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Abstract

This paper reports on an attempt to come closer to an understanding of
understanding, in the domain of artificial intelligence. Our approach is based
in the idea that understanding means exploiting underlying structure. Our goal
is compact code that is adapted to the structure of its problem domain. We
want to achieve this compactness by applying Occam’s Razor in an evolutionary
framework. As a problem domain we chose the game Sokoban; for evolution we
used genetic programming set in a Hayek economy.

We have gained insights into how hard this problem is and developed a
framework in which to tackle it. Using concepts derived directly from playing
Sokoban, an adapted representation language and the Hayek economic system,
we laid the foundation for evolving such compact code. Although the complete
project goes beyond the scope of this thesis, here we demonstrate experimentally
that the approach is viable, because our system can evolve code that solves
interesting Sokoban instances.
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Chapter 1

Introduction

1.1 Background

We believe that it is appropriate to describe understanding as the computational

exploitation of underlying structure. This statement, as well as a justification
and its implications are put forward in the book ‘What is Thought’ [1]. There,
Baum argues that evolution has created minds that understand, and that this
has been achieved by the process of building a highly compact system that
behaves correctly in a large number situations, which therefore necessarily
exploits underlying structure. This idea of compactness is well known, in the
form of the principle of Occam’s Razor:

Pluralitas non est ponenda sine necessitate

which we can rephrase as the principle of eliminating everything that is not
absolutely essential.

The criteria of compactness, requires us to have a condensed representation,
and as the problems we encounter are structured (usually even to a very high
degree), the most efficient way to achieve that is to exploit this underlying
structure [2] [3]. Further generalizing this representation makes it possible to
solve new problems with a minimum of effort.

We are not trying to explain how exactly the human brain exploits
underlying structure (at least not in this project), but we are concerned
with making good use of this idea in the field of artificial intelligence (AI).
More specifically we want to research the feasibility of using Occam’s razor
in a learning process that will solve logical problems, by evolving appropriate
compact code, and by using a divide and conquer approach. The code will
be compact by virtue of code reuse, i.e. modular programs where modules
correspond to real concepts. It should furthermore generalize enough to be
capable of quickly solving different problems of the same domain because the
solution program is built by and out of such previously learned concepts [4].

Complexity theory indicates that building such compact, powerful programs
is a hard optimization problem [5]. A human programmer is no more able to

1



CHAPTER 1. INTRODUCTION 2

build such a compact program by hand than he would be able to solve huge
traveling salesman problems by hand. If programs that understand are to be
built, they will have to be written by machines (at least partially), e.g. by using
genetic programming techniques. A more mixed approach would be to use a
kind of powerful CAD1 tool, which unfortunately does not yet exist.

In practice, an additional criterion cannot be left aside: if we want to use
such a compact program in real applications, we have to trust it. And there is no
better way of building trust than understanding, so we want our resulting code
to be human-readable. We think that this feature may possibly be a positive
side-effect of evolving a result that closely matches the underlying structure. It
is possible that many of our concepts may turn out to be entities in the evolved
modular structure.

Nature threw massive computational resources at the problem of building
such understanding programs (in the form of evolution), and it is an open
question whether the currently available computational resources will allow a
solution.

1.2 Our approach

We are addressing this problem, not in its entirety, but in a restricted domain.
The domain we chose is the one of two dimensional navigation problems, because
many general purpose concepts are involved, humans excel in the domain and
easily learn how to adapt. More particularly, we decided to start with a
specific problem that embodies many of the difficulties of the domain: the one-
player game Sokoban. Chapter 2 is describing this game extensively, and its
section 2.7 is justifying why it is a very appropriate problem for our purposes.

We believe that the structure of the Sokoban domain can reasonably be
described in terms of entities that have a close relationship with human concepts,
both nameable and implicit. For sake of simplicity, we will call them concepts

(see also section 2.5). Furthermore we assume that (a) human players can solve
many interesting Sokoban instances2, (b) when doing that they use a number
of high-level concepts, (c) sometimes they have to learn a new concept in order
to progress, (d) these concepts are simple, unique, general and composable,
and (e) learning how to play consists in understanding the relevant concepts
(i.e. learning how to exploit the underlying structure) and in learning how to
use known concepts.

