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Abstract

Artificial intelligence (AI) research has developed an extensive collection of methods to solve
state-space problems. Using the challenging domain of Sokoban, this paper studies the effect of
general search enhancements on program performance. We show that the current state of the art in
AI generally requires a large research and programming effort to use domain-dependent knowledge
to solve even moderately complex problems in such difficult domains. The application of domain-
specific knowledge to exploit properties of the search space can result in large reductions in the
size of the search tree, often several orders of magnitude per search enhancement. This application-
specific knowledge is discovered and applied using application-independent search enhancements.
Understanding the effect of these enhancements on the search leads to a new taxonomy of search
enhancements, and a new framework for developing single-agent search applications. This is used to
illustrate the large gap between what is portrayed in the literature versus what is needed in practice.
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1. Introduction

The AI research community has developed an impressive suite of techniques for solving
state-space problems. These techniques range from general-purpose domain-independent
methods such as A*, to enhancements using domain-specific knowledge. There is a
strong movement toward developing domain-independent methods to solve problems.
While these approaches require minimal effort to specify a problem to be solved, the
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performance of these solvers is often limited, exceeding available resources on even simple
problem instances. This requires the development of domain-dependent methods that
exploit additional knowledge about the search space. These methods can greatly improve
the efficiency of a search-based program, as measured by the size of the search tree needed
to solve a problem instance.

This paper presents a study on solving challenging single-agent search problems for
the domain of Sokoban. Sokoban is a one-player puzzle and is of general interest as an
instance of robot motion planning problems [4]. Sokoban is analogous to the problem of
having a robot in a warehouse move specified goods from their current location to their
final destination, subject to the topology of the warehouse and any obstacles in the way.
Sokoban has been shown to be NP-hard and PSPACE-complete [2,4].

Previously, we reported on our attempts to solve Sokoban problems using the standard
single-agent search techniques available in the literature [10]. When these proved
inadequate, solving only 10 problems of a 90-problem test suite, new algorithms had to
be developed to improve search efficiency [8,9,11,12]. This allowed 47 problems to be
solved optimally or near-optimally. Additional efforts have since increased this number to
57. The results reported here document the large gains achieved by adding application-
dependent knowledge to our program, Rolling Stone. Many of the search enhancements
added to Rolling Stone result in the search-tree size being reduced by several orders of
magnitude.

Analyzing all the additions made to the Sokoban solver reveals that the most
valuable enhancements are based on search (both on-line and off-line). We classify the
search enhancements along several dimensions including generality, computational model,
completeness and admissibility. Not surprisingly, the more specific an enhancement is, the
greater its impact on search performance.

When presented in the literature, single-agent search (usually IDA*) consists of a
few lines of code. Most textbooks do not discuss search enhancements, other than cycle
detection. In reality, non-trivial single-agent search problems require much more extensive
programming (and often research) effort. For example, achieving high performance
for solving sliding tile puzzles requires enhancements such as cycle detection, pattern
databases, move ordering and enhanced lower-bound calculations [3]. In this paper, we
outline a new framework for developing high-performance single-agent search programs.

This paper contains the following contributions:
(1) A case study showing the evolution of a Sokoban solver’s performance, beginning

with a domain-independent solver and ending with a highly-tuned, application-
dependent program.

(2) Pattern searches are a new proof procedure for improving a lower bound. They
attempt to show that the lower bound for part of a state configuration can be
increased.

(3) Relevance cuts are a new way to add locality to a global search.
(4) A taxonomy of single-agent search enhancements.
(5) A new framework for single-agent search, including search enhancements and their

control functions.
In this paper, the term domain-dependent refers to knowledge about the (Sokoban)

search space that is used by a search enhancement. The search enhancements discussed
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are otherwise generally applicable to application domains that have the necessary search-
space prerequisites (e.g., directed versus undirected graphs, or tree- versus graph-structure
of the search space). Many of the techniques described in this paper have been successfully
applied to other single-agent search domains (as well as for other classes of search
problems). Some of the techniques that were initially conceived for Sokoban (such as
pattern searches) have been used in other domains (the 15-puzzle and Bricks).

2. Sokoban

Fig. 1 shows a sample Sokoban problem, the first and easiest of a 90 problem test suite
available at http://xsokoban.lcs.mit.edu/xsokoban.html. The goal is simple: use the man
to push (but not pull) all the stones in the maze to the shaded goal squares, abiding by the
wall constraints. Only one stone can be pushed at a time. These rather simple rules belie the
difficulty of Sokoban problems, especially with respect to computer solutions. The rules of
Sokoban give rise to beautiful problems that can be extraordinarily complex.

To refer to squares in a Sokoban problem, we use a coordinate notation. The horizontal
axis is labeled from “A” to “T”, and the vertical axis from “a” to “t” (assuming the
maximum sized 20 × 20 problem), starting in the upper left corner. A move consists of
pushing a stone from one square to another. For example, in Fig. 1 the move Fh-Eh moves
the stone on Fh left one square. We use Fh-Eh-Dh to indicate a sequence of pushes of the
same stone. A move, of course, is only legal if there is a valid path by which the man can
move behind the stone and push it. Thus, although we only indicate stone moves (such
as Fh-Eh), implicit in this is the man’s moves from its current position to the appropriate
square to do the push (for Fh-Eh the man would have to move from Li to Gh via the squares
Lh, Kh, Jh, Ih and Hh).

Throughout this paper, only a limited number of the strategic principles intrinsic to
Sokoban will be mentioned. The full depth of Sokoban can only be appreciated by a more

Fig. 1. Sokoban problem 1 with one solution.
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Table 1
Search-space properties of different domains

Property Specifics 24-Puzzle Rubik’s Cube Sokoban

Branching factor Average 2.37 13.35 12

Range 1–3 12–15 0–136

Solution length Average 100+ 18 260

Range 1-unknown 1–20 97–674

Search-space size Upper bound 1025 1019 1098

Calculation of Full O(n) O(n) O(n3)

lower bound Incremental O(1) O(1) O(n2)

Underlying graph Undirected Undirected Directed

direct encounter with the game. Nevertheless, we want to mention briefly the challenge of
deadlock positions resulting from the restriction of being able to push only one stone at a
time. In the simplest case the man could push a stone into a corner, effectively immobilizing
it on a non-goal square. Since all stones need to be pushed to a goal, any such fixed
stone renders the problem unsolvable. We will call these and similarly unsolvable positions
deadlocked.

In this paper we attempt to optimally solve Sokoban problems. One definition of optimal
is to minimize the number of stone pushes in the solution. Another definition is to minimize
the number of man movements. It is uncommon for a single solution to achieve both goals.
In this work, optimality is defined as the minimal number of stone pushes. 1

There are several properties that make Sokoban a challenging domain [10]:
• The combination of long solution lengths (from 97 to 674 stone pushes in the test

set) and potentially large branching factors (up to 136) make Sokoban difficult for
conventional search algorithms to solve. The size of the search space for 20 × 20
Sokoban mazes has been estimated at 1098 [7].

• Sokoban solutions are inherently sequential; only limited parts of a solution
are interchangeable. Subgoals are often interrelated and thus cannot be solved
independently. Attempts to decompose problems are also ineffective. For example,
removing a single stone from a problem may make it trivial to solve, offering no
insights as to how to solve the original problem.

• A simple and effective lower bound on the solution length of a Sokoban problem
remains elusive. The best lower-bound estimator is expensive to calculate, and is often
ineffective.

• The underlying structure of Sokoban can be represented by a directed graph, meaning
that some moves are not reversible. Consequently, there are deadlock states from
which no solution can be reached.

Sokoban exhibits a large number of difficult search-space properties. Traditional
domains for the scientific investigation of search methods, such as N×N -puzzles and

1 Optimizing man movements may be harder in practice because of the difficulty in finding a good lower-bound
function.
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Fig. 2. Two trivial Sokoban problems.

