inner loops is trivial. In the first one the procedure
remove-first! is called at each iteration on the finite list successor-list. The latter will
thus be empty after a finite number of steps and the loop terminates. In the second
one current-node becomes the father of the preceding content of current-node at each
iteration. As the solution path is finite, we will eventually reach the root node and this
loop terminates too.

We will now prove that the main loop also terminates. The A* has thus the con-
venient property to always terminate, also when no goal node exists. Recall that we
study only finite state-space graphs and that we have not to consider trees with infinite
acyclic branches. The termination proof can therefore be separated in two cases:

• The case of a finite tree of N nodes: let ncolor be the number of nodes of the
given color. Then the function t = (N + 1) − 2 × ngreen − nblue − nblack proves
the termination. Indeed, at each iteration the blue node with the lowest f -value
becomes green. If this node is a leaf no other color changes are performed and
the function t diminishes by one (ngreen augments by one and nblue diminishes
by one). If this node is an inner node the Ns successors are all colored black or
blue. If none of the successors have clones the function t diminishes by 1 + Ns

(ngreen augments by one and nblack + nblue augments by Ns − 1). The blue clones
does not affect t as they are repainted in black. However, each green clone will
be changed into a black node and will thus make the function t augment by one.
In the worst case all the successors are blue and have a green clone to repaint in
black but t still diminishes by one in this case (ngreen diminishes by Ns− 1, nblue

augments by Ns − 1 and nblack augments by Ns).

33



Chapiter 2 2.4 Heuristically informed methods

• The case of an infinite tree without any acyclic infinite path: we will prove that
the algorithm only explores the finite tree of the acyclic paths. As we have proven
that the algorithm terminates for finite trees this proves the termination in this
case. When the search reaches a node that is a clone of one of its ancestor, the
f -value of the clone must be smaller. Indeed, the cost of the arcs are strictly
positive number so the g-value of the clone is smaller and the h-value are exactly
the same as the state of the game is the same. The node will thus be colored black
and its offsprings will remain white for the rest of the search. The nodes that
are clones of one of their ancestor will thus all be black or white and will never
be members of open. This proves that the nodes of the finite tree of the acyclic
paths are the only ones that could be explored and proves thus the termination.

2.4.1.5 Implementation of open

In this section inspired from [5], we will present some possible implementations for
open. We will not present all the possible choices that have ever been tried but only
the most usual and of course the most efficient ones. To be able to decide which ones
are the best, we must first identify which operations are the most critical. We have
defined seven different operations that will be performed on open.

The most critical operation is the membership test get-open-member. It will indeed
be executed on all the successors and is thus the most often called function. The second
most used operation is the insertion operation insert-in-open!. It will be executed on
all the blue successors. The operations get-open-best and remove-open-best! will each
be called exactly once at each iteration. These are therefore also critical operations
and we will only discuss the implementation of the latter here since the case of the
former is only a part of the latter (for removing the best node, we must first find it).

The operation remove-open-member! is much less critical. It will indeed be called
only in the rare cases when a successor is better than one of its clones. This occurs in
fact rarely because the A* algorithm tries to expand the most promising nodes first and
practice shows that with a good h-function the clone with the lower f -value is almost
always the first one found. Finally, the operations initialize-open! and empty-open-set?
are not critical as they can always both be implemented in time constant.

We can summarize this by asserting that the ideal implementation would optimize
membership test, insertion, removing best and removing member in this order. Here
are the most usual basic implementations:

• Unsorted array or list

Membership test is slow, O(N) where N is the size of open6, to scan to entire
structure. Insertion is instantaneous as the node can be added in front of the list
(for arrays at the end to avoid to have to shift the elements before the insertion).
This gives O(1). Finding and removing the best element is O(N) as we have
again to scan the whole structure (and in the case of arrays to shift elements
after the deletion). Even the removing member operation is O(N).

6Note that the size of open is variable and that the efficiency will thus depend on the way that
the nodes are inserted and removed from open. For some applications, the size of open will remain of
reasonable size in the course of the treatment but it will grow exponentially for others.
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• Sorted list

Keeping the list sorted permits to improve the performance of the find and remove
best operations. The best node will merely by at the head of the list and this
gives time O(1). However, the insertion operation will now take time O(N) as
we have to scan the list to find the right insertion place. The efficiency of the
other operations remains the same.

• Sorted array

Keeping the array sorted (so that the best is at the end) permits again to improve
the find and remove operations to O(1) but depreciate the insertion operation to
O(N). However, the membership test can now be executed in O(logN) by using
a binary search. The removing member operation takes time O(N) to move all
the right elements to the left after the deletion.

• Indexed array

If the state-space tree is finite and the number of states of the game is not too
high to create an indexed array of all the states, this structure can be envisaged.
A problem-dependent indexing function i(s) which associates an index to each
state of the game must be provided. The membership test is O(1), as we merely
have to check whether the i(s)th element contains any data. Insertion is O(1), we
have just to actualize the i(s)th element. Find and remove best is O(Totalstates),
where Totalstates is the total number of states, since we have to search the entire
structure. This is considerably bigger than the worst value encountered so far
(in O(N) the N was usually only a small subset of the nodes of the state-space).
Finally, the removing member operation is only O(1).

• Hash table

When the number of states of the game is high and we have not enough memory
to create an indexed array, a hash table with a hash function h(s) that maps
each state s into a hash code can be envisaged. In this case, the membership
test is expected O(1) (it will grow in case of collisions; it depends thus crucially
of the quality of the hash function), insertion is expected O(1), and remove best
is O(Maxhash) where Maxhash is the number of hash codes. We have indeed to
scan the entire structure. The removing member operation is again O(1).

• Binary dictionary

A binary dictionary is a binary tree (a tree in which every node has at most two
children) with an ordering relation between the nodes of the tree. For each node n
of the tree, if nf is the f -value associated with n, all the nodes in the left-subtree
of n have an f -value smaller than nf and all the nodes in the right-subtree of n
have an f -value greater or equal than nf . This data structure is efficient when
the tree is balanced, i.e. when the left and right sub-trees of each node have
almost the same number of nodes. Consult [2] for an efficient implementation
of binary dictionaries. Membership and removing member are O(N) to scan
the tree for the member. Insertion and remove-best are O(logN). An efficient
implementation of the insert and remove operations on binary dictionary which
preserves the balance of the tree can be found in [2].
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None of the basic data structures presented here is entirely satisfactory. To circum-
vent this, we can use an hybrid data structure that takes the best properties of the best
basic data structures. A good choice when the number of nodes is not too high is to
use a combination of an indexed array and a binary dictionary. The membership test
will be performed on the indexed array leading to a complexity of O(1). The insertion
in the indexed array is O(1) and in the binary dictionary we have O(logN). The get
best operation will be performed on the binary dictionary in time O(logN). Once the
node is found, we can compute its index and removing it from the index array will
thus take time O(1). Removing it from the binary dictionary will take time O(logN).
Finally, the removing member operation is O(1) in the indexed array and O(logN) in
the binary dictionary. The following tabular summarizes the results:

Data Membership Insertion Remove Remove
Type Test Best Member

Unsorted array/list O(N) O(1) O(N) O(N)
Sorted list O(N) O(N) O(1) O(N)
Sorted array O(logN) O(N) O(1) O(N)
Indexed array O(1) O(1) O(Totalstates) O(1)
Hash table O(1) O(1) O(Maxhash) O(1)

Binary dictionary O(N) O(logN) O(logN) O(N)
Hybrid structure O(1) O(logN) O(logN) O(logN)

Table 2.2: Efficiency comparison of the most usual implementations for open.

The hybrid structure has the best theoretical performances. However, it is not
forcingly the best choice in practice. Indeed, for some problems the average number of
nodes in open is not so high and another implementation could outperform the hybrid
structure. Indeed, the hidden factors in the theoretical performances begins to play a
crucial role when N is not large and this must not be neglected. In this work, we have
chosen to advocate two structures: the hybrid structure in cases where the number
of states is high and the sorted list else. The choice of the latter could seem curious
if we consider only the comparison table. However, section 2.4.1.7 will demonstrate
that the A* can be rewritten in this case so that all the O(N) operations are merged
in a single scan of the list. This contribution makes the choice of sorted list very
interesting in many practical applications. The most known domain of application
of the A* algorithm is a good example: the path-finding problems. Indeed, in such
problem the map is usually composed of a number of cells that is not so enormous and
the performances of the improved A* with sorted lists are promising.

2.4.1.6 Implementation of closed

The choice for closed is easier. In fact, the operations that are performed on this
structure does not require any ordering of the nodes which facilitates the task. For the
same reasons as for open, the critical operations are get-closed-member, insert-in-closed!
and erase-closed-member!. In practical implementations the closed set is sometimes
implemented as a list but this gives only a complexity of O(N) for the member and
erase operations. The most used structures are actually the indexed arrays and hash
tables. The particular choice depends once more on the number of states. In both
cases, the complexity of all critical operations is O(1) and we cannot expect less!
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2.4.1.7 Improvement of the A* when open is a Sorted List

Algorithms based on abstract data types are good for understanding high-level ideas.
However, lots of examples exists in the literature to show that such kind of abstraction
can lead to non-optimal code [4]. We will show that it is also the case for the A* when
open is implemented as a sorted list and we will give a solution to this problem. This
is a contribution in the domain.

As the sorted lists are thought to be used in problems for which the number of
states is not too high, we will implement closed as an indexed array. The number of
states of the game must now be passed as additional argument to the A* function to
be able to define the array. In this document we will suppose that when an array is
created all its elements are initialized at nil. A problem-dependent function i(s) which
associates an unique number to each state s of the game must be provided by the
application.

Normally, implementing the A* consists simply in choosing particular data struc-
tures for open and closed, implementing the seven resp. four basic operations and
injecting everything in the pure A* abstract code. If we would do so, the operation
"Actualize open and closed" would not be optimally implemented. For each successor,
open would indeed be potentially entirely scanned a first time to decide if the successor
is a clone of a node of open or not, a second time to insert the successor in open and
a third time to remove the possible clone of the successor.

We will show that a single scan of the list permits to do all the operations that
are needed. The idea consists in scanning open until one of the following condition is
satisfied:

1◦) A node with an f -value greater than the f -value of the successor has been found.

2◦) A clone of the successor has been found.

3◦) open has been entirely scanned without finding any node that satisfies the two
other conditions.

If we are in the first case, the successor can be inserted just before the node on
which the scanning has stopped. This node is indeed the first one with an f -value
greater than the successor and inserting the successor before this node preserves the
sort. If we are in the second case the clone is as good or better than the successor and
the latter can be ignored. If we are in the third case the successor can be inserted at
the end of open.

As open contains at most one clone of the successor, in the two last cases open has
already been correctly actualized. However, in the first case open could still contain
a clone with an higher f -value than the successor. The rest of the list must thus be
scanned until a clone is found (it will then be removed) or all the elements have been
scanned.

The invariants and guardians of the main loop and the two inner loops remain the
same. The new implementation will however achieves P2 more efficiently. The main
code must merely be adapted to the implementation choices that we have made for
open and closed.
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function a-star(start-state: STATE; total-N: int): PATH;
var current-node, best-node: NODE;

open: list of NODE; closed: array[total-N] of NODE;
solution-path: PATH; successor-list: SUCCESSORS;

begin
current-node.state := start-state; current-node.father := nil ;
current-node.g-value := 0; current-node.f-value := h(start-state);
initialize-list!(open); insert-front!(current-node, open); {P}
do not empty?(open) cand not goal-node?(get-first(open).state) →

best-node := remove-first!(open); closed[i(best-node.state)] := best-node;
successor-list := find-successors(best-node.state);
"Actualize open and closed" {P}

od; {P and not B}
if empty?(open) → a-star := EMPTY_LIST
¤ not empty?(open) → "Generate solution path"
fi
end.

The operation "Generate solution path" remains exactly the same except that the
function get-first will be used instead of get-open-best. The operation "Actualize open
and closed" is fundamentally different:

{P2}
do not empty?(successor-list) →

current-node.state := get-first(successor-list);
current-node.father := best-node;
current-node.g-value := best-node.g-value

+ cost(best-node.state, current-node.state);
current-node.f-value := current-node.g-value

+ h(remove-first!(successor-list));
if closed[i(current-node.state)] 6= nil cand
closed[i(current-node.state)].f-value ≤ current-node.f-value → skip

¤ closed[i(current-node.state)] = nil cor
closed[i(current-node.state)].f-value > current-node.f-value →
if closed-member = nil → skip
¤ closed-member 6= nil → closed[i(current-node.state)] := nil
fi;
actualize-open(current-node, open)

fi {P2}
od {P2 and not B2}
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The function actualize-open is the one that performs the scanning of open already
explained. It is of course possible to define it in the usual iterative style but this requires
to use a temporary list that is not needed in the following recursive implementation.

function actualize-open(current-node: NODE; open: list of NODE): list of NODE;
begin
if empty?(open) → insert-front!(current-node, open)
¤ not empty?(open) cand get-first(open).state = current-node.state → skip
¤ not empty?(open) cand get-first(open).f-value > current-node.f-value →

insert-front!(current-node, remove-clone(current-node, open))
¤ not empty?(open) cand get-first(open).state 6= current-node.state

cand get-first(open).f-value ≤ current-node.f-value →
insert-front!(get-first(open), actualize-open(current-node, remove-first!(open)))

fi
actualize-open := open
end.

The recursive scheme is sound as the function remove-first! is applied to open before
the recursive call. The only function that must still be defined is remove-clone. It
returns the list of nodes passed as second argument where the possible clone of the
node passed as first argument has been removed.

function remove-clone(current-node: NODE; open: list of NODE): list of NODE;
begin
if empty?(open) → remove-clone := open;
¤ not empty?(open) cand get-first(open).state = current-node.state →

remove-clone := remove-first!(open);
¤ not empty?(open) cand get-first(open).state 6= current-node.state →

insert-front!(get-first(open), remove-clone(current-node, remove-first!(open)))
fi
end.