1.3 Previous work

In the field of artificial intelligence, concept learning has not been a significant
focus. Instead, most methods have generated concepts implicitly and in
a distributed fashion (e.g. neural networks, genetic algorithms). Other
systems have attempted the composition of hand-constructed concept structures

1CAD: Computer-aided design
2Most of those instances cannot be solved by search-based algorithms.
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(e.g. SOAR [6], LABYRINTH [7]). However, we are not aware of any previous
research that uses concepts to evolve compact code.

Junghanns and Schaeffer have constructed a program that solves many
Sokoban problems that humans find interesting[8]. This was a tour-de-force,
as no other approach of which we are aware is able to solve even the simpler
Sokoban instances. But their program was nonetheless a mainstream AI
approach: it is based on search and gains its advantage over previous AI search
programs from complex hand-coded modules that restrict search. But the
method (a) requires a lot of human hand-coding on a domain-by-domain basis,
(b) is not obviously extensible to domains beyond Sokoban (c) does not achieve
human levels of understanding even on Sokoban, and (d) does not output any
code for solving the complete problem class.

Baum and Durdanovic have taken a similar approach to ours, but addressed
different problem domains[9]. Their work is based on an evolutionary framework
in an artificial economy which encourages compact and efficient code. They have
been able to evolve compact code that solves large problems in Blocks World
efficiently, and without any hand-coded parts. They have found similar but more
moderate results on the problem of Rubik’s Cube. However, these problems can
be solved by purely computational means with standard AI techniques.

We will adopt domain-specific ideas from Junghanns and Schaeffer’s work,
and build an evolutionary framework inspired by Baum and Durdanovic’s.

1.4 Objectives

Our goal is to build a program that learns to understand how to reason about two
dimensional navigation problems well enough to solve human-solvable Sokoban
problems. Along the way, we intend to gain deeper knowledge on the following
questions:

1. Does the problem space have an underlying structure that can be described
sufficiently well with concepts?

2. How difficult is it to code those concepts manually?

3. How efficiently can evolution combine them?

4. Can we evolve a compact program that solves simple Sokoban instances?

5. How well does such a program scale to hard or very hard ones?

Note. We realize that these objectives are ambitious, especially given the severe
time restraints imposed by this project being done within the framework of
a diploma thesis, i.e. six months. It is thus obvious that we cannot achieve
everything that we would like to, but we are positive that the work will be
continued.
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1.5 Plan

We will start by analyzing the problem domain of Sokoban (chapter 2), and
based upon that, we will develop a set of hand-coded modules that capture
meaningful concepts and actions in the domain (chapter 3).

Then we will design an appropriate representation language that can describe
meaningful algorithms in the program domain and make use of the developed
modules (chapter 4).

This language will be the basis for evolution in an evolutionary framework
based on the Hayek system mentioned above, which we describe in chapter 5.

The experimental setup is described in chapter 6, and the empirical findings
are shown in in chapter 7. Finally, in chapter 8 we will critically evaluate our
results, conclude and talk about the future work.



Chapter 2

Sokoban

Sokoban is a classic puzzle game invented by Hiroyuki Imabayashi in 19801.
Over the years many versions for all platforms have been developed, it is still
actively played today, and new levels are created all the time. The simplicity
and elegance of the rules have made Sokoban one of the most popular logic
games.

2.1 Rules

If you are familiar with the game, you may skip this section, which explains the
few simple rules of Sokoban. Otherwise, we strongly recommend you to try and
play the game a bit, after reading it. Some of the available versions are listed
in the bibliography [10] [11] [12].

‘Sokoban’ is Japanese and means ‘warehouse’. The goal of the game is to
push barrels into storage locations in a crowded warehouse. We call a problem
instance level, and it corresponds to a situation in a warehouse. Formally, it is
defined as a two-dimensional grid where each space can be one of the following:

• free space

• a wall

• a barrel

• a storage location

• the pusher

• a barrel in a storage location

Each space is uniquely identified by its coordinates on the grid.

By convention there is always a closed wall around the level, and there
are exactly as many barrels as there are storage locations. The pusher

corresponds to a human worker who is in charge of properly ordering the
warehouse. There is exactly one. He can move freely to adjacent free spaces

1The game is Copyright c©1982 Thinking Rabbit, a company of which Hiroyuki Imabayashi
is the president.