Rubik’s Cube, are usually “easier” with respect to at least one search-space property.
Table 1 compares several search-space properties of the above mentioned domains. It is
unclear whether the conclusions obtained from these simpler domains will be effective for
difficult search domains such as Sokoban, much less “real-world" problems.

3. Application-independent techniques

Ideally, we would like applications to be specified with minimal effort, and a “generic”
solver could be used to compute the solutions. In small domains this is attainable (e.g.,
by exhaustive enumeration). For more challenging domains, there have been a number of
interesting attempts at domain-independent solvers (e.g., Blackbox [13]). Before investing
a lot of effort in developing a Sokoban-specific program, it is important to understand the
capabilities of current AI tools. The comparison reveals a large disparity between what
application-independent and application-dependent problem solvers can achieve.

The Sokoban problems in Fig. 2 were given to Blackbox to solve. Blackbox was a winner
in the AIPS’98 fastest planner competition. The first problem, containing a single stone,
was solved by Blackbox 3.3 in a few seconds. The second problem, containing two stones,
requires 90 seconds to solve. Note that the search space (considering only the stones, not
the man) is (43 choose 2) = 903 positions. In contrast, the non-trivial six-stone position
shown in Fig. 1 can be solved in less than a second by Rolling Stone. The search space is
(52 choose 6) = 293,162,688,000.

Clearly, generalized planners, like Blackbox, have a long way to go if they are to
solve even the simplest problem in the test suite (Fig. 1). Domain-independent solvers are
currently unable to automatically identify the knowledge needed to traverse large search
spaces efficiently. Hence, for Sokoban we have no choice but to pursue using application-
dependent knowledge in our implementation.

4. Application-dependent techniques

Iterative deepening A* (IDA*) was the basis for our Sokoban implementation [10]. We
gave the algorithm a fixed node limit of 20 million nodes for all experiments (varying from
1 to 3 hours of CPU time on a single 195 MHz processor of an SGI Origin 2000). Over a
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period of 3 years, numerous enhancements were made to the basic IDA* algorithm. After
each enhancement was added, the program’s performance was assessed by running Rolling
Stone on the 90-problem test suite to find out how many problems could be solved, and how
much search effort was required to do so. Detailed results of the following experiments
can be found in Tables 2 and 3. Starting with the basic IDA* and a simple lower-bound
estimator, each version of the program (labeled from R0 to R10, ordered chronologically)
adds one enhancement.

Although this section is called “application-dependent techniques”, in reality all
the techniques can be described in an application-independent way. However, their
effectiveness depends on domain-specific knowledge.

The following sections describe each of the enhancements in Rolling Stone. For well-
known ideas, only a brief description is given here. Full details are provided in the
Appendices.

4.1. Simple lower bound (0 problems solved)

IDA* with a simple lower bound has no hope of finding a solution to any of the problems
in our test suite. An obvious lower bound is the distance of each stone to its closest goal,
a Manhattan distance for Sokoban. However, the gap between the lower-bound value and
the actual solution length for any non-trivial problem is so large that the number of IDA*
iterations, and thus their respective tree sizes, make solving these problems effectively
impossible. Improving the lower bound is the key to better performance. Application-
dependent knowledge is needed to produce the best possible bound.

4.2. Minimum matching lower bound (R0, 0 solved)

To obtain a better admissible estimate for the distance of a position to a goal, a minimum-
cost, perfect bipartite matching algorithm is used. The matching assigns each stone to a
goal and returns the total (minimum) distance of all stones to their goals. The minimum
cost augmentation algorithm is O(N3), where N is the number of stones [18]. During
the search the lower bound only needs to be updated, which requires finding negative-
cost cycles [14], and is less expensive to compute. Other optimizations are possible and
reduce the computational cost. Nevertheless, maintaining the lower bound dominates the
execution time of our program. More details can be found in Appendix A.1.

For the test suite, minimum matching improves the simple lower bound by an average
of 30 pushes. Given that minimum matching preserves the solution parity, 2 this represents
a decrease of 15 iterations for the IDA* search. The heuristic branching factor for Sokoban
is more than 10, so this represents a decrease in the size of the search tree by a factor in
excess of 1015! Nevertheless, IDA* with minimum matching alone cannot solve any of the
test problems within the 20 million node search limit. The search limit was increased to

2 If the minimum-matching function returns an odd (even) number, then the correct solution length will also
be odd (even). This can easily be verified by imposing a checker-board coloring of the squares and realizing
that pushing a stone between differently colored squares requires an odd number of pushes, otherwise even.
Furthermore, the difference in the number of black/white stones and goals determines the odd- or evenness of the
solution length, regardless of stone-goal assignments and detours necessary because of stone interdependencies.
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Table 2
Adding enhancements (I)

# R1 = R0 + R2 = R1 + R3 = R2 + R4 = R3 + R5 = R4 + R6 = R5 +
Transposition table Move ordering Deadlock tables Tunnel macros Goal macros Goal cuts

IDA* nodes IDA* nodes IDA* nodes IDA* nodes IDA* nodes IDA* nodes

1 41,640 319 261 223 53 53
2 > 20,000,000 > 20,000,000 640,680 620,030 2,176 316

3 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 29,148 2,493

4 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 597 597
5 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 1,275,146

6 10,214,381 12,061,182 10,294,734 10,107,621 4,546 283

7 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 126,023 48,209

8 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
9 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 659,972

10 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

11 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

12 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
17 > 20,000,000 > 20,000,000 > 20,000,000 10,672,805 120,747 11,910

19 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

21 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,643,971

23 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
25 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

26 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

30 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

33 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
34 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

36 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

38 2,311,000 2,500,678 460,089 415,485 33,812 19,083
40 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

43 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,369

45 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

49 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 8,895,883 5,189,494
51 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 390,690 80,504

53 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

54 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

55 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 333 144
56 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

57 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

58 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

59 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
60 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

61 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

62 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,337

63 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
64 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

65 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 604

67 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

68 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
70 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

71 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

72 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
73 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

75 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

76 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000

77 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000
78 66,309 2,555 1,408 871 480 465

79 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 156,203 5,964

80 6,500,890 > 20,000,000 > 20,000,000 > 20,000,000 115,574 114,930

81 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 853,607 221,690
82 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 971,093 99,236

83 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 31,096 20,847

84 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 354,295

>1,059,134,220 >1,074,564,734 >1,051,397,172 >1,041,817,035 >811,732,061 >684,840,912
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Table 3
Adding enhancements (II)

# R7 = R6 + Pattern search R8 = R7 + Relevance cuts R9 = R8 + Overestimation R10 = R9 + Rapid restart

IDA* nodes Total nodes IDA* nodes Total nodes IDA* nodes Total nodes IDA* nodes Total nodes

1 50 1,042 50 1,042 55 1,267 55 1,267

2 82 7,532 80 7,530 80 7,530 80 7,530

3 94 13,445 87 12,902 94 14,095 94 14,095
4 187 50,369 187 50,369 187 50,369 187 50,369

5 436 59,249 202 43,298 153 33,755 239 35,974

6 85 5,119 84 5,118 84 5,503 84 5,503

7 1,704 28,561 1,392 28,460 338 14,832 237 15,790
8 317 339,255 291 311,609 315 409,714 315 409,714

9 704 168,412 1,884 435,388 1,591 385,084 1,734 407,103

10 1,909 1,480,115 1,810 1,713,429 2,920 2,539,524 25,034 19,967,875

11 14,048 4,691,929 5,679 2,994,297 4,058 2,527,286 3,902 2,331,950
12 162,129 4,373,802 4,912 559,184 951 372,264 951 372,264

17 2,473 30,111 2,038 29,116 2,158 30,242 2,336 33,901

19 59,433 > 20,000,000 16,606 7,269,595 14,178 6,631,475 12,801 6,089,182

21 1,853 154,593 1,177 179,734 573 113,042 1,774 258,852
23 87,744 > 20,000,000 59,498 > 20,000,000 23,337 6,555,398 23,679 7,082,584