2.4.1.8 Efficiency Analysis

The heuristically informed methods are much more difficult to analyze than the blind
methods because everything depends of the quality of the heuristic. Let h(n) be the
heuristic used and h∗(n) the perfect heuristic that would always return the real cost
of the optimal path to the nearest goal. In an ideal world, it would be possible to
design h(n) so that it is exactly h∗(n) and the A* algorithm would find the optimal
path directly. However, as the location of the goal nodes is not known7, it is practically
impossible to create such a perfect heuristic for practical problems.

7The state-space problem would not exists if a path to a goal node was already discovered
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For this reason, heuristics are computed from the expert knowledge of the problem
and return only an estimation of the real distance. The time complexity of A* is
exponential in the worst case, but is polynomial when the heuristic function meets
the condition |h∗(n) − h(n)| ≤ O(log h∗(n)) [13]. More problematic than the time
complexity is the space complexity of the A*. It is proportional to the size of the
search space. Several variants of A* have been invented to solve this problem and this
document will focus on the iterative deepening A*, which is the subject of the next
section.

Another convenient property of the A* algorithm is that it is admissible when
h(n) ≤ h∗(n) for all nodes n of the state-space [2]. An algorithm is admissible if it
always return an optimal solution when a solution exists. Consider for example the
problem of finding a path from your home to your office. The flying distance between
your position and the office is an example of admissible heuristic. This heuristic can
indeed never overestimate the distance as the line is the shortest path between two
points. A* is also optimally efficient for any heuristic h(n), meaning that no algorithm
employing the same heuristic will expand fewer nodes than A* (except when there are
several partial solutions where h exactly predicts the cost of the optimal path) [13].

2.4.2 The IDA* algorithm

The iterative deepening A* (IDA*) was first presented in 1985 [11] and is probably
the most famous variant of the A*. It consists in applying the idea of the iterative
deepening which works so well in the uninformed world to the A* algorithm. This
time, the algorithm will no longer perform successive depth-first search by increasing
the depth of the search but by increasing the maximum cost of the solution path.

Initially, the cost is limited to the heuristic estimate of the initial state (h(start-
state)). At each iteration, the nodes with an f -value greater than the cost limit are
ignored (we consider here that the heuristic is admissible and that those nodes can thus
not be on a solution path of the length of the cost limit) and all the remaining nodes
are visited in depth-first manner. When no solution is found at a precise iteration,
this proves that no solution of length equal to the cost limit exists. The cost limit can
be increased and a new iteration starts. When a solution exists, the cost limit will
eventually reach the value of the optimal solution path and the latter will be found.

The implementation is the same as for the iterative deepening except that we will
no longer call the limited-depthfirst function at each iteration but a function f-limited-
depthfirst that we will define. An integer current-limit will again represent the current
cost-limit. It will this time be initialized to h(start-state) − 1 and increased by one
at the beginning of each iteration. The variable current-solution represents still the
potential solution of the current limit. Initially it is the empty list because a solution
of cost h(start-state)−1 cannot exist as we consider that the heuristic is admissible. It
will obviously remain an empty list until the last iteration, i.e. when current-solution
becomes the solution of optimal cost and the guardian B becomes false.

2.4.2.1 Invariant

P : current-solution is a solution path of a cost of current-limit
(empty list if no such solution exists).
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2.4.2.2 Program

function iterative-deepening-a-star(start-state: STATE): PATH;
var current-limit: integer;

current-solution: PATH;
begin
current-limit := h(start-state)-1; current-solution := EMPTY_LIST; {P}
do empty? current-solution →

current-limit := current-limit + 1;
current-solution := f-limited-depthfirst(start-state, current-limit) {P}

od; {P and not B}
iterative-deepening-a-star := current-solution
end.

The heart of the program is the function f-limited-depthfirst. Its implementation is
based on a list open which contains the generated but not visited nodes. Initially, it
contains only the initial state of the game. At each iteration, if the first node of open
is a goal node the algorithm terminates. Else, this nodes is removed from open and
its successors that have an f -value smaller or equal than current-limit are added to
the front. This process terminates when open is empty (no solution within the current
limit) or a solution has been found (the goal node is then the first node of open and
the solution path can be constructed in the same way as in the A* algorithm).

The invariant of the function f-limited-depthfirst will be constructed with the same
coloring of the nodes as for the depth-first search algorithm, except that we consider
that the nodes that have an f -value greater than the cost-limit are all colored black
before the algorithm starts. As usually, this coloration is conceptual; in this case its
only purpose is to model the fact that those nodes are ignored from the very start.
Initially, the start state of the problem is the only blue node. At each iteration, if the
first node of open (the deepest blue node of the state-space tree and in case of a tie
the leftmost one) is a goal node the algorithm terminates. Else, it depends on whether
this node is:

• An inner node that has at least one white successor: the node is colored green
and its white successors are all colored blue.

• A leaf or an inner node whose successors are all black: the node is colored black
as well as all its ancestor that have no blue brother.

This gives the following invariant:

P2: open is composed of all the blue nodes of the state-space (ordered
in favor to the deepest and in case of a tie the leftmost ones). The
green nodes are the ancestors of the blue nodes. The black nodes
are the left brothers of the green nodes and of the deepest and
leftmost blue node as well as all the nodes that have an f -value
greater than current-limit. The white nodes are the offsprings of
the blue nodes that are not black.
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The guardian B2 must remain true as long as a termination case has not been
reached, i.e. as long as open is not empty (a solution may still exist) and the first node
of open is not a goal node (a solution have not been found yet).

function f-limited-depthfirst(start-state: STATE; current-limit: int): PATH;
var current-node, succ-node: NODE;

open: list of NODE;
successor-list: SUCCESSORS;

begin
current-node.state := start-state; current-node.father := nil ;
current-node.g-value := 0; current-node.f-value := h(start-state);
initialize-open!(open); insert-in-open!(current-node, open); {P2}
do not empty?(open) cand not goal-node?(get-first(open)) →

current-node := remove-first!(open);
successor-list := find-successors(current-node.state);
"Add all the successors that have an f-value less or equal than
current-limit in front of open" {P2}

od; {P2 and not B2}
if empty?(open) → f-limited-depthfirst := EMPTY_LIST
¤ not empty?(open) → "Generate solution path"
fi
end.

The operation "Generate solution path" remains exactly the same as for the A*
algorithm except that the function get-first will be used instead of get-open-best. The
function "Add all the successors that have an f-value less or equal than current-limit in
front of open" can be concretized by a simple loop. At each iteration, the first member
of successor-list is removed. Recall that the members of the latter are not nodes but
states of the game. The node corresponding to the removed state of successor-list must
thus first be created. If its f -value is greater than current-limit then the node can be
ignored. Else, the created node is inserted in front of open. We can once more consider
that the successors of successor-list are ordered from right to left and note open0 the
content of open before the loop. This gives the following invariant:

P3: successor-list contains the states of consecutive successors of
current-node (ordered from right to left). open contains open0

where all the successors of current-node whose states are not
in successor-list except those that have an f -value greater than
current-limit has been added in front of the list (ordered from
left to right).

In fact, before the loop, successor-list contains all the successors of current-node
and open is exactly open0. At each step the first state of successor-list is removed and
if and only if the f -value of the corresponding node is less are equal than current-limit
the node is added to the front of open. The guardian B3 is the usual one for the
actualization of open (true as long as successor-list is true).
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{P3}
do not empty?(successor-list) →

succ-node.state := get-first(successor-list);
succ-node.father := current-node;
succ-node.g-value := current-node.g-value

+ cost(current-node.state, succ-node.state);
succ-node.f-value := succ-node.g-value

+ h(remove-first!(successor-list));
if succ-node.f-value ≤ current-limit → insert-front!(succ-node, open)
¤ succ-node.f-value > current-limit → skip
fi {P3}

od {P3 and not B3}

2.4.2.3 Termination

The IDA* algorithm terminates if only if a goal node exists in the state-space tree for
the same reason as the iterative deepening algorithm.

2.4.2.4 Efficiency Analysis

The IDA* is more efficient than the A* algorithm for the following reasons:

• Each iteration is a depth-first search. The space complexity is thus O(d2) where
d is the depth of the tree scanned in the last iteration, i.e. the tree composed of
the nodes of the state-space that have an f -value which is less or equal than the
cost of the optimal solution path. This is considerably smaller than the linear
space complexity of the A*.

• A simple list open is used in the IDA* algorithm whereas more complicated
structure are needed for the A*.

• The use of a closed set is not absolutely necessary as most of the clones have
already been eliminated because of their too high f -value.

• In the last iteration of the IDA* algorithm, the number of generated nodes is
potentially much less than for the A* algorithm as all the nodes with an f -value
greater than the cost of the optimal solution path have been pruned out of the
tree.

Note that the regenerating of the same nodes in the different iterations is again vir-
tually negligible as it was the case for the iterative deepening. Note also that the IDA*
algorithm is admissible and optimally efficient in the same sense as the A* algorithm
and that the quality of the heuristic plays the same crucial role. The only drawback of
the IDA* compared to the A* is that it cannot be used when the existence of a solution
is not assured (only if we limit the resources of the program but the program will be
very inefficient to determine that no solution exists).
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Chapter 3

The Game of Sokoban

Figure 3.1: The last maze of our 90-problem benchmark

The game of Sokoban was created in 1982 by Thinking Rabbit, a computer games
company in the town of Takarazuka (Japan). The game was invented by Hiroyuki
Imabayashi. In Japanese terms, the word Sokoban means a warehouse man. Because
of the clearness and beauty of the rules, and the intellectually challenging complexity of
the composed problems, Sokoban quickly became a popular pastime. Several versions of
the game appeared over the years, among which are PC, Macintosh and Unix versions.

44



Chapiter 3 3.1 Rules and Consequences

3.1 Rules and Consequences

The rules of the game have already been mentioned in the introduction. Recall that a
Sokoban maze is a grid composed of unmovable walls, free squares, exactly one man,
and as many stones as goal squares. The player controls the man and the man can
only push stones (not pull). Furthermore, only one stone can be pushed at a time.
The objective of the game is to push all stones on goal squares. Figure 3.1 is a very
difficult example taken from our benchmark.

3.1.1 Notation

In the introduction, we have given an example of solution for the simple case of the
problem of Figure 1.2. We have introduced two different notations and from now we
will keep the shorter one: the stone-move notation. Recall that it consists in giving
the lists of the stone-moves of the solution and that it makes the implicit hypothesis
that each stone-move is valid, i.e. that the man can reach the square adjacent to the
stone to effectively make the push.

To be more precise, each square of the maze will be identified using a coordinate
notation. We have chosen to use a convention inspired from the game of Chess: the
vertical axis will be labelled with numbers (from 1 to the vertical size of the game) and
the horizontal axis with letters (in the alphabetic order beginning with a) starting in the
upper left corner. The notation that represents the moves of a particular stone is merely
the sequence of the coordinates of the squares through which the stone progresses. For
example, the only way to move the n6 stone of the maze of Figure 3.1 to the m5 square
is written: n6-n5-m5. The global notation is just an extension of this: as long as the
same stone is moved we keep using the notation that has just been introduced and as
soon as another stone is moved we start a new sequence separating both by a comma.
For example, moving the n3 stone of the maze of Figure 3.1 to n2 and then the j3
stone to j5 is written: n3-n2, j3-j4-j5.

3.1.2 Difficulty of the game

With such simple rules, the game seams to be simple too. In [9] the following reasons
explains why Sokoban is such a difficult game:

• The combination of long solution lengths (from 97 to 674 stone pushes in the test
set) and potentially large branching factor (up to 136) make Sokoban difficult
for conventional algorithms to solve. The size of the search space for 20 × 20
Sokoban mazes has been estimated at 1098.

• Sokoban solutions are inherent sequential; only limited parts of a solution are
interchangeable. Subgoals are often interrelated and thus cannot be solved inde-
pendently. Attempts to decompose problems are also ineffective. For example,
removing a single stone from a problem may make it trivial to solve, offering no
insights as how to solve the problem.

• A simple and effective lower bound on the solution length of a Sokoban problem
remains elusive. The best lower-bound estimator is expensive to calculate, and
is often ineffective.
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• The underlying structure of Sokoban can be represented by a direct graph, mean-
ing that some moves are not reversible. Consequently, there are deadlock states
from which no solution can be reached.

In fact, the problem of the existence of deadlock states is the heart of the game
of Sokoban. Even one single wrong move can make the task of the player impossible.
For example, if a stone is pushed into a corner it is paralyzed forever and the maze
becomes unsolvable (recall that all the stones must reach a goal square and that a
single deadlocked stone makes the whole maze unsolvable).

Figure 3.2: Examples of deadlocks

Figure 3.2 shows a palette of deadlock examples. The stones b6, d4, d3, e4 and e3
are unmovable forever and are clearly deadlocked. The stones f10, f9 and h9 would
be solvable if the man was on square g9 (f9-e9-d9-c9-b9, f10-e10-d10-c10-b10, h9-i9-
j9-i9-h9-g9-f9-e9-d9-c9-c8-b8 would park them properly in the goal area). However,
the man is on j7 and can only push the stone h9 to g9 blocking the entrance of the
goal area forever (the man cannot push two stones at a time). This examples shows
that the position of the man is also of importance in the context of deadlocks.

Even if we would remove the stones f10, f9 and h9 the stones that have not been
mentioned yet would still be deadlocked. The stones i3, j3 and k4 can indeed only
move up and the man has therefore no chance to bring them down to the goal area
(the stone k4 can go down if we first move the stone j3 up but the latter would be
deadlocked forever and the former would not even become solvable as it is against the
border and cannot move to the left). The stone j10 would require to reach the 9th
rank to become solvable but can only move laterally.
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3.1.3 Optimality

Solving Sokoban mazes may be very challenging but assuring that the solution is opti-
mal is even more ambitious. However, the definition of optimality must first be selected.
Two possibilities are indeed to consider: we can either want to minimize the number
of man-moves or the number of stone-moves. It is uncommon to achieve both target
simultaneously. The solution of Figure 1.2 for example was man-moves optimal but
not stone-moves optimal. It was indeed possible to do without the stone move g4-h4 at
the beginning of the solution but this would have lead to more man motion. We have
chosen the stone-moves optimality as it suits our multi-agent modelling approach very
well. Indeed, considering that the agents are the stones of the maze, we can merely
define the optimal solution as the one that minimizes the number of agents moves.