5
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wall

barrel

storage

pusher

stored barrel

Figure 2.1: Symbols used

(but not diagonally). He can also push (not pull) a barrel, but only one at
a time. The level is said to be solved when every barrel is on some storage
location (barrels are not paired with specific storage locations).

Have a look at figure 2.2 for small example, which shows the main steps of
its solution. The meaning of the symbols are explained in figure 2.1.

Solutions in Sokoban are subject to the topology of the level and the
placement of the barrels. They are also inherently sequential: only limited
parts of a solution are interchangeable because subgoals are often interrelated.

2.2 Complexity

It has been proved that solving Sokoban is NP-hard and PSPACE-complete [13] [14].
Now this statement could be the end of a project like this one already, if it was
not for an intriguing observation: the levels that humans consider the hardest
and the most interesting are usually not large (they usually have grids between
8x8 and 20x20).

If you want to get a feeling for how hard a compact level can be, you might
want to try to solve the level in figure D.6 (page 51). It has only 6 barrels, 5
of which are already in a correct location, and still the solution is surprisingly
long and complex.

Other than the theoretical results, we also have empirical evidence that quite
small levels (of grids smaller than 20x20) that are interesting to human players
cannot be tackled by brute force. It turns out that applying a traditional AI
approach like using an efficient domain-independent search algorithm2 does not
yield a solution, even on a simple level (see figure 2.3, how long does it take you
to solve it?), and with a very substantial computational effort [8].

Let’s have a closer look at some of the reasons why this is the case: the
branching factor in the search can go up to a multiple of the number of barrels,
and the depth is usually more than 100 pushes, and can go up to more than a
thousand [8] (for the example given in figure 2.3, it is exactly 97). This can give
us a state space of over 10100 states but only one goal state.

2We refer here to Blackbox 3.3, the winner of AIPS’98 fastest planner competition, the
experiment is described in [8]
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Figure 2.2: A walk through of the optimal (shortest) solution to a simple
example (having only one barrel). In the last state, the level is solved.
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Figure 2.3: A simple level, by Thinking Rabbit, Inc.

2.3 Optimality

For a given level, it is possible to distinguish different solutions that differ in
the number of moves or the number of pushes that the pusher does. Different
versions of Sokoban count either, but for this paper, we will consider the moves
to be of secondary importance, and only count pushes.

However, in accordance with human playing behavior, we do not place the
main focus on the problem of finding the shortest possible solution, but rather
on quickly finding one that solves the level in a reasonable number of pushes.

2.4 Levels

Sokoban is only as interesting as the levels you are playing. We distinguish
several types of levels:

traditional levels: they are designed with a lot of effort, moderately large and
are often built around a specific concept. Some of these are grouped in
collections with incrementally increasing difficulty. Example: figure 2.3 or
figure D.7 (page 52).

minimalistic levels: similar to the previous type, but smaller and generally
with no space that is not strictly necessary. They may or may not be
based on a concept, but they usually have little or no structure. This
category seems to be the most appropriate for a search-based approach to
the game. Example: figure D.6(page 51).

thematic levels: the focus here is on the visual appearance of the maze, they
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may be fun to play but are not necessarily challenging. They can be very
large.

generated levels: these randomly generated levels depend strongly on the
quality of the generating program. They are generally small and can
be interesting. Sometimes they are just hard and confusing though.

trivial levels: this is a set of very small levels (only very few barrels) that we
wrote ourselves, they are not challenging for humans, but can be used for
testing and for bootstrapping the evolution. Examples: figure 2.2 and D.1
to D.5.

We have gathered level collections from various authors from the Internet[10]
(mainly of the traditional type) and have written a trivial collection. To extend
these data, particularly at the easy end of the spectrum, we have developed
the tools to simplify existing levels. The following means all guarantee that the
simpler level remains solvable:

• remove a number of barrels (and the same number of storage locations)3

• remove a number of walls, thus changing the structure and increasing the
number of possible solutions.

• for levels where we have a complete trace of a solution, we can produce
variants that capture the situation at different stages. Each stage
corresponds to a new, partly solved instance, that is easier to solve than
the original level.

With these tools in hand, we are able to produce enough training instances
for our evolutionary framework. Apart from that, we also want our levels to
be incrementally harder, reducing the gaps in difficulty as much as possible,
because such a large gap might halt the evolutionary process. We are aware
that our simplifications do not necessary close these gaps: removing a single
barrel can make the level trivial to solve, without offering any insight on how
to solve the original instance.