25 1,239 553,900 21,536 5,784,086 683 366,035 1,231 592,585

26 2,606,167 > 20,000,000 2,125,116 > 20,000,000 380 122,997 496 126,379
30 14,297 > 20,000,000 14,124 > 20,000,000 27,731 17,795,114 3,595 3,467,260

33 5,035 866,085 2,765 586,684 604 283,926 1,865 551,406

34 542 298,674 11,431 1,981,993 9,746 749,787 731 442,025

36 78,325 > 20,000,000 23,467 > 20,000,000 18,338 12,150,606 10,196 5,785,290
38 2,539 51,276 7,011 154,969 10,473 160,176 2,340 56,563

40 41,131 > 20,000,000 23,274 17,004,253 16,725 10,086,547 19,125 11,505,836

43 5,308 690,426 1,729 421,483 2,225 535,148 2,332 523,907

45 1,685 508,124 339 181,566 602 404,217 588 410,134
49 375,293 1,670,236 53,113 327,643 441,638 3,486,905 136,700 1,168,194

51 137 8,825 256 21,491 256 21,491 306 29,569

53 159 22,310 157 22,308 157 22,308 157 22,308

54 106,663 910,532 163,757 2,031,577 269 45,332 872 66,306
55 97 2,993 97 2,993 97 2,993 97 2,993

56 353 57,785 377 61,189 911 55,865 605 50,924

57 256 121,384 234 114,416 209 128,282 209 128,282

58 426 268,713 211 130,474 231 138,838 231 138,838
59 795 348,214 1,420 775,753 602 337,905 1,437 409,470

60 223 41,310 160 27,386 18,100 114,642 304 31,413

61 314 106,206 309 105,411 299 77,555 299 77,555
62 211 70,478 195 101,934 180 69,728 180 69,728

63 567 259,537 703 312,546 473 237,196 1,371 578,066

64 378 300,684 405 332,402 193 186,508 193 186,508

65 196 21,442 196 21,442 165 23,004 165 23,004
67 18,107 601,178 12,669 512,488 298 104,356 298 104,356

68 2,278 541,080 1,953 538,509 324 236,157 324 236,157

70 412 125,454 431 140,765 446 178,657 446 178,657

71 1,432,332 > 20,000,000 8,234,574 > 20,000,000 1,132,180 > 20,000,000 183,170 1,973,352
72 134 44,908 134 44,908 123 45,735 123 45,735

73 201 87,019 214 94,568 225 103,494 225 103,494

75 61,973 > 20,000,000 55,274 > 20,000,000 259,971 > 20,000,000 12,786 5,095,054

76 185,633 6,236,656 74,315 3,775,394 251 183,656 4,123 1,980,094
77 1,092,369 > 20,000,000 1,019,702 > 20,000,000 1,108,195 > 20,000,000 251,768 6,277,715

78 64 4,451 64 4,913 64 4,913 64 4,913

79 125 15,833 122 15,527 127 13,114 127 13,114

80 100 16,114 165 26,943 176 26,309 176 26,309
81 21,501 234,235 2,662 42,445 875 111,033 2,651 206,423

82 86 33,445 86 33,445 117 45,014 117 45,014

83 91 7,294 80 5,631 108 6,856 108 6,856

84 94 5,960 106 7,938 108 7,818 108 7,818

6,391,084 >206,536,295 11,950,910 >189,388,544 3,105,947 >128,361,597 715,741 79,833,557
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one billion nodes, but still no problems could be solved. In the experiments, this version of
the program is referred to as “R0”.

4.3. Transposition table (R1, 5 solved)

Even though search spaces are generally graphs, most search algorithms treat them
as trees. If a state can have several predecessors, this can lead to duplicate work. The
search could revisit nodes and even entire subtrees several times. These “transpositions” or
cycles are detected using a transposition table in which useful information about previously
visited nodes is stored [22]. Before expanding a node, the transposition table is consulted,
and if valid information is found, it is used to potentially curtail the search. Further details
can be found in Appendix A.2.

Adding transposition tables with 218 entries to IDA* allows the search to solve 5
problems in our test suite within the 20 million node limit. Fig. 3 shows the effort needed to
solve those problems, ordered by search-tree size on a linear and a logarithmic scale. The
vertical axis shows the number of nodes searched to solve the problems. The horizontal axis
shows the number of problems solved. We will use this kind of graph throughout the paper
and refer to them as effort graphs. The keys of the effort graphs refer to different versions
of Rolling Stone. In Fig. 3, “R1” is a version of Rolling Stone that adds transposition tables
to version “R0”.

4.4. Move ordering (R2, 4 solved)

Instead of visiting successors of a position in an arbitrary order, one can try to look at
“good” successors first. Move (or successor) ordering is not used in best-first searches;
the algorithm itself provides for a global ordering of the alternatives. In depth-first and
breadth-first searches, move ordering can lead to efficiency gains because goals are found
earlier (left in the tree) rather than later (right in the tree). For IDA*, ordering moves at
interior nodes makes no difference to the search, except for the final iteration. Since the
final iteration is aborted once a solution is found, finding a solution early in this iteration
can significantly improve the performance [21].

The scheme used in Rolling Stone, inertia, does an excellent job of placing the best
moves near the beginning of the move list (see Appendix A.3). Fig. 3 shows the effect
of adding move ordering to a program with the minimum matching lower bound and
transposition tables (R2). Surprisingly, one problem can no longer be solved (in 20 million
nodes) and two others require more nodes. This result is not favorable for move ordering.
However, this appears to be bad luck for this small set of problems. After other features
are added, move ordering shows up as a valuable contribution (as shown in Section 5).

4.5. Deadlock table (R3, 5 solved)

The pattern database is a recent idea that has been successfully used in the sliding-tile
puzzles [3] and Rubik’s Cube [17]. An off-line search is used to enumerate all possible
stone/wall placements in a 4×5 region to determine if a deadlock is present. These results
are stored in deadlock tables. During the IDA* search, the table is queried to see if the
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current move leads to a local deadlock. Thus, deadlock tables contain search results of
partial problem configurations.

In the IDA* search, before making a move, the program queries the deadlock table to see
if the move would result in a known deadlock. If so, the move is not considered further. On
average, deadlock tables reduce the branching factor by 20% (see Appendix A.4). Given
that the search is exponential in depth (bd where b is the branching factor and d is the
average search depth) this represents an enormous reduction in the search space considered
((0.8 × b)d ).

Fig. 3 shows the effect of adding deadlock tables (R3). Once again 5 problems can be
solved, regaining the one lost with move ordering. For some problems, the search-tree size

Fig. 3. Effort graph for R0 to R4 (linear and log scale).
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has been reduced by several orders of magnitude. It is illuminating to discover that such an
impressive reduction in the branching factor does not allow more problems to be solved.

4.6. Tunnel macros (R4, 6 solved)

The search algorithms discussed so far treat all moves equally. After making a move, all
legal moves are considered as successors. These algorithms are therefore treating all moves
as if they were unrelated. The method of macro moves [15] is an attempt to group related
atomic actions into higher level composite actions: macros. This can result in impressive
search-space reductions. However, special attention must be paid to the side-effects that
macros can have. They might influence the correctness and/or the completeness of the
search, as well as the ability of the algorithm to find optimal solutions.

A tunnel is the part of a maze where the maneuverability of the man is restricted to a
width of one. Since there can be at most one stone in a tunnel without creating an immediate
deadlock, we can complete the remaining tunnel moves without losing generality or
optimality. If a tunnel is composed of articulation squares, 3 we call the tunnel a one-way
tunnel. Whenever the move generator creates a move into a one-way tunnel, the move is
substituted with the macro pushing the stone all the way through the tunnel. This eliminates
all the interleavings with other legal moves. More details are provided in Appendix A.5.

Tunnel macros result in one additional problem being solved, for a new total of 6 (Fig. 3,
version R4). However, the significant reduction in the size of the search tree contributes to
the solvability of many future problems.