3.1.4 Efficient Representation of a Maze

Representing the maze simply by an array of the contents of the squares of the maze
is not sufficient as it would require to scan the complete array each time the location
of the man or the stones are needed. In this work we will therefore represent the game
by a record of four elements:

• wall-vector: a boolean vector where each element is true if and only if the corre-
sponding square of the board is a wall. The ith element of the vector corresponds
to the ith square of the board counting them in the reading order (from left to
right and from up to down) starting with zero in the upper left corner.

• man-coord: the coordinates of the man.

• stone-list: the list of the coordinates of the stones.

• goal-list: the list of the coordinates of the goal squares.

The idea of this representation is to separate the information that does not change
in the course of the game (wall-vector and goal-list) from the variable data (man-coord
and stone-list). Deciding which moves the man can do will take time O(1) to find the
location of the man, O(1) to decide if the adjacent squares are walls or not and for
those who are not walls O(Nstones) to find out if there is a stone on the square or not.
As the number of stones is considerably smaller than the total number of squares this
complexity is a good improvement over the simple array representation.

Note that we could even have achieved O(1) for deciding if a square contains a
stone by using an additional variable stone-vector similar to wall-vector for the stones.
However, this vector would require an update each time a stone-move is tried in the
resolution process. This update is not so worrying but more problematic is the fact
that we will have to backtrack when the tried moves do not lead to a solution which
requires to keep plenty of old versions in memory.

Deciding which stones are movable and what moves they can do is also efficient: it
consists in scanning the list of the stones which takes O(Nstones) and for each to test
which adjacent squares are accessible (O(1) to see if it is not a wall and O(Nstones)
to see if it is not a stone) and which of those can be reached by the man (we will
investigate this question later).
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For each stone, deciding whose goal square is the nearest one will take time O(Ngoals).
It would have been much more if we had chosen to use a variable goal-vector similar to
wall-vector for the goals. The choice of a list representation is also judicious considering
that we plan to decide in advance in which order the goal squares will be filled and
that it is obviously easier to achieve it from a list representation than from an array
representation. We can now define more formally the data type that will be used for
representing Sokoban positions:

type GAME-INFO = record
wall-vector: array[Nsquares] of boolean;
man-coord: COORD;
stone-list: list of COORD;
goal-list: list of COORD

end;

The data type COORD corresponds to the coordinates of a square as defined in
the notation section, and can formally been defined as follows:

type COORD = record
x: char;
y: int

end;

We also need data types for representing stone-paths and Sokoban solutions. The
former are list of the coordinates of the squares through which the stones must go and
the latter are list of stone-path:

type STONE_PATH = list of COORD.

type SOKOBAN_SOLUTION = list of STONE_PATH.

3.2 State of the Art

State-of-the-art solvers model Sokoban as a state-space problem. The states of the
graph are all the possible states of the game which can be obtained by varying the
position of the man and the stones. The arcs represent legal one-square stone-moves
from a position to another. In [8] the best overall program is stated to be deepgreen
which could solve 62 problems of the benchmark. However, no details are known about
this program (no publication, no open source) and the author assumes that deepgreen
builds on efforts of the strong Japanese Sokoban community.

Rolling Stone is the actual best documented Sokoban solver. It uses the Iterative
Deepening A* as basis for exploring the state-space. In [10], the fact that only trivial
problems can be solved by using the IDA* without other enhancements is demon-
strated (even with a clever heuristic function, no maze of the difficult 90-problem
benchmark can be solved). A lot of enhancements like transposition table, move or-
dering, deadlock tables, pattern search, and further problem-dependent improvements
where implemented to achieve good performances (59 problems solved) [8]. However,
this strategy seems to have reached its limits as the most difficult instances are still far
from being solved by such methods.
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Chapter 4

The New Multi-Agent Modelling
Approach

This chapter presents our new multi-agent modelling approach on the real case of the
game of Sokoban. A particular class of Sokoban problems will be defined and we will
show that our method solves all the problems of that class. We will first give a high-
level description of our solving protocol. Then we will continue with a precise and
efficient way to implement it.

We will then show that the class which has been solved is unfortunately very par-
ticular and that only one problem of our benchmark can be solved by our protocol.
However, we will than present a way to embed the latter in a classical state-space
algorithm and achieve better results. Finally, a generalization and future extensions of
our modelling method will be given.

4.1 Solving a Particular Subclass of Problems

Let us define a particular subclass of Sokoban mazes which have been completely solved
by the new method with a rather simple protocol. To be more precise, we will write
a protocol that solves mazes if (but not only if) they belong the class. We can thus
apply this protocol to any Sokoban maze but we have the guarantee to find a solution
only if it is in the class.

4.1.1 Definition of the Subclass

Intuitively, a maze is in this class if the stones are solvable one by one. To be more
precise, the maze must satisfy the following conditions:

• Goal-ordering-criterium: it must be possible to determine in advance the order in
which the goal squares will be filled without introducing deadlocks, independently
from the position of the stones and the man.

• Solvable-stone-existence: it must be possible to bring at least one stone to the
first selected goal square without having to move other stones.

• Recursive-condition: for each stone which satisfies the previous condition, the
maze obtained by removing that stone and replacing the selected goal square by
a wall must also by in the class.
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Figure 4.1: An example of maze that is in the defined subclass.

The maze of Figure 4.1 is a Sokoban problem which satisfies all the conditions:

• The following filling order is adequate: b2, c2, b3 and finally c3.

• The b8 stone is the only one that can reach the square b2 without requiring other
stone-moves.

• The maze obtained by removing the stone b8 and replacing the square b2 by a
wall is obviously also in the class. This comes from the fact that each remaining
stone can reach each remaining goal. The order in which the stones will be solved
can thus be chosen freely.

Figure 4.2: An example of maze that is not in the defined subclass.
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The maze of Figure 4.2 is not in the class. It is a good compilation of non-satisfied
conditions. The goal squares are divided into several goal areas and it is not possible
to determine in advance the order in which the goal squares should be filled without
considering the position of the stones and the man.

Furthermore, in the initial position, only one stone can reach some goals without
other stone-moves (the stone f8 can reach b8 and i8). However, removing the stone
and replacing the square i8 by a wall would make the goal square i9 unreachable. Even
by replacing the square b8 by a wall, the corresponding maze would still not be in the
class. Indeed, none of the four remaining stones can reach a goal without other stone
moves.

4.1.2 Protocol for Solving the Mazes of the Subclass

The idea of the new multi-agent modelling approach is that every stone of the maze
can be seen as an agent whose aim is to reach one of the goal squares, and the global
goal is to find a solution for which everyone achieves his objective. Instead of facing
each other, the agents have thus to collaborate to achieve a common objective. In this
view of the problem, the man is only a puppet which can be called by the stones when
they want to be pushed.

Due to the recursive-condition, solving an agent cannot introduce a deadlock sit-
uation. This facilitates the elaboration of the algorithm. Indeed, we do not have to
write a communication protocol that an agent must initiate when he can reach the first
goal square to determine if it could cause damage to other agents. From this, a simple
protocol can be used for finding a non-optimal solution:

1◦) If no agent (stone) exists, the maze is already solved and the solution path is the
empty list.

2◦) Else, select the first goal square.

3◦) Select an agent that was not chosen before and compute if it can reach the selected
goal square.

• If it cannot, return to step 3.

• If it can, move the agent to the goal square, replace the goal square reached
by the agent by a wall and delete the agent. Go back to step 1. The
solution path is the solution path of the deleted agent added in front of to
the recursive solution path produced by the result of step 1.

This protocol is easy to modify for obtaining shorter solutions at the cost of more
computation time. In step 3, the first solvable agent will no longer be chosen directly.
Instead, the solvability of all the agents will be computed and the one that has found
the shortest path to the goal square be selected. By this means, a situation in which
a stone has to make a detour around another stone to reach a goal square cannot
occur anymore. The stone that would have been on the way would have already
been solved. This strategy does not guarantee optimality (counterexamples can be
constructed easily) but practice shows that in most real cases it leads to optimal or
near-optimal solutions.
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The termination of the algorithm is assured for mazes that are in the subclass, as
the solvable-stone-existence condition assures that it will always exist at least one agent
that can reach the first goal square at step 3. The recursive-condition assures that all
the mazes of the subclass will be solved by this protocol.

The algorithm could also find an answer for mazes that are not in the class. Consider
for example a maze for which the stones are solvable one-by-one but only in a precise
order. The algorithm could try this order first by chance and find the solution. It is
easy to modify the protocol so that it always terminates. We can simply answer that
no such easy multi-agent exists when no more agent that has not been selected before
can be chosen at step 3.

4.1.3 Efficient Implementation of the Protocol

In the practical implementation, we will notably have to create a procedure for selecting
the first goal square. We will also have to decide how to compute the solvability of
a stone efficiently. This will obviously first require to work out if the man can at
least reach a square adjacent to the stone to make the push. Proving that it is not
the case for the unreachable stones will necessitate a complete exploration of the zone
controlled by the man, i.e. the set of squares that he can reach. In order to avoid to
redo this computation for all the stones, we will from the very start create a vector
ind-zone-vector whose elements are true if and only if the corresponding squares of the
maze are reachable by the man without requiring any stone move.

The idea of the protocol is recursive. The basic case occurs when the list of the
coordinates of the goal squares is empty. In this case the solution is the empty list.
Otherwise the variables first-goal (the first goal square) and movable-stones (the list
of the movable stones) will be computed. Then a loop will repeatedly remove the first
stone of movable-stones and compute its solvability until the list has been emptied or
a solvable stone has been found. The variable stone-path will be used for detecting the
latter case. It will be initialized to the empty list. At each iteration the solution path
found for the current stone will be affected to it. The loop terminates when stone-
path is a solution-path or when no solution path exists which has been proven when
movable-stones is empty.

In the latter case the algorithm can return a new constant NO_SOLUTION (we
cannot use the empty list as it is our basic solution case). In the former case a recursive
call can be performed after having removed the solved stone and solved goal from the
corresponding lists and having actualized the position of the man and wall-vector (the
solved goal becomes a wall). If the recursive call returns the constant NO_SOLUTION
the maze is not in the class and we can return this constant. Else, the solution path is
obtained by adding the stone-path found by the loop in front of the other stone moves
given by the recursive solution.

Very important is also to ensure that the game data has not been affected by the
function. Otherwise some goal squares could still having been replaced by walls even
when no solution has been found. For this purpose, and as we do not want to make
plenty of copies of the vector, its elements will merely be set back to their old values
directly after the recursive call. In contrast, the stone list, goal list and the man
coordinates are not large and can be copied. The guardian B of the loop is true as
long as movable-stones is not empty and the variable stone-path is the empty list.
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We can now define the invariant of the loop:

P : movable-stones is the list of the movable stones for which we
do not know if they are solvable or not. first-stone is a solvable
stone if and only if stone-path is not the empty list. All the other
stones are known to be unsolvable.

function talking-stones(game-info: GAME-INFO): SOKOBAN_SOLUTION;
var first-goal, first-stone: COORD; stone-path: STONE_PATH;

movable-stones: list of COORD; new-game-info: GAME-INFO;
ind-zone-vector: array[Nsquares] of boolean;

begin
if empty?(game-info.goal-list) → talking-stones := EMPTY_LIST
¤ not empty?(game-info.goal-list) →

stone-path := EMPTY_LIST; "Find the first goal square" ;
"Find the vector of the squares that are reachable by the man" ;
"Find the list of the movable stones" ; {P}
do not empty?(movable-stones) and empty?(stone-path) →

first-stone := remove-first!(movable-stones);
stone-path := "Find a stone-path between first-stone and first-goal"

od; {P and not B}
if empty?(stone-path) → talking-stones := NO_SOLUTION
¤ not empty?(stone-path) →

new-game-info.stone-list := erase-one(game-info.stone-list, first-stone);
new-game-info.goal-list := erase-one(game-info.goal-list, first-goal);
if empty?(get-rest(stone-path)) →

new-game-info.man-coord := game-info.man-coord
¤ not empty?(get-rest(stone-path)) →

new-game-info.man-coord := get-first(get-rest(stone-path))
fi;
game-info.wall-vector[coord-to-index(first-goal)] := true;
new-game-info.wall-vector := game-info.wall-vector;
rec-solution := talking-stones(new-game-info);
game-info.wall-vector[coord-to-index(first-goal)] := false;
if rec-solution = NO_SOLUTION →

talking-stones := NO_SOLUTION
¤ rec-solution 6= NO_SOLUTION →

talking-stones := insert-front!(stone-path, rec-solution)
fi

fi
fi
end.
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The function get-rest takes as argument a list and returns the list without its first
element. In contrast to remove-first! it does not affect the list. The function erase-one
returns the list passed as first argument where the element passed as second element
has been removed. The function coord-to-number takes as argument the coordinates of
a square of the maze and returns the corresponding vector-index. All these functions
are very easy to implement and it would be wasting time to explain how here. A
Scheme implementation of erase-one and coord-to-number is given in the appendix
and get-rest is simply the predefined function cdr.

The affectation of new-game-info.man-coord request an explanation. It depends in
fact of stone-path. If the latter is a list of a single coordinate this means that the stone
was already on the target goal square and that no stone-moves has been performed. In
this case the man is still on its starting square and its coordinates remains the same.
Otherwise, some stone moves has been performed and the man is located on the square
on which the stone was just before having reached the goal square. It is thus the second
element of stone-path.