There is no unique way of measuring the difficulty of a level4, although there
are different relevant criteria:

1. size of the grid

2. number of barrels

3. length of the solution

4. average solution time (human player)

5. size of the search space

6. number and complexity of concepts involved

3This is actually a bit more tricky than it sounds: we have to be careful to remove a storage
location which can be (in some solution) occupied by the removed barrel.

4In fact, human players still rely on a subjective impression, i.e. the common version of
the game [10] will ask the player for their opinion after completing each level.
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Figure 2.4: Counter-intuitive turn: in order to push this barrel to the left, we
first need to push it inside, get behind it and then push it back (we assume that
the pusher is not inside at the start)

Figure 2.5: This is a one-way passage: the pusher can only go from the left
to the right (push right, push left) if it does not want to put the barrel into a
deadlock. After having passed through, it is again only possible to go through
from left to right. There is a complete level based on this concept in the original
collection, it is shown in figure D.7 (page 52)

The original set of levels (that Junghanns and Schaeffer [8] used as their
reference) is not clearly following any of these: but it continuously introduces
new concepts over time, and it is necessary to assimilate those concepts to be
able to solve some of the later levels.

Finally, as we cannot determine an order of difficulty a priori, we will take
our best guess — which we base on increasing size and adding concepts — and
refine it based on our experimental results.

Note. For the specific subproblem of deadlock detection, described in sec-
tion 3.4.6, we developed some additional tools for generating and manipulating
levels; these tools however are not used anywhere else in the project.

2.5 Concepts

We have been speaking of concepts already, so let’s have a look at a few concrete
examples now: figures 2.4, 2.5 and 2.6 illustrate a few simple ones, which are all
related to the static structure of the level. Other ones are for example tunnels
(what goes in has necessarily to come out) or pusher-passages (open for the
pusher, but cannot be used to push a barrel through).
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Figure 2.6: This pattern shows a passage that can be passed only once (enter
at the bottom, push down both barrels, exit at the top) and is then forever
blocked.

Figure 2.7: The room was empty before; now the maximum of 6 barrels have
been temporarily placed inside, where they do not disturb. It is possible to get
all of them out of the room again (to where the storage locations are).

An example of a more sophisticated concept is illustrated in figure 2.7, which
is the idea of temporarily storing a large (maximal) number of barrels in a room
(for later use), without causing a deadlock. A particular concept, arguably
the most important of all, will be analyzed extensively in the next section:
deadlocks.

We will not attempt to enumerate all possible concepts because there are
too many, and some of them are not easy to describe. Instead, we leave it to
the enthusiastic reader to discover more of them by playing the game. But such
a deep knowledge of the game is not necessary for the understanding of this
project, nor is it required for us, because — and this is exactly the purpose of
using an evolutionary framework — our system will eventually discover these
concepts by itself.

2.6 Causality and deadlocks

Unlike many other logical problems, Sokoban is deeply pervaded by the notion of
causality: the fundamental rule (push not pull) has as a consequence that most



CHAPTER 2. SOKOBAN 12

Figure 2.8: Static deadlocks, consisting of one barrel and the configuration of
walls around it.

Figure 2.9: Simple, local deadlock patterns.

manipulations are not reversible. Since all barrels need to end up in a storage
location, it is common that one push leads to a situation that cannot lead to
a solution, whichever manipulations come after it. We call such a situation a
deadlock.

Before describing the consequences of this, we suggest that you have a look at
figures 2.8 and 2.9 for an illustration of different kinds of deadlocks. A deadlock
can be formed by as few as one or as many as all the barrels of the instance.
Figure 2.10 shows such a deadlock situation that is not trivial.

Deadlocks are a critical element: there is no way to recover from bad push
at an early stage other than to undo everything up to that point and try again.
It is therefore important to recognize potential deadlocks as early as possible;
this is one of the first things one learns when starting to play the game (because
of the high amount of frustration). Unfortunately this is not always possible,
thus one learns to live with it: after backtracking to the bad push, one generally
tries to redo more or less the same manipulations, and so — usually — most of
the effort was not in vain.