4.7. Goal macros (R5, 17 solved)

Many of the Sokoban problems have all the goal squares grouped together in rooms.
These goal areas are usually accessible through only a few squares which we call
entrances. One can decompose the problem of solving a maze into:

• how to get each stone to one of the entrances, and
• how to pack stones into the goal areas.

Often these subgoals can be solved independently, thus reducing the search space
enormously. Problem #1 is a good example. As soon as a stone reaches the entrance to the
goal area at the right side of the maze (e.g., square Mh), the stone can be pushed directly
to its final destination.

This is achieved by defining a goal area, marking its entrances, and precomputing the
order in which goal squares are filled without introducing deadlock in the goal area. During
the search, if a move is generated that pushes a stone onto the entrance square of a goal
area, that move is replaced with a goal macro that generates a sequence of moves to push
the stone directly to an appropriate goal square (in Fig. 1, underlined sequences of moves
are goal macros and are treated as a single move). Depending on the precomputation, there
could be one or more goal-macro moves. All other moves are deleted from the move list;
only the goal-macro moves are considered. If a stone can be pushed to its final destination,
nothing else should matter at the moment, since completion of this task will reduce the

3 Squares dividing the maze into otherwise disconnected parts.
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complexity of the remaining problem. This differs from tunnel macros, where alternative
moves are still searched. By removing other moves when a goal macro is present, the effect
on the search-tree size is more dramatic than for tunnel macros. More details are provided
in Appendix A.6.

Fig. 4 shows the dramatic effects of goal macros. Instead of solving 6 problems, Rolling
Stone can now solve 17. The savings for individual problems are again several orders of
magnitude. For example, the number of search nodes for problem #55 drops from over 20
million down to a mere 333 (see Table 2)—almost 5 orders of magnitude! On average, the
searches are smaller by a factor of 20 with the goal macros. This is a conservative estimate,

Fig. 4. Effort graph for R0 to R6 (linear and log scale).
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since unsuccessful searches are stopped at 20 million nodes. However, it is important to
mention that goal cuts are unsafe and therefore incomplete.

4.8. Goal cuts (R6, 24 solved)

The goal-macro heuristic eliminates all alternative moves from consideration when a
goal macro is present. The reason for this is that if we can push a stone to its final
destination, it will not affect other moves and they can be ignored. The same reasoning
can be applied to the previous move: the move that pushed the stone to the square from
which it will be “macro”-pushed to the goal square. Goal cuts do exactly that recursively
further up the tree: if a stone is pushed to a goal with a goal macro at the end without
interleaving other stone pushes, all alternatives to pushing that stone are deleted from the
move list. More details are in Appendix A.7.

Fig. 4 shows savings of approximately one to two orders of magnitude in search-tree
size for the version using goal cuts (R6). Now 24 problems can be solved. Problem #65
was not solved without goal cuts; now it is solved with just over 600 nodes—the search
tree is over 4 orders of magnitude smaller. For solved problems, the median search tree is
a factor of 6 smaller.

4.9. Pattern search (R7, 48 solved)

Establishing the presence of deadlock can be quite involved. The deadlock may require
as few as one and as many as all the stones on the board. Ideally, having discovered a
subset of a state that causes a deadlock (a pattern of stones), any state containing that
pattern should be assigned the lower bound of ∞.

Pattern searches find patterns of stones that prove that the lower bound is in error. The
errors could be small, improving the lower bound by as little as 2, or as much as ∞ in the
case of a deadlock. All discovered patterns are saved and used throughout the search. If a
pattern matches a subset of stones in a position, then the penalty associated with that pattern
is added to the lower-bound estimate for the position. In effect, the program learns lower-
bound penalty patterns and uses them to dynamically improve the lower-bound function.

In the following, we will refer to two different mazes: the original maze, the data
structure used by the IDA* search, and the test maze which will be used for the pattern
searches.

A pattern search iterates on the number of stones in the test maze. By definition, a
deadlock is a configuration of stones such that not all of the stones can reach a goal. If
we make a move A-B, we might introduce a deadlock. If this deadlock was not present
before the move, then the moved stone, now on square B, must be part of that pattern. This
is the initial stone included into the test maze for the pattern search. PIDA*, a version of
IDA* tailored to be efficient at pattern searching, is called to solve this test maze (see
Appendix A.8). It either returns in failure (no solution, hence deadlock), or it finds a
solution. In the latter case, the number of pushes in the solution may disagree with that
of our minimum matching lower bound. If so, then we know that the lower bound function
is in error and can be improved.
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Fig. 5. Deadlock example.

Fig. 6. Sequence of test mazes as passed to PIDA* (a, b, c and d).

Fig. 5 shows a simple position, before and after the move Gd-Fd. The question is whether
this move introduces a deadlock. Fig. 6 shows how the test maze is built. Since the last
move ended up on square Fd, the test maze is initialized with this single stone (Fig. 6a).
A PIDA* search finds a trivial solution. However, the search reveals that there is a conflict
in the original maze that prevents this solution: the stone on Ec. This conflict is resolved
by adding the stone to the test maze and trying to solve it (Fig. 6b).

PIDA* will search the two-stone maze and again find a solution. This time there are
no stone conflicts. However, the man had to move through square Ge to get behind the
stone on Fd, again conflicting with the original maze. This stone is added to the test maze
(Fig. 6c) and another search is commenced. A solution will be found, requiring a fourth
stone to be added (Fig. 6d).

The next call to PIDA* will return no solution and announce a deadlock with this pattern
of four stones. Identifying the critical stones to examine has been driven by whether they
conflict with a potential solution. The irrelevant parts of the maze (such as the stone on Hc)
have been ignored.

The notion of bit (stone) patterns is similar to the Method of Analogies [1]. Pattern
searches are a conflict-driven top-down proof of correctness, while the Method of
Analogies is a bottom-up heuristic approximation.

The fewer stones in a penalty pattern, the more likely it will match an arbitrary position
and be used to eliminate futile branches of the search. A minimal penalty pattern is a
pattern from which no stone can be removed without decreasing its penalty. The attentive
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reader will have noticed that only three stones are needed to guarantee deadlock in Fig. 6;
the stone on Ec is not necessary. Before saving the pattern, our program will attempt to
minimize the number of stones in it. The minimization routine takes an N-stone pattern
and considers each of the possible (N − 1)-stone sub-patterns. Each of the sub-patterns is
searched to verify whether removing that stone preserves the deadlock or penalty. If the
penalty still exists, then the stone was not part of the minimal pattern and is removed.

During an IDA* search, at each node the normal minimum matching lower bound is
computed. If this value is insufficient to cause a cutoff, then the collection of penalty
patterns is matched against the position. Of the patterns that match, the largest penalty
is computed and added to the lower bound. If two or more patterns overlap, only a
maximal non-overlapping subset of them is counted towards the position penalty. To
prevent excessive pattern matching during the search (utility problem [20]), the number
of patterns stored is restricted. The least recently used patterns are removed if necessary.

Fig. 8 shows the effort graph, now including the version of Rolling Stone using pattern
searches (R7). The program can now solve 48 problems, 24 more than the previously best
version!

In Table 3, the search-tree size for R7 is broken down into two categories. The “total
nodes” column reflects all positions visited in the search. The “IDA*” column gives the
number of positions that the IDA* search visits. The difference is the number of pattern
search nodes (PIDA*).

Except for the small searches (<20,000 nodes), the cost of performing the additional
PIDA* searches is offset by the reduction in the IDA* search nodes. Problem #53 is an
example. The savings for the IDA* tree are dramatic. Previously, the search was unable
to solve this problem given 20,000,000 nodes. Now the search succeeds with only 159
IDA* nodes and a total of 22,310 nodes. Clearly, the pattern searches dominate the search
cost, but the knowledge uncovered allows the program to solve the problem where it failed
previously. In this example, Rolling Stone searches fewer IDA* nodes than the length of
the solution! The search backtracks a mere 13 times for a solution of 186 pushes.