4.1.3.1 Computing the Order in which the Goals will be Filled

In the first version of Talking Stones presented here, a very simple rule for ordering
the goal squares has been chosen. The first goal square will be the one that has the
maximum adjacent walls (in case of a tie any of them). The next goal squares are
chosen by following the same strategy, but by considering that the previously chosen
goal squares are walls. Thus, the goal squares which can only be reached from a single
adjacent square will be filled first and we will avoid to block their entrance. This
simple criterion has been chosen because it is easily implemented and works for most
of the mazes that satisfy the goal-ordering-criterion. However, counterexamples can be
constructed and more complicated ordering rules will be considered in later versions.

The operation "Find the first goal square" can now be implemented without diffi-
culty. When it is called all the preceding solved goals have already been replaced by
walls. The idea is thus simply to scan the goal-list and keep the current member with
the maximum adjacent walls in memory. Note that when the process reaches a goal
with three adjacent walls it can stop directly (it is indeed the maximum because if all
the adjacent squares were occupied by walls the maze would be unsolvable and we do
not consider such mazes in this work).

The idea of the implementation is to use the following variables:

• current-best : the coordinates of the current best goal square. Initially it is the
first goal of game-info.goal-list.

• best-value: the number of adjacent walls to current-best.

• current-list : the list of the goals that could still be better than current-best.
Initially it is the list game-info.goal-list without its first element.

The guardian B2 of the loop is true as long as current-list is not empty and best-
value is smaller than three. The following invariant is adequate:

P2: current-best is the best goal square among the goals which are
not in current-list.
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var current-best, front-goal: COORD;
best-value, front-goal-value: int;
current-list : list of COORD;

begin
current-list := get-rest(game-info.goal-list);
current-best := get-first(game-info.goal-list);
best-value := count-walls(current-best, wall-vector); {P2}
do not empty?(current-list) and current-best-value < 3 →

front-goal := remove-first!(current-list);
front-goal-value := count-walls(front-goal, wall-vector);
if current-best-value < front-goal-value →

current-best := front-goal; current-best-value := front-goal-value
¤ current-best-value ≥ front-goal-value → SKIP
fi {P2}

od; {P2 and not B2}
first-goal := current-best
end.

The function count-walls counts simply how many of the four adjacent squares to
the inner-square whose coordinates are passed as first argument are walls, i.e. have
true values in the corresponding cells of the wall-vector passed as second argument.
Again, this function is very easy to implement and it would be wasting time to explain
how here. A Scheme implementation is given in the appendix.

4.1.3.2 Computing the vector of the man-reachable squares

As most of the squares of the board are unreachable (the walls, the stones, the outside
squares, some of the inside squares, ...) we will first initialize ind-zone-vector with false
values. We will suppose that a predefined function initialize-array! which initializes
all cells of the array passed as first argument to the boolean value passed as second
argument is given. This operation is performed in time O(1) for most languages.

Initially, one square is for sure reachable by the man, i.e. its actual square. The
corresponding cell of ind-zone-vector can thus be directly set to true. The easiest
way to find all the other reachable squares (without any stone-move) consists in using
a depth-first search strategy with cycle-detection. A list open of the coordinates of
known reachable-squares will be used. Initially it contains only the current coordinates
of the man. At each iteration, the first element of open is extracted and its successors
(i.e. the squares that the man can reach in one step) are computed. The successors
whose corresponding cell of ind-zone-vector are already true can be ignored (hence the
cycle-detection). The others will be set to true and their coordinates added in front
of open. The algorithm terminates when open is empty. This will eventually occur as
exactly one element is removed from open at each iteration and only a finite number
of elements can be added (the man can only reach a finite number of squares and as
we detect cycles the same coordinates cannot be added twice).
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The main difference between this algorithm and the state-space algorithm that
performs a depth-first search with cycle detection is that the latter ends directly when
it finds a goal square and the former always generates all the offsprings. The virtual
coloring of the nodes for constructing the invariant is thus different:

• White nodes: nodes that have not yet been generated by the search.

• Blue nodes: nodes that have been generated but not expanded. A node is said
to be expanded if its successors have been generated or if we now that it has no
successors.

• Green nodes: nodes that have been generated and expanded.

Initially, the node corresponding to the actual position of the man is the only blue
node and all the other nodes are white. At each iteration, the deepest blue node is
colored green (in case of a tie the leftmost one) and its white successors as well as
their clones are colored blue. The algorithm terminates when all the nodes have been
painted in blue. The guardian B2 of the loop is true as long as open is not empty. The
strategy of the algorithm can now be expressed as maintaining the following invariant:

P2: open contains all the coordinates of the squares whose corre-
sponding nodes are blue (ordered in favor to the deepest blue
nodes, and in case of a tie the leftmost ones). The cells of ind-
zone-vector are true if and only if the corresponding nodes are
blue or green.

The function "Find the vector of the squares that are reachable by the man" can
finally be written as follows:

var open, successors-list: list of COORD;
begin
initialize-array!(ind-zone-vector, false);
initialize-list!(open); insert-front!(game-info.man-coord, open);
ind-zone-vector[coord-to-number(first-square)] := true; {P2}
do not empty?(open) →

successor-list := find-new-successors(remove-first!(open), ind-zone-vector,
game-info.wall-vector, game-info.stone-list);

open := append(successor-list, open); {P3}
do not empty?(successor-list) →

ind-zone-vector[coord-to-number(remove-first!(successor-list))] := true
{P3}

od {P2 and P3 and not B3}
od {P2 and not B2}
end.
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The function find-new-successors returns the list of the squares that the man could
reach in one step if the man was on the square whose coordinates are passed as first
argument except those whose corresponding cell of the vector ind-zone-vector (passed
as second argument) are true and by taking account of the position of the walls and of
the stones (third and forth arguments). This function is trivial to implement and as
usual a Scheme implementation is given in the appendix.

The inner loop extracts the successors from the list returned by find-new-successors
one-by-one and sets the corresponding cells of ind-zone-vector to true until the list has
been emptied. The guardian B3 of this inner loop is thus true as long as successor-list
is not empty and the invariant P3 states that successor-list contains the successors
whose corresponding cells of ind-zone-vector are false.

A more subtle difference between this program and the depth-first search algorithm
with cycle-detection presented in chapter 2 is that all the clones are colored blue at the
same time. This program is thus more efficient as open can now never contain clones
of already treated nodes.

4.1.3.3 Computing the list of the movable stones

Deciding if a stone is movable consists merely in computing if at least one if its adjacent
squares is reachable by the man while the opposite adjacent square is free (is nor
occupied by a wall neither by a stone). This is easy to achieve efficiently as the vector
ind-zone-vector enables to decide if a square is reachable by the man in O(1), the
vector game-info.wall-vector enables to decide if a square is occupied by a wall in O(1)
and the list game-info.stone-list enables to decide if a square is occupied by a stone in
O(Nstones).

From this, a simple loop solves the problem. An auxiliary variable current-list
will keep the coordinates of the stones which have not been considered yet. It will be
initialized to game-info.stone-list. The variable movable-stones which must contain the
list of the coordinates of the movable stones after the execution of the function will be
initialized to the empty list. At each iteration, the first stone will be extracted from
current-list. If it is movable it will be added in front of movable-stones and otherwise
nothing has to be done at this iteration. The algorithm terminates when current-list
is empty which will eventually occur after Nstones steps.

For clarity reasons a boolean variable the-stone-can-move will be used. It will be
set to true if the current stone is movable and false otherwise. In fact, the condition
for testing if a stone is movable is extremely long. Without this variable the code
would thus be consequently longer as the condition and its contrary would both have
to appear in the if -condition.

The guardian B2 of the loop is true as long as current-list is not empty. The strategy
of this function can be expressed as maintaining the following invariant:

P2: current-list contains the coordinates of the stones for which we
do not now yet if they are movable or not. movable-stones
contains the coordinates of the movable stones that are not in
current-list.
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The operation "Find the list of the movable stones" performed in the main function
talking-stones can finally be written as follows:

var front-stone, left-coord, right-coord, up-coord, down-coord: COORD;
current-list: list of COORD;
the-stone-can-move: boolean;

begin
current-list := game-info.stone-list;
initialize-list!(movable-stones); {P2}
do not empty?(current-list) →

front-stone := remove-first!(current-list);
left-coord.x := front-stone.x - 1; left-coord.y := front-stone.y;
right-coord.x := front-stone.x + 1; right-coord.y := front-stone.y;
up-coord.x := front-stone.x; up-coord.y := front-stone.y - 1;
down-coord.x := front-stone.x; down-coord.y := front-stone.y + 1;

the-stone-can-move :=
(ind-zone-vector[coord-to-index(left-coord)]
and not game-info.wall-vector[coord-to-index(right-coord)]
and not member(right-coord, game-info.stone-list)

or (ind-zone-vector[coord-to-index(right-coord)]
and not game-info.wall-vector[coord-to-index(left-coord)]
and not member(left-coord, game-info.stone-list)

or (ind-zone-vector[coord-to-index(up-coord)]
and not game-info.wall-vector[coord-to-index(down-coord)]
and not member(down-coord, game-info.stone-list)

or (ind-zone-vector[coord-to-index(down-coord)]
and not game-info.wall-vector[coord-to-index(up-coord)]
and not member(up-coord, game-info.stone-list);

if the-stone-can-move → insert-front!(front-stone, movable-stones)
¤ not the stone-can-move → SKIP
fi {P2}

od {P2 and not B2}
end.

4.1.3.4 Finding a stone-path between two squares of a maze

This is a typical path-finding problem, i.e a particular subclass of state-space problems
where the question is to find the shortest route between two points of a map. We
have seen in chapter 2 that the heuristically informed methods outperforms the blind
method when a good heuristic which estimates the remaining distance to the objective
is provided.
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For this problem we can simply use the manhattan distance between the initial
square and the target square. If their coordinates are respectively (icol, irow) and
(tcol, trow), the manhattan distance is defined as:

|icol − tcol|+ |irow − trow|

This heuristic is admissible. Indeed, consider the maze without the walls and the
other stones. The stone could in this case reach the target square in a number of step
exactly equal to the manhattan distance. It will indeed have to perform |icol − tcol|
steps to reach the target column and |irow − trow| steps to reach the target row. When
the walls and the other stones are present the number of step can only increase (it
can even become infinite if the target square is unreachable). The real distance is thus
greater or equal than the manhattan distance hence the admissibility of the heuristic.

We have seen that the IDA* algorithm is the best choice when we have the insurance
that at least one goal node exists. This is not the case here as the target square could
be inaccessible. We will thus use the A* algorithm and the only remaining question
is which particular implementation to use. We have seen that this choice depends
mainly on the size of the state-space. We will now show that it is very small which
means that an implementation with an indexed vector for closed and a list for open is
the best choice as explained in chapter 2 (we will thus use our contribution, i.e. the
program given in section 2.4.1.7 which consists in rewriting the abstract code of the
A* algorithm for the particular implementation choice).

In the initial position, the stone and the man can be on any square of the board.
This is no longer true for the other nodes of the state-space as each successor is obtained
by moving the stone one-square ahead and in the resulting position the man must be
on an adjacent square to the stone. For a 20 × 20 maze the stone can be placed on
at most 18 × 18 squares (the borders are walls). The man can only be on 4 different
adjacent squares. The number of states (without counting the initial state) is thus
clearly bounded by 18 × 18 × 4 = 1296. A smaller bound can even by found by
considering the specials cases of a stone in a corner or against a wall. This is not
necessary as that would complicate the indexing function unnecessarily.

From this, it is easy to write an indexing function which associates a unique number
to each state of the state-space. Let assign the number zero to the initial state. Let
stone-square-number be the number associated to the square on which the stone is
situated: if we exclude the border squares, zero is associated to the upper left corner
and the next naturals are associated to the next squares in the reading order. From
this, using the following equation for associating the numbers to the states guaranty
the unicity: 4 × stone-square-number + (1, 2, 3 or 4 depending on the man-position,
resp. up, down, left and right from the stone). Note that when the stone is on the
downiest right corner the man cannot be on the right square. The maximum number
that can be associated is thus 1295 for 20× 20 mazes. we can thus use an array in the
range 0...1295.

Conceptually, the states of the problem contains the whole information of the cor-
responding position of the game. However, in our practical case, keeping the position
of the stone and of the man is enough. Indeed, the position of the target goal, the walls
and the other stones does not change and can be stocked as a constant information
independent of the particular node. We can now define the states of the problem:
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type STONE_PATH_STATE = record
stone-coord: COORD;
man-coord: COORD

end;

The operation "Find a stone-path between first-stone and first-goal" can be written
as follows:

var init-state: STONE_PATH_STATE;
begin
init-state.stone-coord := first-stone;
init-state.man-coord := game-info.man-coord;
a-star(init-state, 4× (Ncol − 2)× (Nrow − 2));
end.

All what it remains to do is to define the problem-dependent functions used by the
A* algorithm. The cost of all arcs will simply be one as each stone-move is equally
difficult. The g-value of a node will simply be one more than the one of its father.
The h-function is the manhattan distance already defined. The goal-node? predicate
is simply a predicate which takes as argument a state and the coordinates of the goal
node and returns true if and only if the coordinates of the stone are equal to those of
the goal.

The function find-successors is not so easy to implement. In fact, the vector ind-
zone-vector can no longer be used for deciding whether a square is reachable by the
man or not. Indeed, after each stone move the set of the reachable squares can change
completely. A stone-move can for example open a path to a large area of the maze that
was not reachable before. Furthermore, in many case the man will be able to reach the
push-square and computing all the reachable squares is wasting time. For this reason,
we will use the A* algorithm to work out if a path to the push-square exists. The
heuristic will again be the manhattan distance, but this time it will be computed on
the coordinates of the man and of the push-square. The implementation is similar to
the one of the stone-path.

4.1.4 Results

Only one problem of our 90-problem test suite is in the subclass just defined (problem
78) and can be solved by this protocol. This is not surprising, as problems that are
directly solvable stone by stone are uncommon in difficult benchmarks. Instead of
elaborating other protocols for solving more general problems with the pure new multi-
agent modelling approach, another idea has been developed.