Pattern searches are a gamble: we invest search effort (PIDA* nodes) expecting to find
useful knowledge. Problem #78 is one example of where the gamble does not pay off. Even
though the tree size (IDA*) is reduced about 50 fold, including the PIDA* nodes triples
the total number of nodes searched.

The results reported here are not the best numbers that can be achieved. The PIDA*
nodes dominate the cost of the search for some problems. Some additional heuristics for
deciding when to execute pattern searches could result in further improvements in the
overall search efficiency. There are numerous parameters in the search, each of which can
be tuned for maximal performance [7,11].

Pattern searches have also been applied to sliding-tile puzzles [7]. The program
dynamically learns penalty patterns, such as linear conflicts [6]. The cost of the pattern
searches is small compared to the large reductions in the IDA* search tree.

Deadlock tables (or pattern databases) are another way to store pattern information.
However, the patterns in such databases are necessarily smaller, because precomputing
these patterns requires considerable computing resources and the resulting data needs to
be stored, often exhaustively for fast hashing. Pattern searches avoid both these problems,
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because they are demand driven and only patterns that actually appear in the search are
explored.

4.10. Relevance cuts (R8, 50 solved)

Analysis of the trees built by an IDA* search quickly reveals that the search algorithm
considers move sequences that no human would ever consider. Even completely unrelated
moves are tested in every legal combination—all in an effort to prove that there is no
solution for the current threshold. How can a program mimic an “understanding” of
relevance? We suggest that a reasonable approximation of relevance is influence. If two
moves do not influence each other, then it is unlikely that they are relevant to each other.
If a program had a good “sense” of influence, it could assume that in a given position all
previous moves belong to a (unknown) plan of which a continuation can only be a move
that is relevant—in our approximation, is influencing whatever was played previously.
Relevance cuts eliminate moves from the search that appear to be irrelevant to the preceding
sequence of moves.

A move is considered relevant only if the previous m moves influence it. The search
is only allowed to make relevant moves with respect to previous moves, and only a few
exceptions are permitted. With these restrictions in place, the search is forced to spend
its effort locally, since random jumps within the search area are discouraged. Forcing
the program to consider local moves is making it adopt a pseudo-plan; an exception
corresponds to a decision to change plans. Of course, restricting the number of successors
considered for a node will result in the possibility of optimal solutions being missed.

An influence metric can be achieved in different, domain-specific ways. Appendix A.9
gives an overview of our implementation. Even though the specifics aren’t necessarily
applicable to other domains, the basic philosophy of the approach is. We approximate the
influence of two moves on each other by the influence between their from squares. Influence
is determined using the notion of a “most influential path” between the squares. Small off-
line searches are used to statically precompute an InfluenceTable containing the influence
values between any pair of from squares. For each pair of squares, a breadth-first search is
used to find the path(s) with the largest influence. The algorithm is similar to a shortest-path
finding algorithm, except that we use influence here and not geographic distance.

Fig. 7 shows an example where humans immediately identify that solving this problem
involves considering two separate sub-problems. The solution to the left and right sides
of the problem are completely independent of each other. An optimal solution needs 82
moves; Rolling Stone’s lower-bound estimator returns a value of 70. Standard IDA* will
need 7 iterations to find a solution (our lower-bound estimator preserves the odd/even parity
of the solution length, meaning that it iterates by 2 at a time). IDA* will try every possible
(legal) move combination, intermixing moves from both sides of the problem. Clearly, this
is unnecessary and inefficient. Solving one of the sub-problems requires only 4 iterations,
since the lower bound is off by only 6. Considering this position as two separate problems
will result in an enormous reduction in the search complexity.

Our implementation of influence considers all moves on the left side as distant from
those on the right, and vice versa. This way only a limited number of switches is
considered during the search. Our parameter settings allow for only one non-local move
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Fig. 7. Example maze with locality.

per 9-move sequence. For this contrived problem, relevance cuts decrease the number of
nodes searched from 32,803 to 24,748 while still returning an optimal solution (the pattern
searches were turned off for simplicity). The savings (25%) appear relatively small because
the transposition table catches repeated positions (many of which may be the result of
irrelevant moves) and eliminates them from the search. Although the relevance cuts provide
a welcome reduction in the search effort required, it is only a small step towards achieving
all the possible savings. For example, each of the sub-problems can be solved by itself in
only 329 nodes! The difference between 329 × 2 and 32,803 illustrates why IDA* in its
current form is inadequate for solving large, non-trivial real-world problems; the algorithm
is incapable of taking advantage of exploitable structural properties of the domain. Clearly,
more sophisticated methods are needed. Further refinement of the relevance cut parameters
can likely make a big difference in performance.

The overhead of the relevance cuts is negligible; the influence of two moves can be
established by a simple table lookup. This is in stark contrast to our pattern searches,
where the overhead dominates the cost of the search for most problems. The addition
of relevance cuts increases the number of solved problems to 50. Fig. 8 shows that the
benefits of relevance cuts are only discernible on the largest searches. This is not a negative
comment on the effectiveness of relevance cuts; it only reflects the observation that most
of the solved problems already have very efficient searches.

4.11. Overestimation (R9, 54 solved)

To ensure optimality of solutions produced by A*-based algorithms, the heuristic has
to be admissible. This limits the choice of knowledge that can be used. Even if some
knowledge correlates well with the distance to the goal, but there is a chance that it
overestimates, it cannot be used because the solution optimality would not be guaranteed.
This shows that optimality has its price. Instead of fitting the heuristic distance to a solution
h as closely as possible to the actual distance h∗, we are restricted to creating a lower
bound. The error of such a lower-bound function is often larger than a function that is
allowed to occasionally overestimate. The larger the error of the lower-bound function, the
less efficient the search.
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Fig. 8. Effort graph for R0 to R10 (linear and log scale).

We have seen in previous sections that an aggressive treatment of the search space is
needed to make significant progress. The examples of the goal macros and relevance cuts
have shown the benefits that are achievable when the small risk of losing optimality and
completeness is taken. Therefore, it seems logical to question the admissibility constraint
for the heuristic function. The hope is to achieve a closer fit of h to h∗, albeit at the cost of
non-optimal solutions.

Our overestimation technique combines the penalties for all pattern-search patterns that
match in a position. Further details are in Appendix A.10.

Fig. 8 shows that 4 additional problems can now be solved. With overestimation, almost
all solved problems, except #49, have smaller or insignificantly larger number of nodes.
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Problem #26, for example, drops from over 20 million nodes to just under 123,000. While
some searches with overestimation use more iterations to find a goal, the search for problem
#26 uses less; the initial position is overestimated enough to allow the search to find a
solution in fewer iterations. On average, the IDA* and total nodes are reduced by roughly
half.

4.12. Rapid random restart (R10, 57 solved)

Some problem classes exhibit the property of heavy tails. Heavy tails refer to the high
likelihood of problem instances being very hard to solve with a certain algorithm, its
heuristics and (random) parameters used. Rapid Random Restart (RRR) assumes that by
varying parameters to the solution algorithm (here search), it is possible to reduce the
solution time dramatically [5]. Therefore, instead of using all the available time with one
parameter setting, RRR repeatedly aborts the search after a given effort limit and restarts it
with different (random) parameters.

In Rolling Stone, RRR is used to interrupt an iteration and restart it with a different
move ordering tie-breaking scheme (see Appendix A.11). Now 57 of the 90 problems can
be solved, as shown in Fig. 8.

5. Single-agent search enhancements

The performance gap between the first and last versions of Rolling Stone in Fig. 8 is
astounding. For example, consider extrapolating the performance of Rolling Stone with
transposition tables so that it can solve the same number of problems as the complete
program (57). 1050 (not a typo!) seems to be a reasonable lower bound on the difference in
search-tree sizes.

For each of the unsolved problems, an additional search to 200 million nodes was
performed. This resulted in two more problems being solved (numbers 25 and 28), bringing
the total number of solved problems to 59. It is discouraging to see an order of magnitude
more computing power translating into such a small improvement, clearly an indication of
the difficulty of solving Sokoban problems. For some problems (notably number 50), the
IDA* search threshold is so far from the best known human solution, that there is no hope
of ever solving this problem with our current techniques.

The ordering of the preceding subsections closely corresponds to the order in which
enhancements were initially added to Rolling Stone (although most enhancements have
been continually refined). Fig. 9 shows how these results were achieved over the 3-year
development time. The development effort equates to a full-time PhD student, a part-time
professor, one summer student, and valuable feedback from many people. Additionally, a
large number of machine cycles were used for tuning and debugging. It is interesting to
note the occasional decrease in the number of problems solved, the result of (favorable)
bugs being fixed. The long, slow, steady increase is indicative of the reality of building a
large system. Progress is incremental and often painfully slow.

The results in Fig. 8 may misrepresent the importance of each feature. Consider
removing a single enhancement from Rolling Stone. In the absence of a particular method,
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Fig. 9. Number of problems solved over time.

other search enhancements can compensate to allow a solution to be found. Most notably,
while the lower-bound function alone cannot solve a single problem, neither can the
complete system solve a single problem without the lower-bound function. Turning off
goal macros reduces the number of problems solved by 33, almost 60%! Turning off pattern
searches reduces the number of solved problems by 22, while disabling transposition tables
loses 19 problems. Other than the lower-bound function, these three methods are the most
important for Rolling Stone; losing any one of them dramatically reduces the performance.
While other enhancements don’t have as dramatic an effect, turning any one of them off
loses at least one problem.

5.1. Knowledge taxonomy

In looking at the domain-specific knowledge used to solve Sokoban problems, we can
identify several different ways of classifying the knowledge:

Generality. Classify based on how general the knowledge is: domain (e.g., Sokoban),
instance (a particular Sokoban problem), and subtree (within a Sokoban search).

Knowledge source. Differentiate how the knowledge was obtained: static (such as advice
from a human expert) and dynamic (gleaned from a search).

Admissibility/completeness. Knowledge can be: admissible (preserve optimality in a
solution) or non-admissible. Non-admissible knowledge can either preserve
completeness of the algorithm or render it incomplete. Admissible knowledge is
necessarily complete.

Fig. 10 summarizes the search enhancements used in Rolling Stone. Other enhancements
from the literature could easily be added into spaces that are still blank, e.g., perimeter
databases [19] (dynamic, admissible, instance). Note that some of the enhancement
classifications are fixed by the type of the enhancement. For example, any type of forward
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Classification Domain Instance Subtree

Static admissible lower tunnel move

bound macros ordering

complete

incomplete relevance goal

cuts cuts

Dynamic admissible deadlock pattern

tables searches

transposi-

tion table

complete overesti-

mation

incomplete goal

macros

Fig. 10. Taxonomy of search enhancements in Sokoban.

pruning is incomplete by definition, and move ordering always preserves admissibility.
For some enhancements, the properties depend on the implementation. For example,
overestimation techniques can be static or dynamic; goal macros can be admissible or
non-admissible; pattern databases can be domain-based or instance-based.

It is interesting to note that, apart from the lower-bound function itself, the three
most important program enhancements in terms of program performance are all dynamic
(search-based) and instance/subtree specific. The static enhancements, while of value, turn
out to be of less importance. Static knowledge is usually rigid and does not include the
myriad of exceptions that search-based methods can uncover and react to.

5.2. Control functions

There is another type of application-dependent knowledge that is critical to performance,
but receives scant attention in the literature. Control functions are intrinsic parts of efficient
search programs, controlling when to use or not use a search enhancement. In Rolling Stone
numerous control functions are used to improve the search efficiency. Some examples
include:

Transposition table: Control knowledge is needed to decide when new information is
worth replacing older information in the table. Also, when reading from the table,
control information can decide whether the benefits of the lookup justify the cost.

Goal macros: If a goal area has too few goal squares, then goal macros are disabled.
With a small number of goals or too many entrances, the search will likely not
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need macro moves, and the potential savings are not worth the risk of eliminating
possible solutions.

Pattern searches: Pattern searches are executed only when a non-trivial heuristic function
indicates the likelihood of a penalty being present. Executing a pattern search is
expensive, so this overhead should be introduced only when it is likely to be cost
effective. Control functions are also used to stop a pattern search when success
appears unlikely.

Implementing a search enhancement is often only one part of the programming effort.
Implementing and tuning its control function(s) can be significantly more time consuming
and more critical to performance. We estimate that whereas the search enhancements take
about 90% of the coding effort and the control functions only 10%, the reverse distribution
applies to the amount of tuning effort needed and machine cycles consumed.

A clear separation between the search enhancements and their respective control
functions can help the tuning effort. For example, while the goal macro creation only
considers which order the stones should be placed into the goal area, the control function
can determine if goal macros should be created at all. Both tuning efforts have very
different objectives: one is search efficiency, the other risk minimization. Separating the
two seems natural and convenient.

5.3. Single-agent search framework

As presented in the literature, single-agent search consists of a few lines of code (usually
IDA*). Most textbooks do not discuss search enhancements, other than cycle detection. In
reality, non-trivial single-agent search problems require a more extensive programming
(and possibly research) effort.

Fig. 11 illustrates the basic IDA* routine, with our enhancements included (in italics).
This routine is specific to Rolling Stone, but could be written in more general terms. It does
not include a number of well-known single-agent search enhancements available in the
literature. Control functions are indicated by parameters to search enhancement routines.
In practice, some of these functions are implemented as simple if statements controlling
access to the enhancement code.

Examining the code in Fig. 11, one realizes that there are really only three types of
search enhancements:

(1) Modifying the lower bound (as indicated by the updates to lb). This can take
two forms: optimally increasing the bound (e.g., using patterns) which reduces
the distance to search, or non-optimally (using overestimation) which redistributes
where the search effort is concentrated.

(2) Removing branches unlikely to add additional information to the search (the next
and break statements in the for loop). This forward pruning can result in large
reductions in the search tree, at the expense of possibly affecting the completeness.

(3) Collapsing the tree height by replacing a sequence of moves with one move (for
example, macros).

Some of the search enhancements involve computations outside of the search. Fig. 12
shows where the pre-search processing occurs at the domain and instance levels. Off-line
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IDA*() {
/** Compute the best possible lower bound **/
lb = ComputeLowerBound();
lb += UsePatterns(); /** Match Patterns **/
lb += UseDeadlockTable();
lb += UseOverestimate( CntrlOverestimate() );
if( cutoff ) return;

/** Preprocess **/
lb += ReadTransTable();
if( cutoff ) return;
PatternSearch( CntrlPatternSearch() );
lb += UsePatterns();
if( cutoff ) return;

/** Generate moves to consider **/
movelist = GenerateMoves();
RemoveDeadMoves( movelist );
IdentifyMacros( movelist );
OrderMoves( movelist );

for( each move ) {
if( Irrelevant( move, CntrlIrrelevent() ) ) next;
solution = IDA*();
if( solution ) return;
if( GoalCut() ) break;
UpdateLowerBound(); /** Use New Patterns **/
if( cutoff ) return;

}

/** Post-process **/
SaveTransTable( CntrlTransTable() );
return;

}

Fig. 11. Enhanced IDA*.

computation of pattern databases or pre-processing of problem instances are powerful
techniques that receive scant attention in the literature (chess endgame databases are a
notable exception). Yet these techniques are an important step towards the automation of
knowledge discovery and machine learning. Preprocessing is involved in many of the most
valuable enhancements that are used in Rolling Stone.