As it is often the case in AI, trying to understand how the human player solves
problems helps to find new algorithms. In the case of Sokoban, one of the talents of
the human player consists in recognizing very soon in the resolution process that he
can reach a configuration that is easy to solve (stone-by-stone). This suggests a new
solving method for difficult games.
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4.2 Embedding the New Approach into a State-Space
Algorithm

The method consists in using a classical state-space algorithm, but one in which the
nodes whose corresponding state of the game is solvable by the new multi-agent mod-
elling approach are defined as success nodes. This means that when the search reaches
such a node, the search terminates successfully. The solution is then obtained by ap-
pending the solution path found by the state-space algorithm to the solution found by
the multi-agent modelling approach.

The offspring of success nodes are no longer reachable and can be considered to have
been pruned out of the state-space. In practice, the size of the state-space will decrease
substantially. On the other hand, more computation time is needed at each node as
the multi-agent modelling approach is called for each node to determine whether it is a
success node. However, the time lost by these calls is largely compensated by the time
won by having less nodes to visit. Our program Talking Stones implements this idea.

4.2.1 Choosing the Right State-Space Algorithm

The size of the search space remains huge for difficult problems. As the branching
factor is rather high, a good memory management is required. Therefore, an iterative
deepening algorithm is a good choice. We have thus to choose between the pure iterative
deepening algorithm and the IDA* algorithm. The latter is naturally the best choice
if we can find a good heuristic.

However, the heuristics commonly used for games are functions that try to minimize
a particular distance to the objective. For Sokoban, it is generally the distance between
the stones and the goals (using a minimum matching algorithm to assign the stones
to the goals). This does not help much in the context of the new method. Indeed,
almost every Sokoban mazes start in a configuration where the situation seems to be
nearly blocked. The initial strategy consists therefore in finding a few moves to make
more space for the man. Those moves have no reasons to be moves that diminish the
global stone-goal distance. Defining a good heuristic function is thus far from trivial.
For this reason, we have simply used the original iterative deepening algorithm in our
first version of Talking Stones. We decided to limit the number of generated nodes to
20000.

4.2.2 Results

The algorithm seems rather naive; it simply tests all the possible moves until a po-
sition in which the stones are solvable one-by-one is reached. It makes nothing for
avoiding deadlock moves and seems thus to be too coarse for solving serious problems.
Surprisingly, this strategy is already able to solve 9 problems of the 90-problem test
suite.
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Problem Generated Nodes Depth of the multi-agent solution Time
1 76 3 6 sec
2 7155 4 8 min 23 sec
3 31 2 5 sec
5 67 2 25 sec
6 2849 4 4 min 20 sec
51 972 4 31 sec
54 2761 3 19 min 4 sec
78 0 0 < 1 sec
82 173 3 12 sec

Table 4.1: Results obtained by Talking Stones on the 90-problem benchmark

4.2.3 Comparison with Rolling Stone

Rolling Stone has demonstrated that a pure IDA* approach without other enhance-
ments cannot solve any problem of the benchmark and that immense progress can be
obtained with them. Implementing some of those enhancements within Talking Stones
looks thus promising for solving more instances.

One enhancement needs a special comment: Move Ordering. In Rolling Stone,
moves which preserves the inertia of the stones are favored. This means that if the
previous move was performed on a particular stone, moving this stone again will be
considered first. From this, if Rolling Stone reaches a node that is solvable by the
multi-agent modelling approach, it will find a solution similar to the one found by
Talking Stones (solving the stones one-by-one, but possibly in another order).

However, the big difference is that our program will in this case require much less
time and space to find the solution. Indeed, if we consider a maze composed of N
stones, Talking Stones will simply call the A* algorithm at most N times to find a first
solvable stone, N − 1 times for a second one, and so on. This gives a complexity of N2

calls to the A* algorithm. Each call is relatively fast as the size of a Sokoban maze is
small and so is the number of possibilities. To be more precise, for a 20× 20 maze the
stone can be placed on at most 18 × 18 squares (the borders are walls). A stone can
move in at most 4 directions. The number of possibilities is thus clearly bounded by
18 × 18 × 4 = 1296. A smaller bound can even be found by considering that a stone
cannot move if it is in a corner and can at most move in 2 directions if it is against a
wall.

An implementation based on the IDA* will do much more. At each step, it will
generate all the possible moves for the N stones. For each position that can be obtained
by performing one of those moves, it will compute its heuristic distance to the final
goal. Then, it will select the most promising move not tried so far (in case of a tie
one that preserves the inertia) and continue from that point. As the branching factor
of the game of Sokoban is important, the IDA* algorithm will rapidly have to keep a
large amount of candidate nodes to expand in memory. In the case of a maze solvable
stone-by-stone, this is not needed as most of the candidate moves will never been tried.
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4.3 Generalization of the Method to Other Games

We can decompose the new solving method for difficult single-player games in three
layers:

• The high-level layer is a classical state-space algorithm where a node is a success
node if the medium layer can solve it. The choice of the algorithm depends on
the precise game. If the branching factor is important an iterative deepening
algorithm is appropriate. The IDA* should be preferred to the pure iterative
deepening algorithm when expert-knowledge of the game is provided and a good
heuristic function can be constructed. If the branching factor is small, the mem-
ory is not critical and the A* algorithm is indicated. When no good heuristic
function can be constructed, the breadth-first search algorithm is the best suited
one at this level. See [17] for more information on the most adapted state-space
algorithms according to the branching factor.

• The medium-level is a protocol based on a multi-agent representation of the game.
The agents are primitive game elements depending on the particular game. The
agents have to communicate together to find a common solution. They can use
the algorithms of the low-level as tools for solving sub-problems.

• The low-level is a set of algorithms for solving subproblems of the game. Classical
state-space algorithms can be used but not exclusively.

We believe that it is possible for almost all games to determine primitive game
elements that have to reach some goal. In puzzles like the 24-tile puzzle, the agents
could be defined as the tiles. In this representation, each tile aims to reach its final
destination but cannot move without altering the position of other agents. In the game
of Sokoban, all the agents are instances of stones of the maze and have thus the same
characteristics. For other games however, we could define agents that have their own
personality. For the game of solitaire for example, the agents could be the 52 cards.
Each agent is now unique. Note that for such imperfect information game, we must
consider that only a subset of the agents is visible. The other agents can thus be seen
as being in an unknown queue, waiting for entering into play.

4.4 Extensions of the Method

Our actual implementation is sequential. However, each agent has to solve subproblems
independently from the others. It should thus be possible to parallelize the processes.
Tests must be done to determine if significant computing time can be won by these
means.

The protocol that has been defined in the multi-agent modelling approach has the
advantage to be easy to implement and to work well for mazes of the defined subclass.
More general protocols that imply a communication process between the agents can
presumably be found. Furthermore, the way to combine the state-space algorithms
and the multi-agent modelling approach chosen here is not the only possibility. Other
approaches are already considered.
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After all these enhancements, we hope that the new method will have proven its
strength. The next evolution would consist in extending it to multi-player games. In
this case, teams of agents would face each other. Take the game of Chess as an example.
We could model the game as a war between a white team of agents that collaborate
together to checkmate a special black agent (the black king) and try to protect a special
white agent (the white king). And inversely for the black team. A second example is
the game of Go. Here the goal of the white and black teams of stones would be to
control as many areas of the game as possible.
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Conclusion

In this work we have presented a new modelling method for single-player games. Our
idea has been to model the game as a multi-agent system where the agents are prim-
itive game elements depending on the particular game. We have demonstrated the
method on the game of Sokoban. It is important to note that the multi-agent notion
which has been introduced is only conceptual and that it does not imply multi-agent
programming. Our program is a solver for a single player puzzle. The method that
has been presented requests a central solver to decide the order of the stones to be
solved. This work presents thus solely a new way to view the problem which leads to
new interesting resolution ideas.

We have defined a particular subclass of Sokoban mazes that has been completely
solved by a protocol based on our pure multi-agent representation. It is of course
possible to write an algorithm which determines efficiently if a maze is in the class.
This has not been done here since it was not necessary. Our protocol solves indeed
all the mazes of the subclass but can also solve some out of it. Furthermore, we have
discovered that even when a Sokoban problem is not in this very particular class, it
can often become so after a few moves.

We propose thus a new method. It consists in using a classical state-space algorithm,
but one in which the nodes whose corresponding state of the game are solvable by the
multi-agent modelling approach are defined as success nodes. This means that when the
search reaches such a node, it terminates successfully. The solution is then obtained by
appending the solution path found by the state-space algorithm to the solution found
by the multi-agent modelling approach. Thus, we have not to test if a maze is in the
class, but merely search for a configuration that is solvable by an algorithm based on
a multi-agent representation.

At the time being, our program Talking Stones is not a contribution in the domain of
Sokoban. It solves only 9 mazes of the benchmark whereas the state-of-the-art program
Rolling Stone solves 59. However, the latter is based on the IDA* algorithm with a lot
of really interesting problem-dependent enhancements. These are presented in [10] and
it is well explained why each of them contribute to a substantial decrease of the search-
tree size. On the other hand, the fact that no problem of the benchmark can be solved
with the pure IDA* approach without these enhancements, even with a clever heuristic,
is also demonstrated in [10]. We have not implemented these enhancements yet and
we plan to inject them within our new method in future works. As Rolling stone has
enjoyed tremendous progress by adding them to its initial pure IDA* approach (from
0 mazes solved to 59), we hope to benefit from the same kind of progression.
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Conclusion

This thesis has also given an original presentation of the classical state-space al-
gorithms. Usually, only a high-level description with abstract data types is provided.
Here we have presented all the algorithms with the semi-formal-method proposed in
[4]. The invariants specified in this work have not been taken from the literature. They
have all been reconstructed from the original idea of the algorithm in order to produce
a clear description of the latter and to prove its correctness. This approach has led
to a contribution for the A* algorithm. The practical performances have indeed been
improved for a particular implementation choice of practical interest.
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Talking Stones

;%%%%%%%%%%%%%%%%%%%%
;% I. MAIN FUNCTION %
;%%%%%%%%%%%%%%%%%%%%

;solve-sokoban-maze is a function which takes two arguments:

;- maze-file: file containing a Sokoban maze to solve. The file
;must begin with the horizontal and then the vertical size of the
;board. The other lines represents the content of the different
;lines of the maze. A wall is represented by a ’+’, the man by a
;’@’ if it is not on a goal square and ’&’ otherwise, the stones
;by a ’$’ if they are not on goal squares and ’*’ otherwise, an
;empty goal square is written ’.’ and the empty squares by ’=’ if
;they are inside the maze and else by a ’0’.

;- solution-file: name of the solution file that will be created
;by the function.

;The function has as side effect to create the file solution-file
;containing the list of the man-moves that must be executed for
;solving the maze of maze-file and returns the execution time.

(define solve-sokoban-maze
(lambda (maze-file solution-file)
(let ((file-game-info (make-file-game-info maze-file)))
(let ((wall-vector (car file-game-info))

(man-coord (cadr file-game-info))
(stone-list (caddr file-game-info))
(goal-list (cadddr file-game-info))
(t0 (runtime)))

(let ((solution (talking-stones-iterative-deepening
(make-sokoban-start-coord man-coord stone-list)
(make-sokoban-game-info goal-list wall-vector)
sokoban-successors-func sokoban-talking-stones-func 20000)))

(let ((t1 (runtime)))
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(begin
(write-solution-to-file

(stone-sol-2-man-sol solution man-coord stone-list wall-vector)
solution-file)

(- t1 t0))))))))

;%%%%%%%%%%%%%%%%%%%%%%
;% II. INPUT - OUTPUT %
;%%%%%%%%%%%%%%%%%%%%%%

;-----------------------
; accessors and builders
;-----------------------

;Different vectors for stocking information attached to squares
;of the board will be used. Let us define a common framework for
;them yet. The two first elements of all vectors will be the
;number of columns and the number of rows of the maze and the
;other elements the respective information of the squares of the
;board from left to right and up to down. wall-vector for example
;will have true values if and only if the corresponding square of
;the board is a wall.

(define acc-board-vector-col
(lambda (board-vector)
(vector-ref board-vector 0)))

(define acc-board-vector-row
(lambda (board-vector)
(vector-ref board-vector 1)))

(define acc-board-vector-square
(lambda (board-vector col row)
(vector-ref board-vector
(make-board-vector-index col row (acc-board-vector-col board-vector)))))

(define write-board-vector-square!
(lambda (board-vector square-coord content)
(vector-set! board-vector
(make-board-vector-index

(car square-coord) (cdr square-coord)
(acc-board-vector-col board-vector)) content)))

(define make-board-vector-index
(lambda (col row max-col)
(+ 2 col (* row max-col))))
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;-------------------------
; read and write functions
;-------------------------

;make-file-game-info is a function which takes one argument:
;filename is a file containing the data of the maze. It returns a
;list whose first element is a wall vector (see above), the second
;element the coordinates of the man (man-col . man-row), the third
;element the list of the stone coordinates and the last element
;the list of the goal coordinates.

(define make-file-game-info
(lambda (filename)
(read-game-info (open-input-file filename))))

;read-game-info is a function which takes one argument:
;input-port is an input-port containing the maze data. It returns
;a list whose first element is a wall vector, the second element
;the coordinates of the man (man-col . man-row), the third element
;the list of the stone coordinates and the last element the list
;of the goal coordinates.

(define read-game-info
(lambda (input-port)
(let* ((max-col (read input-port))

(max-row (read input-port))
(length-vector (+ 2 (* max-col max-row))))

(let ((wall-vector (make-vector length-vector)))
(begin

(vector-set! wall-vector 0 max-col)
(vector-set! wall-vector 1 max-row)
(let loop ((index 2)

(man-pos ’())
(stone-list ’())
(goal-list ’()))

(if (= index length-vector)
(list wall-vector man-pos stone-list goal-list)
(begin
(if (= (modulo index max-col) 2) (read-char input-port))
(let ((caract (read-char input-port))

(coordonnees (cons (modulo (- index 2) max-col)
(quotient (- index 2) max-col))))

(begin
(if (eq? caract ’#\+)

(vector-set! wall-vector index #t)
(vector-set! wall-vector index #f))

(cond ((eq? caract ’#\@)
(loop (1+ index) coordonnees stone-list goal-list))
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((eq? caract ’#\&)
(loop (1+ index) coordonnees stone-list

(cons coordonnees goal-list)))
((eq? caract ’#\$)
(loop (1+ index) man-pos

(cons coordonnees stone-list) goal-list))
((eq? caract ’#\g)
(loop (1+ index) man-pos stone-list

(cons coordonnees goal-list)))
((eq? caract ’#\*)
(loop (1+ index) man-pos (cons coordonnees stone-list)

(cons coordonnees goal-list)))
(else (loop (1+ index)

man-pos stone-list goal-list)))))))))))))

;write-solution-to-file creates a file whose name is given as
;second argument and writes the list given as first argument in
;the new created file.