Similar issues occur with other search algorithms. For example, although it takes only
a few lines to specify the alpha-beta algorithm, the Deep Blue chess program’s search
procedure includes numerous enhancements (many similar in spirit to those used in Rolling
Stone) that cumulatively reduce the search-tree size by several orders of magnitude. If



242 A. Junghanns, J. Schaeffer / Artificial Intelligence 129 (2001) 219–251

for( each domain ) {
/** Preprocess **/
BuildDeadlockTable( CntrlDeadlockTable() );

for( each instance ) {
/** Preprocess **/
FindTunnelMacros();
FindGoalMacros( CntrlGoalMacros() );
while( not solved ) {

SetSearchParamaters();
IDA*();

}
/** Postprocess **/
SavePatterns( CntrlSavingPatterns() );

}
}

Fig. 12. Preprocessing hierarchy.

Fig. 13. Framework.

nothing else, the Deep Blue result demonstrated the degree of engineering required to build
high-performance search-based systems.

Fig. 13 shows a different perspective on the problem of knowledge levels. The diagram
shows a hierarchy of problems, solvers, and the corresponding knowledge used. The
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application domain is located at the core; the basic solver is strictly concerned with this
core application and exclusively uses core-application-specific knowledge. The next higher
level in the hierarchy treats this entire process as the application. It supplies the core-
application knowledge to the core-solver. The knowledge required at this level is control
knowledge—controlling the core-knowledge gathering. When viewed in this context, it
is clear why pattern searches and goal macros are such important enhancements. This
diagram also shows an important direction of future research: automation of the next higher
levels of the knowledge hierarchy.

6. Conclusions

This paper described our experiences working with a challenging single-agent search
domain. In contrast to the simplicity of the basic IDA* formulation, building a high-
performance single-agent searcher can be a complex task that combines both research
and engineering. Application-dependent knowledge, specifically that obtained using
search, can result in an orders-of-magnitude improvement in search efficiency. This
can be achieved through a judicious combination of several search enhancements.
Control functions are overlooked in the literature, yet are critical to performance. They
represent a significant portion of the program development time and most of the program
experimentation resources.

Domain-independent tools offer a quick programming solution when compared to the
effort required to develop domain-dependent applications. However, with current AI tools,
performance is commensurate with effort. Domain-dependent solutions can be vastly
superior in performance. The trade-off between programming effort and performance is
the critical design decision that needs to be made.
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Appendix A

A.1. Minimum matching

Fig. A.1 shows an example of the lower-bound calculation. The table lists the distances
from the three stones to each of the three goals in the maze. The bold entries represent a
minimum cost matching. It is important to note here that the minimum matching algorithm
solves one important problem. Even though the stone on Cc and the stone on Id both have
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Fig. A.1. Minimum matching example.

Fig. A.2. Distance depends on the position of the man.

goals close by, they have to be pushed to a goal further away. While counting how many
stones are off a goal square would return a lower bound of 3, and summing the distances of
all stones to their closest goal squares would return 5, the minimum matching lower bound
returns 14. This higher heuristic bound allows the search algorithm to eliminate a large
fraction of the total search space that is irrelevant to an optimal solution.

The distance of a stone to a goal can depend on the location of the man. Consider
Fig. A.2. While the stone is only 3 squares away from the goal, 7 pushes are required
to move the stone to the goal (two pushes away from the goal are needed for the man to
reach the opposite side of the stone). Therefore, the stone distances used for minimum
matching take the current position of the man into account.

A.2. Transposition tables

Transposition tables are usually implemented as (large) hash tables. The hash keys
we use incorporate only the exact stone positions. To match an entry, the keys must be
identical. Since the position of the man is important, a second test is performed. The
locations of the man in both positions must be connected by a legal man path. Thus multiple
positions that differ only in the man’s location may map to identical transposition entries.
This simplification is possible because we only optimize stone pushes.

Transposition tables can handle cycle detection. The table entry for a position can be
flagged before doing a search from that position, and the flag removed after the search
completes. If a search ever reaches a flagged state then a cycle has occurred.
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A.3. Move ordering

The information used to order moves can come from different sources, but is usually
domain-dependent knowledge. Sometimes knowledge gathered during the search (e.g.,
tree sizes or tree depths) can be useful. In the case of iterative deepening, move ordering
information is passed from one iteration to the next by means of the transposition table.

Rolling Stone uses a move-ordering scheme that we call inertia. Analysis of solution
sequences shows long runs where the same stone is repeatedly pushed. Hence, moves are
ordered to preserve the inertia of the previous move in the following way:

(1) Inertia moves are considered first.
(2) Then all the moves that decrease the lower bound (optimal moves) are tried, sorted

by the distance from the stone pushed to the goal it is targeted to, with close stones
first.

(3) Then all the “non-optimal” moves are tried, sorted similarly.
Fig. A.3 shows the effect of move ordering. 4 The vertical axis shows the number of

moves considered. The horizontal axis shows the depth of the node in the tree in percent.
The upper curve indicates the average number of moves considered by the program. 5 The
middle curve shows where the actual solution move is located in the list returned by the
move generator. Not surprisingly, the solution move is in the middle of the move list on
average. The lower curve shows that inertia ordering results in solution moves being placed
closer to the front of the move list. Move ordering becomes more accurate with decreasing
distance to the goal. In fact, after reaching a depth of about 20% of the solution length,
the move ordering becomes close to perfect. At the start of a Sokoban problem, with many
complications in the maze, seemingly good moves might actually lead to deadlocks. Many

Fig. A.3. The effect of move ordering.

4 The data was compiled from all the positions on the solution paths for the 57 problems that Rolling Stone can
solve.

5 Some of the legal moves are discarded immediately because they lead to trivially provable deadlocks. These
moves are not included in the graph. See Appendix A.4 for more detail.
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Fig. A.4. Effect of deadlock tables.

of the problems in the test suite are designed in such a way that an initial “knot” has to
be freed up. This can usually be achieved only with moves that the lower-bound estimator
views as being non-optimal. After the knot is untangled, a “mop-up phase” commences
during which stones are simply pushed to the goals. This is where our heuristic excels.

A.4. Deadlock table

Fig. A.4 shows the number of moves in the move list versus the depth of the tree. Only
positions on paths to solutions were used to generate the data for the figure to avoid
pathological cases. The top curve shows how many legal moves those positions have,
averaged over all test positions. The second curve shows how many legal moves exist that
do not directly push stones onto dead squares (squares from which no goal is reachable,
such as moving a stone into a corner). Note that this simple test reduces the effective
branching factor by about 20%. The third curve shows how many moves are actually
considered after screening moves with the deadlock tables. The savings are similar to the
simple dead-square checking, almost an additional 20%.

A.5. Tunnel macros

Fig. A.5 illustrates the impact of the move sequence a-b-c being treated as a tunnel
macro. Instead of exploring every possible interchanging combination of moves a, b, c of
one stone, and d, e, f of another stone, most of the search tree can be eliminated by treating
the sequence a-b-c as a single move. The macro also has the effect of reducing the depth
of the tree.
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Fig. A.5. Impact of macro moves.

A.6. Goal macros

Fig. A.5 illustrates the impact of goal macros on the search. The goal macros in the
current implementation have limitations. One underlying assumption is that no stone will
leave the goal area once inside. Problem #50, for example, cannot be solved without
pushing stones through the goal area. A second, even stricter assumption is that once a
stone is inside the goal area, it will never move again. This does not allow for parking
inside goal areas. Sometimes it is necessary to leave a stone in a key position inside the
goal area until later in the solution, when it can finally be pushed to its goal square. Another
limitation is that a goal area containing several entrances is often a travel area for the man;
certain parts of the maze need to remain unblocked to allow the man to push stones in a
certain way outside the goal area. Problem #38 is an example where the careless packing
of stones in the goal area can obstruct the man from other areas of the maze.

These problems show that goal macro creation is still far from being solved satisfactorily.
Interactions between the goal area and the outside parts of the maze make it difficult to
create good goal macros. However, their positive impact in the problems where they work
is so large that any high-performance Sokoban program needs to use this type of knowledge
in one form or another.