(define write-solution-to-file
(lambda (ls output-file)
(let ((output-port (open-output-file output-file)))
(begin
(write ls output-port)
(close-output-port output-port)))))

;-----------------------------------------------------------------
; transformation of stone-moves solutions into man-moves solutions
;-----------------------------------------------------------------

; stone-sol-2-man-sol is a function which takes 4 arguments.
; - rev-sol is a solution of a Sokoban maze given in the stone-move
; notation and in reverse order (from the final position of the
; game to the initial one)
; - man-coord are the initial coordinates of the man
; - stone-list is the list of the stone coordinates
; - wall-vector is a vector of type board-vector where an element is
; true if and only if the corresponding square is a wall. It returns
; the man-move solution in the correct order.

(define stone-sol-2-man-sol
(lambda (rev-sol man-coord stone-list wall-vector)
(if (null? stone-list)

(stone-sol-2-man-sol-aux (deep-reverse rev-sol) man-coord wall-vector)
(begin
(write-board-vector-square! wall-vector (car stone-list) #t)
(stone-sol-2-man-sol rev-sol man-coord (cdr stone-list) wall-vector)))))
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(define stone-sol-2-man-sol-aux
(lambda (sol man-coord wall-vector)
(cond ((null? sol) ’())

((null? (cdar sol))
(if (null? (cdr sol))

(list man-coord)
(stone-sol-2-man-sol-aux (cdr sol) man-coord wall-vector)))

(else
(let ((stone-coord (caar sol))

(new-stone-coord (cadar sol)))
(let ((stone-col (car stone-coord))

(stone-row (cdr stone-coord))
(new-stone-col (car new-stone-coord))
(new-stone-row (cdr new-stone-coord)))

(let ((push-col (- (* 2 stone-col) new-stone-col))
(push-row (- (* 2 stone-row) new-stone-row)))

(let ((man-path (find-man-path man-coord (cons push-col push-row)
(make-man-path-game-info ’() wall-vector))))

(if (null? man-path) (list wall-vector)
(begin (write-board-vector-square! wall-vector stone-coord #f)

(write-board-vector-square! wall-vector new-stone-coord #t)
(append (stone-sol-2-man-sol-aux (cons (cdar sol) (cdr sol))

stone-coord wall-vector) man-path)))))))))))

;deep-reverse takes a list of lists as argument and returns the
;reversed list where every sublist has also been reversed.

(define deep-reverse
(lambda (ls)
(deep-reverse-aux ls ’())))

(define deep-reverse-aux
(lambda (ls acc)
(if (null? ls) acc

(deep-reverse-aux (cdr ls) (cons (reverse (car ls)) acc)))))

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
; III. Implementation of the A* and the IDA* combined with multi-agent %
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

;***********************************************************
; 3.1. A* implementation (with known maximum nodes amount) *
;***********************************************************

;-----------------------
; accessors and builders
;-----------------------
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; node = ((node-coord . ancestror-number) . (g-value . f-value))

(define acc-node-coord caar)
(define acc-node-ancestror cdar)
(define acc-node-g-value cadr)
(define acc-node-f-value cddr)

(define make-node
(lambda (node-coord ancestror-number g-value f-value)
(cons (cons node-coord ancestror-number) (cons g-value f-value))))

(define same-node-pred
(lambda (node1 node2)
(equal? (acc-node-coord node1) (acc-node-coord node2))))

; list-of-functions = ((g-func . h-func) (goal-node-pred . successor-nodes-func)
; (coord-to-number-func . construct-solution-func))

(define acc-g-func caar)
(define acc-h-func cdar)
(define acc-goal-node-pred caadr)
(define acc-successor-nodes-func cdadr)
(define acc-coord-to-number-func caaddr)
(define acc-construct-solution-func cdaddr)

(define make-list-of-functions
(lambda (g-func h-func goal-node-pred successor-nodes-func coord-to-number-func

construct-solution-func)
(list (cons g-func h-func) (cons goal-node-pred successor-nodes-func)

(cons coord-to-number-func construct-solution-func))))

;----------------------------------------------
; A* implementation with numbering of the nodes
;----------------------------------------------

; a-star is a function which takes 5 arguments:
; - start-coord: coordinates of the starting node
; - goal-coord: coordinates of the target node
; - game-info: fixed game-data
; - list-of-functions: list of the problem-dependent functions
; - max-nodes: maximum number of nodes ;
; This function implements the A* algorithm which finds the
; shortest path between start-coord and a goal-coord (empty list if
; no such path exist), by holding account of the fixed game-data
;(game-info) and the list of the problem-dependent functions
;(list-of-functions).
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(define a-star
(lambda (start-coord goal-coord game-info list-of-functions max-nodes)
(let ((closed-vector (make-vector max-nodes ’())))
(a-star-aux goal-coord

(list (make-node start-coord -1 0
((acc-h-func list-of-functions) start-coord goal-coord)))

closed-vector game-info list-of-functions))))

; a-star-aux is a function which takes 5 arguments:
; - goal-coord: coordinates of the target node
; - open-list: sorted list (f-values) of nodes to expand
; - closed-vector: an element is an empty list if the corresponding node
; was not visited yet and the representation of the node in the other case.
; - game-info: fixed game-data
; - list-of-functions: list of the problem-dependent functions
; This function implements the A* algorithm using open-list and
; closed-vector and by holding account of goal-coord, game-info and
; list-of-functions.

(define a-star-aux
(lambda (goal-coord open-list closed-vector game-info list-of-functions)
(cond ((null? open-list) ’())

(((acc-goal-node-pred list-of-functions) goal-coord
(acc-node-coord (car open-list)))

((acc-construct-solution-func list-of-functions) (car open-list)
closed-vector))

(else
(a-star-aux goal-coord

(update-open-closed goal-coord open-list closed-vector
game-info list-of-functions)

closed-vector game-info list-of-functions)))))

;------------------------------------------------
; functions to update open-list and closed-vector
;------------------------------------------------

; update-open-closed is a function which takes 5 arguments:
; - goal-coord: coordinate of the target node
; - open-list: sorted list (f-values) of nodes to expand ;
; - closed-vector: an element is an empty list if the corresponding node
; was not visited yet and the representation of the node in the other case.
; - game-info: fixed game-data ;
; - list-of-functions: list of the problem-dependent functions

; returns a list new-open-list and has as side effect to modify
; the content of closed-vector. new-open-list is achieved by
; removing the first element of open-list, adding it in
; closed-vector, calculating its successors and for each:
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; * if succ-node is in open-list or closed-vector with a f-value less or
; equal: succ-node is ignored
; * else, the potential old occurences of succ-node are removed from
; open-list and closed-vector and succ-node is inserted in the
; sorted open-list.

(define update-open-closed
(lambda (goal-coord open-list closed-vector game-info list-of-functions)
(let* ((node-current (car open-list))

(node-number ((acc-coord-to-number-func list-of-functions)
(acc-node-coord node-current) game-info))

(successors ((acc-successor-nodes-func list-of-functions) node-current
goal-coord game-info (acc-g-func list-of-functions)

(acc-h-func list-of-functions))))
(begin
(vector-set! closed-vector node-number node-current)
(let loop ((succ-list successors)

(new-open-list (cdr open-list)))
(if (null? succ-list)

new-open-list
(let* ((succ-current (car succ-list))

(succ-number ((acc-coord-to-number-func list-of-functions)
(acc-node-coord succ-current) game-info))

(closed-vector-member (vector-ref closed-vector succ-number)))
(if (and (not (null? closed-vector-member))

(<= (acc-node-f-value closed-vector-member)
(acc-node-f-value succ-current)))

(loop (cdr succ-list) new-open-list)
(let ((updated-open (update-open new-open-list succ-current)))
(if (null? updated-open)

(loop (cdr succ-list) new-open-list)
(begin
(vector-set! closed-vector succ-number ’())
(loop (cdr succ-list) updated-open))))))))))))

; update-open is a function which takes 2 arguments:
; - open-list: sorted list (f-values) of nodes to expand
; - node: a node
; returns a list, that can be:
; * open-list where node has been inserted (preserving the sort), if the node
; is not member of open-list
; * the empty list, if the node is in open-list with a less or equal f-value
; * else, the open-list where node has been inserted (preserving the sort)
; and the old occurence removed.

(define update-open
(lambda (open-list node)
(if (null? open-list)
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(list node)
(let ((first (car open-list)))
(cond ((< (acc-node-f-value node) (acc-node-f-value first))

(cons node (remove-node node open-list)))
((same-node-pred first node) ’())
(else

(let ((rec-open-list (update-open (cdr open-list) node)))
(if (null? rec-open-list)

’()
(cons first rec-open-list)))))))))

; remove-node is a function which takes 2 arguments
; - node: a node ;
; - node-list: a list of nodes
; returns node-list where the potential node with the same coordinates
; as node has been removed.

(define remove-node
(lambda (node node-list)
(cond ((null? node-list) ’())

((same-node-pred node (car node-list)) (cdr node-list))
(else (cons (car node-list) (remove-node node (cdr node-list)))))))

;**********************************************************
;3.2. Implementation of the IDA* combined with multi-agent
;**********************************************************

;-----------------------
; accessors and builders
;-----------------------

; id-node = (id-node-coord . id-node-path)

(define acc-id-node-coord car)
(define acc-id-node-path cdr)

(define make-id-node
(lambda (id-node-coord id-node-path)
(cons id-node-coord id-node-path)))

;-------------------------------------------------- ;
talking-stones-iterative-deepening implementation
;--------------------------------------------------

; talking-stones-iterative-deepening is a function of 5 arguments:
; - start-coord: coord of the start position
; - game-info: fixed game-data
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; - successor-nodes-func: function that returns the list of the successors
; of a node
; - talking-stones-func: function that finds a multi-agent solution to the
; problem if the maze is in the solved sub-class
; - max-nodes: maximum number of nodes that will be generated
; implementation of the iterative deepening algorithm that finds the shortest
; path between start-coord and a node that is solvable by the function
; talking-stones-func by taking account of game-info and successor-nodes-func and
; by limiting the number of visited nodes to max-nodes
;(returns the empty list if it is reached).

(define talking-stones-iterative-deepening
(lambda (start-coord game-info successor-nodes-func

talking-stones-func max-nodes)
(talking-stones-id-aux start-coord (list (make-id-node start-coord ’()))
(list 1) game-info successor-nodes-func talking-stones-func max-nodes 1)))

; talking-stones-id-aux is a function which takes 8 arguments:
; - start-coord: coord of the start position
; - open: list of paths to expand
; - open-elem-sizes: list of the length of the paths of open
; - game-info: fixed game-data
; - successor-nodes-func: function that returns the list of the successors
; of a node
; - talking-stones-func: function that finds a multi-agent solution to
; the problem if the maze is in the solved sub-class
; - max-nodes: maximum number of nodes that will be generated
; - pathlimit: the size of the solution must be known to be at least pathlimit
; implementation of the iterative deepening algorithm that increase
; pathlimit iteratively until a node that is solvable by the
; function talking-stones-func is found.

(define talking-stones-id-aux
(lambda (start-coord open open-elem-sizes game-info successor-nodes-func

talking-stones-func max-nodes path-limit)
(cond ((zero? max-nodes) ’())

((null? open)
(talking-stones-id-aux start-coord (list (list start-coord)) (list 1)

game-info successor-nodes-func talking-stones-func
max-nodes (1+ path-limit)))

(else
(let ((talking-stones-solution

(talking-stones-func (acc-id-node-coord (car open)) game-info)))
(if (equal? talking-stones-solution ’nosolution)

(if (= (car open-elem-sizes) path-limit)
(talking-stones-id-aux start-coord (cdr open)
(cdr open-elem-sizes) game-info successor-nodes-func
talking-stones-func (-1+ max-nodes) path-limit)
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(let ((updated-open (update-open-and-sizes open
open-elem-sizes game-info successor-nodes-func)))

(talking-stones-id-aux start-coord (car updated-open)
(cdr updated-open) game-info successor-nodes-func
talking-stones-func (-1+ max-nodes) path-limit)))

(append-reversefirst talking-stones-solution
(acc-id-node-path (car open)))))))))

;-----------------------------------------------
; function to actualize open and open-elem-sizes
;-----------------------------------------------

;update-open-and-sizes is a function which takes 5 arguments
; - open: list of paths to expand
; - open-elem-sizes: list of the length of the paths of open
; - game-info: fixed game-data
; - successor-nodes-func: function that returns the list of the
; successors of a node
; - pathlimit: the size of the solution must be known to be at least pathlimit
; Returns the new stack achieved by removing the first element and adding the
; children for which the f-value is <= pathlimit.

(define update-open-and-sizes
(lambda (open open-elem-sizes game-info successor-nodes-func)
(let ((successors (successor-nodes-func (car open) game-info)))
(let loop ((succ-list successors)

(new-open (cdr open))
(new-open-elem-sizes (cdr open-elem-sizes)))

(if (null? succ-list)
(cons new-open new-open-elem-sizes)
(loop (cdr succ-list)

(cons (car succ-list) new-open)
(cons (1+ (car open-elem-sizes)) new-open-elem-sizes)))))))

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
; IV. Sokoban specific functions that uses the A* and new IDA* %
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

;************************
;* 4.1. Man-path finder *
;************************

;-----------------------
; accessors and builders
;-----------------------

; man-path-game-info = (stone-list . wall-vector)
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(define acc-man-path-stone-list car)
(define acc-man-path-wall-vector cdr)
(define make-man-path-game-info cons)

;-------------------
; man-path functions
;-------------------

;find-man-path is a function which takes 3 arguments:
; - man-coord: coordinates of the man
; - goal-coord: coordinates of the target
; - man-path-game-info: (stone-list . wall-vector)
; returns the shortest path between man-coord and goal-coord
;(represented by the reverse list of the coordinates of the
;travelling squares, including man-coord and goal-coord) if such
;a path exist, and in the other case the empty list.