A.7. Goal cuts

We implemented a scheme that will cut moves only after a stone push towards its macro
move is explored. The search backs up the cut information, instead of statically trying to
deduce that such a move exists in a certain position. This could potentially lead to missed
opportunities for additional cuts if other moves are explored before the one that leads to the
goal cut. Since ordering puts moves that are close to goals towards the front of the move
list, lead-off moves to goal macros are likely to be considered early in the list.

A.8. Pattern searches

Fig. A.6 shows the pseudo code for pattern searches. We are interested in the set of
squares that are used by the stones and the man to effect the solution: the squares occupied
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PatternSearch( From, To ) {
clear TestMaze;
StonePath = To;
for( i=1; i <= MAX_PATTERN_SIZE AND NOT EffortLimit(); i++ ) {

if( stone s on a square in StonePath )
add closest s to TestMaze

else if( stone s on a square in ManPath )
add closest s to TestMaze

else break;
/* Call to PIDA* modifies SolLength, ManPath and StonePath */
solution = PIDA*( TestMaze, SolLength, ManPath, StonePath );
/* Test for a deadlock */
if( solution == NO AND NOT EffortLimit() ) {

GeneralizeAndAddPattern( TestMaze, infinity );
break;

}
/* Test for a lower-bound increase */
if( solution == YES ) {

lb = LowerBound( TestMaze );
if( SolLength > lb )
GeneralizeAndAddPattern( TestMaze, SolLength - lb );

}
}

}

Fig. A.6. Pseudo code for pattern searches.

by the stone(s) on their path to the goal(s) (StonePath), and the squares touched by the
man while pushing the stone(s) to a goal(s) (ManPath). In effect, these sets of squares are
preconditions for the solution to work. The ManPath and StonePath are used to determine
which stone from the original maze to include next in the test maze (i.e., add a stone that
violates one of the preconditions). The stone in StonePath closest to square B (the square
the stone was moved to in the original maze) is included next. If such a stone does not
exist, the stone on ManPath closest to square A is used. 6 If none of those exists, the pattern
search returns without finding a deadlock.

After including the next stone, PIDA* is called again, returning with a solution
determination and the two conflict sets. If deadlock has not been found, then the conflict
sets are used to add another stone to the test maze. If any of the returning searches indicates
a longer solution than the lower-bound estimate of the position, the current pattern is stored
with a corresponding lower-bound increase.

Fig. 5 shows a simple position, before and after the move Gd-Fd. The question is
whether this move introduces a deadlock. Fig. 6 shows how the test maze is built. Since

6 Closest is always with respect to the distance of either the stone or the man to the conflicting stone. These
distance measures are possibly different due to the more restricted movement of the stones.
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the last move ended up on square Fd, the test maze is initialized with this single stone
(Fig. 6a). A PIDA* search reveals a 5-move solution (Fd-Fc-Ec-Dc-Cc-Bc) which is also
the StonePath, and sets ManPath to the squares needed by the man (Gd-Ge-Fe-Fd-Gd-Gc-
Fc-Ec-Dc-Cc). Since there is a solution, we continue the pattern search.

The original maze has a stone on one of the squares that the stone moved over (square
Ec) which now gets included in the test maze (Fig. 6b). PIDA* will solve the two-stone
maze and again find a solution. The ManPath is (Gd-Gc-Fc-Ec-Dc-Dd-Cd-Cc-Dc-Ec-Fc-
Gc-Gd-Ge-Fe-Fd-Gd-Gc-Fc-Ec-Dc-Cc) and the StonePath is (Ec-Dc-Cc-Cb Fd-Fc-Ec-
Dc-Cc-Bc). This time there are no stones in conflict with StonePath. However, there is
a conflict with the ManPath, square Ge. This stone is added to the test maze (Fig. 6c) and
another search is commenced. A solution will be found, requiring a fourth stone to be
added (Fig. 6d).

The fourth call to PIDA* will return no solution and announce a deadlock with this
pattern of four stones.

A.9. Relevance cuts

When judging how two squares in a Sokoban maze influence each other, Euclidean
distance is not adequate. Taking the structure of the maze into account would lead to a
simple geographic distance which is not proportional to influence either. For example,
consider two squares connected by a tunnel; the squares are equally influencing each other,
no matter how long the tunnel is. Elongating the tunnel without changing the general
topology of the problem would change the geographic distance, but not the influence.

The influence measure should reflect the following properties:

Alternatives: The more alternatives that exist on a path between two squares, the less
the squares influence each other. That is, squares in the middle of a room, where
stones can go in all 4 directions, should decrease influence more than squares in
a tunnel, where no alternatives exist.

Goal-Skew: For a given square sq , any squares on the optimal path from sq to a goal
should have stronger influence than squares off the optimal path.

Connection: Two neighboring squares connected such that a stone can move between
them should influence each other more than two squares connected such that only
the man can move between them.

Tunnel: In a tunnel, influence remains equal, regardless of length.

Our implementation of relevance cuts uses small off-line searches to statically precom-
pute an InfluenceTable containing the influence values for each square of a 20×20 maze to
every other square in the maze [7,12]. Between every pair of squares, a breadth-first search
is used to find the path(s) with the largest influence. The algorithm is similar to a shortest-
path finding algorithm, except that we use influence here and not geographic distance. The
smaller the influence number, the more two squares influence each other. Our approach is
quite simple and can undoubtedly be improved. For example, influence is statically com-
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puted. A dynamic measure, one that takes into account the current positions of the stones,
would undoubtedly be more effective.

A.10. Overestimation

Since the pattern searches are limited in certain ways to keep them tractable, the correct
size of the penalties and shape of the patterns might not be known. Therefore, the patterns
represent incomplete knowledge. Furthermore, when patterns are matched, only some of
the penalties can be used to preserve admissibility. However, the presence of matching
patterns that are not included in the lower-bound calculations suggests that there may be
additional complications in the current position. Not using the penalty of such a pattern
is equivalent to ignoring available knowledge. The following describes the best of our
attempts to use the knowledge contained in the patterns that match a position. It was
achieved after a significant effort spent on experimentation and tuning. We call this method
maximum partial penalties. More straightforward ways of overestimation suggested in the
literature were not effective [16].

One simple overestimation idea is to sum the penalties for all the patterns that match
in a position (a worst-case scenario). Predictably, this does not perform well. Instead of
attributing penalties to patterns, they can be assigned to stones in the maze. The penalty of
a matched pattern is split equally among all the stones contained in that pattern. For each
stone the maximum of these partial penalties is stored. The total penalty of a position is
the sum of all the maximum partial penalties for each stone. Thus, every stone involved
in a penalty pattern contributes to the total penalty assigned to a stone configuration. To
tune the overestimation further, the penalty is scaled by a factor s (currently set to 1.8, as
determined by experimentation). A final rounding step assures that the total penalty is an
even number to preserve the parity property of the heuristic.

Adding a limited penalty to the heuristic estimation of the distance to the goal will
only delay the examination of a node to a later iteration. If no solution can be found, the
threshold will increase until the position’s lower-bound estimate is not enough to cause a
cutoff anymore. The exploration of the node is only postponed. This is in stark contrast
to forward pruning with fixed rules, such as deterministic relevance cuts, that will prune
the same node in every iteration. Because new patterns are added and useless patterns are
dropped, the decisions to postpone a node change dynamically over the course of a search
as new knowledge is found or other knowledge is discarded.

A.11. Rapid random restart

Each iteration of IDA* is in principle a restart with a different parameter setting: the
threshold. However, in the classic IDA* the threshold is only increased after an iteration
is exhaustively searched. When RRR aborts an iteration early, it is unclear whether to
restart with the same iteration or to increase the threshold. Rolling Stone uses a “double
impatience” approach. If a certain number of restarts in a specific threshold iteration have
not produced a solution, the threshold is increased. Furthermore, with each new restart
within an iteration the randomization of the move ordering is increased. This can be
justified by simply stating that if the move ordering was good the solution would have
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been found by now. With each restart our confidence in the move ordering shrinks and
more randomization is used. When the threshold is increased, the randomization is reduced
to 0 again, because it is assumed that no solution existed for the lower threshold.
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