(define find-man-path
(lambda (man-coord goal-coord man-path-game-info)
(let ((wall-vector (acc-man-path-wall-vector man-path-game-info)))
(a-star man-coord goal-coord man-path-game-info

(make-list-of-functions man-path-g-func man-path-h-func
man-path-goal-pred man-path-successors

man-path-coord-to-number man-path-construct-solution)
(* (- (acc-board-vector-col wall-vector) 2)

(- (acc-board-vector-row wall-vector) 2))))))

; man-path-g-func
; all arcs have cost 1

(define man-path-g-func 1+)

; man-path-h-func
; manhattan distance

(define man-path-h-func
(lambda (start-coord goal-coord)

(+ (abs (- (car start-coord) (car goal-coord)))
(abs (- (cdr start-coord) (cdr goal-coord))))))

; man-path-goal-pred
; same coordinates

(define man-path-goal-pred equal?)

; man-path-successors is a function which takes 5 arguments:
; - node: a node
; - goal-coord: coordonate of the target node
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; - man-path-game-info: (stone-list . wall-vector)
; - g-func: g function
; - h-func: h function
; returns the list of the successors of node
;(the other parameters are used for constructing them).

(define man-path-successors
(lambda (node goal-coord man-path-game-info g-func h-func)
(append (find-man-successor node goal-coord man-path-game-info

g-func h-func 1 0)
(find-man-successor node goal-coord man-path-game-info

g-func h-func -1 0)
(find-man-successor node goal-coord man-path-game-info

g-func h-func 0 1)
(find-man-successor node goal-coord man-path-game-info

g-func h-func 0 -1))))

; find-man-successor is a function which takes 7 arguments:
; - node: a node
; - goal-coord: coordonate of the target node
; - man-path-game-info: (stone-list . wall-vector)
; - g-func: g function
; - h-func: h function
; - a: an integer
; - b: an integer
; returns a list containing the successor of node for
; which the coordinates are those of node on which the integers a
; and b have been added (if this is a valid successor, empty list else)

(define find-man-successor
(lambda (node goal-coord man-path-game-info g-func h-func a b)
(let ((node-coord (acc-node-coord node))

(stone-list (acc-man-path-stone-list man-path-game-info))
(wall-vector (acc-man-path-wall-vector man-path-game-info)))

(let ((node-col (car node-coord))
(node-row (cdr node-coord)))

(let ((new-col (+ node-col a))
(new-row (+ node-row b)))

(let ((new-node-coord (cons new-col new-row)))
(if (or (acc-board-vector-square wall-vector new-col new-row)

(member new-node-coord stone-list))
’()
(let ((new-node-number (man-path-coord-to-number new-node-coord

man-path-game-info)))
(if (equal? (acc-node-ancestror node) new-node-number)

’()
(let ((g-value (g-func (acc-node-g-value node))))
(list (make-node new-node-coord
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(man-path-coord-to-number node-coord man-path-game-info)
g-value
(+ g-value (h-func new-node-coord goal-coord))))))))))))))

; man-path-coord-to-number is a function which takes 2 arguments:
; - node-coord: coordinates of a node (node-col . node-row)
; - man-path-game-info: fixed game-data
; (including max-col the number of columns of the maze)
; returns the number of the node of coordinates node-coord,
; achieved by the equation (node-col - 1) + (max-col - 2) * (node-row - 1)
; Example: for a maze of size 5 * 4, here is the classification:
; +++++
; +012+
; +345+
; +++++

(define man-path-coord-to-number
(lambda (node-coord man-path-game-info)
(let ((wall-vector (acc-man-path-wall-vector man-path-game-info)))
(+ (- (car node-coord) 1)

(* (- (cdr node-coord) 1) (- (acc-board-vector-col wall-vector) 2))))))

; man-path-construct-solution is a function which takes 2 arguments:
; - final-node: a node
; - closed-vector: a vector of nodes
; returns the reversed solution-path obtained by starting with
; final-node and following with its father found in closed-vector
; until the root node is reached.

(define man-path-construct-solution
(lambda (final-node closed-vector)
(let ((ancestror-number (acc-node-ancestror final-node)))
(if (= ancestror-number -1)

(list (acc-node-coord final-node))
(cons (acc-node-coord final-node)

(man-path-construct-solution
(vector-ref closed-vector ancestror-number)

closed-vector))))))

;**************************
;* 4.2. Stone-path finder *
;**************************

;-----------------------
; accessors and builders
;-----------------------

; stone-path-node-coord = (stone-coord . man-coord)
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(define acc-stone-path-stone-coord car)
(define acc-stone-path-man-coord cdr)
(define make-stone-path-node-coord cons)

; stone-path-game-info = (stone-list . wall-vector)

(define acc-stone-path-stone-list car)
(define acc-stone-path-wall-vector cdr)
(define make-stone-path-game-info cons)

;---------------------
; stone-path functions
;---------------------

;find-stone-path is a function which takes 4 arguments:
; - stone-coord: coordinates of a stone
; - man-coord: coordinates of the man
; - goal-coord: coordinates of the target
; - stone-path-game-info: (stone-list . wall-vector), where stone-list
; is the list of the stones without stone-coord
; returns the shortest path between stone-coord and goal-coord (represented by
; the reverse list of the coordinates of the travelling squares of
; the stone, including stone-coord and goal-coord, without giving
; the man moves) if such a path exist, and the empty list else.

(define find-stone-path
(lambda (stone-coord man-coord goal-coord stone-path-game-info)
(begin
(let ((wall-vector (acc-stone-path-wall-vector stone-path-game-info)))
(a-star (make-stone-path-node-coord stone-coord man-coord) goal-coord

stone-path-game-info
(make-list-of-functions stone-path-g-func stone-path-h-func

stone-path-goal-pred stone-path-successors
stone-path-coord-to-number
stone-path-construct-solution)

(* 4 (- (acc-board-vector-col wall-vector) 2)
(- (acc-board-vector-row wall-vector) 2)))))))

; stone-path-g-func
; all arcs have cost 1

(define stone-path-g-func 1+)

; stone-path-h-func
; manhattan distance between stone and goal
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(define stone-path-h-func
(lambda (node-coord goal-coord)
(let ((stone-coord (acc-stone-path-stone-coord node-coord)))
(+ (abs (- (car stone-coord) (car goal-coord)))

(abs (- (cdr stone-coord) (cdr goal-coord)))))))

; stone-path-goal-pred
; - goal-coord: coordinates of the target
; - node-coord: coordinates of a node
; returns true if and only if the stone-coord of node-coord are
; the same as goal-coord

(define stone-path-goal-pred
(lambda (goal-coord node-coord)
(equal? goal-coord (acc-stone-path-stone-coord node-coord))))

; stone-path-successors is a function which takes 5 arguments:
; - node: a node
; - goal-coord: coordonate of the target node
; - stone-path-game-info: (stone-list . wall-vector), where stone-list
; is the list of the stones without stone-coord
; - g-func: g function
; - h-func: h function
; returns the list of the successors of node.

(define stone-path-successors
(lambda (node goal-coord stone-path-game-info g-func h-func)
(append (find-stone-successor node goal-coord stone-path-game-info

g-func h-func 1 0)
(find-stone-successor node goal-coord stone-path-game-info

g-func h-func -1 0)
(find-stone-successor node goal-coord stone-path-game-info

g-func h-func 0 1)
(find-stone-successor node goal-coord stone-path-game-info

g-func h-func 0 -1))))

; find-stone-successor is a function which takes 7 arguments:
; - node: a node
; - goal-coord: coordonate of the target node
; - stone-path-game-info: (stone-list . wall-vector), where stone-list
; is the list of the stones without stone-coord
; - g-func: g function
; - h-func: h function
; - a: an integer
; - b: an integer
; returns a list containing the successor of node for which the coordinates
; are those of node on which the integers a and b have been added
; (if this is a valid successor, empty list else)
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(define find-stone-successor
(lambda (node goal-coord stone-path-game-info g-func h-func a b)
(let ((node-coord (acc-node-coord node))

(stone-list (acc-stone-path-stone-list stone-path-game-info))
(wall-vector (acc-stone-path-wall-vector stone-path-game-info)))

(let ((stone-coord (acc-stone-path-stone-coord node-coord))
(man-coord (acc-stone-path-man-coord node-coord)))

(let ((stone-col (car stone-coord))
(stone-row (cdr stone-coord)))

(let ((new-stone-col (+ stone-col a))
(new-stone-row (+ stone-row b))
(push-col (- stone-col a))
(push-row (- stone-row b)))

(let ((new-stone-coord (cons new-stone-col new-stone-row))
(push-coord (cons push-col push-row)))

(if (or (acc-board-vector-square wall-vector new-stone-col new-stone-row)
(member new-stone-coord stone-list)
(acc-board-vector-square wall-vector push-col push-row)
(member push-coord stone-list))

’()
(let* ((new-node-coord

(make-stone-path-node-coord new-stone-coord stone-coord))
(new-node-number (stone-path-coord-to-number new-node-coord

stone-path-game-info)))
(if (equal? (acc-node-ancestror node) new-node-number)

’()
(if (null? (find-man-path man-coord push-coord

(make-man-path-game-info (cons stone-coord stone-list)
wall-vector)))

’()
(let ((g-value (g-func (acc-node-g-value node))))
(list (make-node new-node-coord
(stone-path-coord-to-number node-coord stone-path-game-info)
g-value
(+ g-value (h-func new-node-coord goal-coord))))))))))))))))

; stone-path-coord-to-number is a function which takes 2 arguments:
; - node-coord: (stone-coord . man-coord)
; - stone-path-game-info: fixed game-data
; (including max-col the number of columns of the maze)
; returns the number of the node of coordinates node-coord, achieved by
; the equation: 4 * [(stone-col - 1) + (max-col - 2) * (stone-row - 1)]
; + (1, 2, 3 or 4 depending on the man-position, resp. up, down, left and right
; from the stone). Notice: the first node is the only one for which the man
; is not for sure next to the stone, this node is labelled 0.
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(define stone-path-coord-to-number
(lambda (node-coord stone-path-game-info)
(let ((stone-coord (acc-stone-path-stone-coord node-coord))

(man-coord (acc-stone-path-man-coord node-coord))
(wall-vector (acc-stone-path-wall-vector stone-path-game-info)))

(let ((stone-col (car stone-coord))
(stone-row (cdr stone-coord))
(man-col (car man-coord))
(man-row (cdr man-coord)))

(let ((n (* 4 (+ (- stone-col 1)
(* (- stone-row 1) (- (acc-board-vector-col wall-vector) 2))))))

(cond ((and (= stone-col man-col) (= stone-row (1+ man-row))) (+ 1 n))
((and (= stone-col man-col) (= (1+ stone-row) man-row)) (+ 2 n))
((and (= stone-row man-row) (= stone-col (1+ man-col))) (+ 3 n))
((and (= stone-row man-row) (= (1+ stone-col) man-col)) (+ 4 n))
(else 0)))))))

; stone-path-construct-solution is a function which takes 2 arguments:
; - final-node: a node
; - closed-vector: a vector of nodes
; returns the reversed solution-path obtained by starting with
; final-node and following with its father found in closed-vector
; until the root node is reached.

(define stone-path-construct-solution
(lambda (final-node closed-vector)
(let ((ancestror-number (acc-node-ancestror final-node)))
(if (= ancestror-number -1)

(list (acc-stone-path-stone-coord (acc-node-coord final-node)))
(cons (acc-stone-path-stone-coord (acc-node-coord final-node))

(stone-path-construct-solution
(vector-ref closed-vector ancestror-number) closed-vector))))))

;********************************
;* 4.3. Sokoban-solution-finder *
;********************************

;-----------------------
; accessors and builders
;-----------------------

; start-coord = (man-coord . stone-list)

(define acc-sokoban-man-coord car)
(define acc-sokoban-stone-list cdr)
(define make-sokoban-start-coord cons)
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; sokoban-game-info = (goal-list . wall-vector)

(define acc-sokoban-goal-list car)
(define acc-sokoban-wall-vector cdr)
(define make-sokoban-game-info cons)

;---------------------
; list of id functions
;---------------------

; sokoban-successors-func
; - node: a node
; - sokoban-game-info: (goal-list . wall-vector)
; returns the list of the successors of node.

(define sokoban-successors-func
(lambda (node sokoban-game-info)
(let ((node-coord (acc-id-node-coord node))

(wall-vector (acc-sokoban-wall-vector sokoban-game-info)))
(let ((man-coord (acc-sokoban-man-coord node-coord))

(stone-list (acc-sokoban-stone-list node-coord)))
(let ((ind-zone-vector

(find-independent-zone man-coord stone-list wall-vector)))
(let loop ((current-list stone-list)

(current-successors ’()))
(if (null? current-list)

current-successors
(let ((stone-moves (find-stone-moves (car current-list)

stone-list wall-vector ind-zone-vector)))
(if (null? stone-moves)

(loop (cdr current-list) current-successors)
(loop (cdr current-list)

(append (make-new-successors node stone-moves)
current-successors)))))))))))

; make-new-successors
; - node: a node
; - stone-moves: a list of the possible moves of one of the stones of stone-list
; (coord-stone (arr1 arr2 ...))
; returns the list of all the new possible successors
; (new-man-coord . new-stone-list)

(define make-new-successors
(lambda (node stone-moves)
(let ((stone-coord (car stone-moves))

(arrival-list (cdr stone-moves)))
(let* ((node-coord (acc-id-node-coord node))

(stone-list (acc-sokoban-stone-list node-coord))
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(cutted-stone-list (erase-one stone-list stone-coord)))
(let loop ((arrival-squares arrival-list)

(successors-list ’()))
(if (null? arrival-squares)

successors-list
(loop (cdr arrival-squares)

(cons (make-id-node (cons stone-coord
(cons (car arrival-squares)

cutted-stone-list))
(cons-sokoban-solution stone-coord

(car arrival-squares)
(acc-id-node-path node)))

successors-list))))))))

; cons-sokoban-solution is a function which takes 3 arguments:
; - stone-coord: coordinates of a stone
; - arr-coord: arrival coordinates of this stone
; - prev-path: solution path (list of non-empty lists of stone-moves)
; add the stone move between stone-coord and arr-coord to prev-path.
; If prev-path is empty or starts with a stone move of another stone than
; stone-coord, a new deplacement is initiated with stone-coord, else the move
; is added to the current movement list of stone-coord.

(define cons-sokoban-solution
(lambda (stone-coord arr-coord prev-path)

(cond ((null? prev-path) (list (list arr-coord stone-coord)))
((equal? (caar prev-path) stone-coord)
(cons (cons arr-coord (car prev-path)) (cdr prev-path)))

(else (cons (list arr-coord stone-coord) prev-path)))))

; sokoban-talking-stones-func is a function of 2 arguments:
; - start-coord: (man-coord . stone-list)
; - sokoban-game-info: (goal-list . wall-vector)
; returns a talking-stones solution of the problem
; (the constant ’nosolution if no solution exist)

(define sokoban-talking-stones-func
(lambda (start-coord sokoban-game-info)
(let ((man-coord (acc-sokoban-man-coord start-coord))

(stone-list (acc-sokoban-stone-list start-coord))
(goal-list (acc-sokoban-goal-list sokoban-game-info))
(wall-vector (acc-sokoban-wall-vector sokoban-game-info)))

(sokoban-talking-stones-aux man-coord stone-list goal-list wall-vector))))

; sokoban-talking-stones-aux is a function of 4 arguments:
; - man-coord: coordinates of the man
; - stone-list: list of the stone coordinates
; - goal-list: list of the goal coordinates
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; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; returns a talking-stones solution of the problem
;(the constant ’nosolution if no solution exist)

(define sokoban-talking-stones-aux
(lambda (man-coord stone-list goal-list wall-vector)
(if (null? goal-list)

’()
(let ((first-goal (find-first-goal goal-list wall-vector))

(ind-zone-vector (find-independent-zone man-coord
stone-list wall-vector)))

(let ((possible-moves (find-movable-stones stone-list stone-list
wall-vector ind-zone-vector)))

(if (null? possible-moves) ’nosolution
(let loop ((movable-stones possible-moves))
(if (null? movable-stones) ’nosolution

(let* ((first-stone (caar movable-stones))
(first-stone-path (find-stone-path first-stone
man-coord first-goal

(make-sokoban-game-info (erase-one stone-list first-stone)
wall-vector))))

(if (null? first-stone-path)
(loop (cdr movable-stones))
(let ((new-stone-list (erase-one stone-list first-stone))

(new-goal-list (erase-one goal-list first-goal))
(new-man-coord (if (null? (cdr first-stone-path))

man-coord (cadr first-stone-path))))
(begin
(write-board-vector-square! wall-vector first-goal #t)
(let ((rec-solution (sokoban-talking-stones-aux

new-man-coord new-stone-list
new-goal-list wall-vector)))

(begin
(write-board-vector-square! wall-vector first-goal #f)
(if (equal? rec-solution ’nosolution)

’nosolution
(cons first-stone-path rec-solution))))))))))))))))

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
;% V. Sokoban useful functions %
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

;********************************
;* 5.1. Independant zone finder *
;********************************
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; find-independent-zone is a function which takes 3 arguments:
; - start-square: the coordinates of a square
; - stone-list: list of the stone coordinates
; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; returns a vector of the same size as wall-vector. The two first elements are
; the same and the others are true if the man can reach the corresponding
; square and false else.

(define find-independent-zone
(lambda (start-square stone-list wall-vector)
(let ((ind-zone-vector (make-vector (+ 2 (* (acc-board-vector-col wall-vector)

(acc-board-vector-row wall-vector))) #f)))
(begin
(vector-set! ind-zone-vector 0 (acc-board-vector-col wall-vector))
(vector-set! ind-zone-vector 1 (acc-board-vector-row wall-vector))
(depth-first-zone-search start-square stone-list

wall-vector ind-zone-vector)))))

; depth-first-zone-search is a function which takes 4 arguments:
; - start-square: the coordinates of a square
; - stone-list: list of the stone coordinates
; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; - ind-zone-vector: a vector of the same size as wall-vector.
; The two first elements are the same and the others are boolean values
; (true only for reachable squares from start-square but not necessary for all).
; returns ind-zone-vector where the reachable squares from
; start-square are ALL represented by true.

(define depth-first-zone-search
(lambda (start-square stone-list wall-vector ind-zone-vector)
(let ((successors (find-successor-squares start-square stone-list

wall-vector ind-zone-vector)))
(begin
(write-board-vector-square! ind-zone-vector start-square #t)
(let loop ((succ-list successors))
(if (not (null? succ-list))

(begin
(write-board-vector-square! ind-zone-vector (car succ-list) #t)
(loop (cdr succ-list)))

(let loop2 ((succ-list2 successors))
(if (null? succ-list2)

ind-zone-vector
(begin
(depth-first-zone-search (car succ-list2) stone-list

wall-vector ind-zone-vector)
(loop2 (cdr succ-list2)))))))))))
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; find-successor-squares is a function which takes 4 arguments:
; - start-square: the coordinates of a square
; - stone-list: list of the stone coordinates
; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; - ind-zone-vector: a vector of the same size as wall-vector.
; The two first elements are the same and the others are boolean values
; (true only for reachable squares from start-square but not necessary for all).
; returns the list of the coordinates of the adjacent squares to
; start-square that are nor stones neither walls and for which the
; content of ind-zone-vector is #f.

(define find-successor-squares
(lambda (start-square stone-list wall-vector ind-zone-vector)
(append (find-successor-square start-square stone-list

wall-vector ind-zone-vector 1 0)
(find-successor-square start-square stone-list

wall-vector ind-zone-vector -1 0)
(find-successor-square start-square stone-list

wall-vector ind-zone-vector 0 1)
(find-successor-square start-square stone-list

wall-vector ind-zone-vector 0 -1))))

; find-successor-square is a function which takes 6 arguments:
; - start-square: the coordinates of a square
; - stone-list: list of the stone coordinates

; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; - ind-zone-vector: a vector of the same size as wall-vector.
; The two first elements are the same and the others are boolean values
; (true only for reachable squares from start-square but not necessary for all).
; - a: an integer
; - b: an integer
; returns the empty list if the square of coordinates ((start-square-col + a) .
;(start-quare-row + b)) is a wall, a stone or is already visited
;(i.e. ind-zone-vector contains #t), and else a list containing
;the index of this square.

(define find-successor-square
(lambda (start-square stone-list wall-vector ind-zone-vector a b)
(let ((square-col (car start-square))

(square-row (cdr start-square))
(max-col (acc-board-vector-col wall-vector))
(max-row (acc-board-vector-row wall-vector)))

(let* ((new-col (+ square-col a))
(new-row (+ square-row b))
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(new-coord (cons new-col new-row)))
(if (or (>= new-col max-col)

(< new-col 0)
(>= new-row max-row)
(< new-row 0)
(acc-board-vector-square ind-zone-vector new-col new-row)
(acc-board-vector-square wall-vector new-col new-row)
(member new-coord stone-list))

’()
(list new-coord))))))

;******************************
;* 5.2. Movable stones finder *
;******************************

; find-movable-stones is a function which takes 4 arguments:
; - stone-tested: list of stones for which the movability is tested
; - stone-list: list of coordinates of all the stones of the game.
; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; - ind-zone-vector: a vector of the same size as wall-vector.
; The two first elements are the same and the others are boolean values
; (true only for reachable squares from start-square but not necessary for all).
; returns the list of all the possible stone-moves from stones of
; stone-tested: ((stone1-coord . (arr1-1-coord ... arr1-n-coord))
;(stone2-coord . (arr2-1-coord ... arr2-n-coord)) ...)
; where stonei-coord is the coordinate of the movable stone and
;(arri-1-coord ... arri-n-coord) the non-empty list of the
;coordinates of the possible arrival squares.

(define find-movable-stones
(lambda (stone-tested stone-list wall-vector ind-zone-vector)
(if (null? stone-tested)

’()
(let ((first-stone-moves (find-stone-moves (car stone-tested)

stone-list wall-vector ind-zone-vector)))
(if (null? first-stone-moves)

(find-movable-stones (cdr stone-tested) stone-list
wall-vector ind-zone-vector)

(cons first-stone-moves (find-movable-stones (cdr stone-tested)
stone-list wall-vector ind-zone-vector)))))))

; find-stone-moves is a function of 4 arguments:
; - stone-coord: coordinates of a stone
; - stone-list: list of coordinates of all the stones of the game.
; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; - ind-zone-vector: a vector of the same size as wall-vector.
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; The two first elements are the same and the others are boolean values
; (true only for reachable squares from start-square but not necessary for all).
; returns an empty list if the stone stone-coord is not movable and
; (stone-coord . (arr-1-coord ... arr-n-coord)) else.

(define find-stone-moves
(lambda (stone-coord stone-list wall-vector ind-zone-vector)
(let ((stone-col (car stone-coord))

(stone-row (cdr stone-coord))
(max-col (acc-board-vector-col ind-zone-vector)))

(let ((left-col (-1+ stone-col))
(right-col (1+ stone-col))
(up-row (-1+ stone-row))
(down-row (1+ stone-row)))

(let ((left-square-nr (make-board-vector-index left-col stone-row max-col))
(right-square-nr (make-board-vector-index right-col stone-row max-col))
(up-square-nr (make-board-vector-index stone-col up-row max-col))
(down-square-nr (make-board-vector-index stone-col down-row max-col)))

(let ((arrival-list (append (find-stone-move (cons left-col stone-row)
(vector-ref ind-zone-vector right-square-nr)
(vector-ref wall-vector left-square-nr)
(member (cons left-col stone-row) stone-list))

(find-stone-move (cons right-col stone-row)
(vector-ref ind-zone-vector left-square-nr)
(vector-ref wall-vector right-square-nr)
(member (cons right-col stone-row) stone-list))

(find-stone-move (cons stone-col up-row)
(vector-ref ind-zone-vector down-square-nr)
(vector-ref wall-vector up-square-nr)
(member (cons stone-col up-row) stone-list))

(find-stone-move (cons stone-col down-row)
(vector-ref ind-zone-vector up-square-nr)
(vector-ref wall-vector down-square-nr)
(member (cons stone-col down-row) stone-list)))))

(if (null? arrival-list)
’()
(cons stone-coord arrival-list))))))))

; find-stone-move is a function of 4 arguments:
; - square-coord: coordinates of a square adjacent to a stone
; - square-acc: true if and only if the man can reach the square
; at the opposite of square-coord and adjacent to the same stone.
; - wall-present: true if square-coord is a wall
; - stone-present: true if square-coord is a stone
; returns the list (square-coord) if square-acc is true and arr-square-content is
; free, else the empty list.
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(define find-stone-move
(lambda (square-coord square-acc wall-present stone-present)
(if (or (not square-acc) wall-present stone-present)

’()
(list square-coord))))

;**************************
;* 5.3. First goal finder *
;**************************

; find-first-goal is a function which takes 2 arguments:
; - goal-list: non-empty goal list
; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; let’s call w-nbr-i the number of walls adjacent to the ith goal
; of goal-list. The function returns the goal for which w-nbr-i is
; maximum (knowing that it cannot be greater than 3). If several
; goals are maximum, the first one is returned.

(define find-first-goal
(lambda (goal-list wall-vector)
(let* ((first-goal (car goal-list))

(w-nbr-i (find-wall-number first-goal wall-vector)))
(if (= w-nbr-i 3) first-goal

(find-first-goal-aux (cdr goal-list) wall-vector
(cons first-goal w-nbr-i))))))

(define find-first-goal-aux
(lambda (goal-list wall-vector current-best)
(if (null? goal-list) (car current-best)
(let* ((first-goal (car goal-list))

(w-nbr-i (find-wall-number first-goal wall-vector)))
(cond ((= w-nbr-i 3) first-goal)

((> w-nbr-i (cdr current-best))
(find-first-goal-aux (cdr goal-list) wall-vector

(cons first-goal w-nbr-i)))
(else (find-first-goal-aux (cdr goal-list) wall-vector

current-best)))))))

; find-wall-number is a function of 2 arguments:
; - square-coord: coordinates of a square
; - wall-vector: vector of type board-vector, where an element is true
; if and only if the corresponding square is a wall
; returns the number of walls adjacent to square-coord.

(define find-wall-number
(lambda (square-coord wall-vector)
(let ((square-col (car square-coord)) (square-row (cdr square-coord)))
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(+ (if (acc-board-vector-square wall-vector
(1+ square-col) square-row) 1 0)

(if (acc-board-vector-square wall-vector
(-1+ square-col) square-row) 1 0)

(if (acc-board-vector-square wall-vector square-col
(1+ square-row)) 1 0)

(if (acc-board-vector-square wall-vector square-col
(-1+ square-row)) 1 0)))))

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
;% VI. Other useful functions %
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

; erase-one returns the list passed as first argument where the
; element passed as second element has been removed.

(define erase-one
(lambda (ls elem)
(if (equal? (car ls) elem)

(cdr ls)
(cons (car ls) (erase-one (cdr ls) elem)))))

; append-reversefirst returns the concatenation of the reverse of
; the list passed as first argument with the list passed as second argument.

(define append-reversefirst
(lambda (l1 l2)
(if (null? l1) l2

(append-reversefirst (cdr l1) (cons (car l1) l2)))))
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