2.7 Conclusion: Why Sokoban

We conclude this chapter by pointing out the main arguments that made us
choose Sokoban over other logical problems or games:

• it is a real problem, not an academic one,

• the rules and the framework are simple and easy to understand,
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Figure 2.10: An example of a non-local deadlock: this level can never be solved
because of the barrel in (5,4), but the barrels in (5,6) and (7,6) contribute to
the situation too.

• there are enough problem instances available for learning,

• it is very hard and it cannot generally be tackled by a standard AI
approach

• while the problem instances go smoothly from easy to hard, which makes
incremental learning possible, and, last but not least,

• it is actually a very fun game!



Chapter 3

Domain-specific modules

3.1 Definitions

Before describing the modules, we will put forward a few definitions of terms
that we will use repeatedly:

Definition. x is said to be reachable from y, if the pusher can move from x
to y without pushing any barrel.

Definition. A zone is a set of positions in a level where each one is reachable
from each other. See also figure 3.1.

Definition. A barrier is the set of barrels between two zones, so that, was
any of the barrels to be removed, the two zones would be connected (and form
a single zone). See figure 3.1 for an illustration.

Definition. y is said to be barrel-reachable from x if, when all other barrels
would be removed, a barrel in x could somehow be pushed all the way to y.

Definition. A chamber is a set of positions in a level where each one is barrel-
reachable from each other.

Definition. A strait is a position through which all barrels have to pass (in
the same direction) on their way to a storage location. Not all levels have a
strait. If there is more than one, we use the one that is closest to the storage
area.

Definition. The focus is a subset of all the barrels. Barrels in focus are those
being considered for pushes, or those that have been pushed recently. Barrels
not in focus are assumed to be inactive, fixed1.

3.2 Representation of the game

Instead of simply storing the grid of a level (and its contents), we built a more
complex datastructure to represent a game. In addition to storing the level and

1A normal consequence of this is that when a certain (sequence of) manipulations is not
possible, it may be necessary to increase the focus and try again.

14
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D

Figure 3.1: The barrier between zone 1 and 2 is composed by barrels A and B,
the one between zone 2 and 3 by barrels C and D. One might be tempted to
say that B and C are between zones 1 and 3 but this is not a barrier because
removing B or C would not connect the zones.

keeping track of where the barrels and the pusher currently are, it also keeps
additional information up to date:

• the forbidden positions that can be statically determined: if a barrel
should ever be put there this would by itself put the game into deadlock.
These positions are filtered out at the source and never considered for
pushes. Figure 3.2 offers an illustration of this concept.

• the static structure of the level is a directed graph showing which cham-
bers are barrel-reachable from which other chambers. When augmented
by the number of barrels and storage locations in each chamber, this graph
may provide us with additional explicit constraints on how to solve the
level; in some cases it can even tell us that we are deadlocked2.

• the dynamic structure of the level, consisting of all the zones. We keep
track of how they are related to each other by maintaining (incrementally
updating) an undirected graph in which each zone and each barrel has its
corresponding node, and links in the graph are established between those
which are physically touching in the level3.

• the trace of all manipulations that have been performed on it. This
includes all pushes and all changes to the focus.

3.3 Low-level functions

Without going into detail, here are some brief descriptions of the low-level
functions on which the complex modules are built; some of these will also be
used in the instruction set of the representation language (section 4.4):

2Details on the implementation of the static structure can be found in appendix C.2
3Details about this dynamic graph can be found in appendix C.1
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Figure 3.2: The spaces marked with a cross are forbidden for any barrel: once
a barrel would be put there, the level would necessarily be in a deadlock. Note
that this generally excludes a significant number of possibilities for pushes.

• a function to determine if the level is solved,

• a function that does a push if it is legal, i.e. if nothing hinders the push,
if it does not lead to a forbidden position and if the pusher can reach the
position from where he has to push. This function also moves the pusher
to where he is needed automatically,

• a function to undo the last push,

• functions to set milestones in the trace, which can be used to quickly
come back to later, e.g. after getting stuck in a deadlock.

• a hashing function that allows us to determine if two states are equivalent,
and therefore evoid cycles,

• functions that add a barrel to or remove it from the focus.

3.4 High-level modules

This section describes the high-level modules that we have built. They may
call each other, sometimes recursively. Their implementations are not final: by
having access to new modules, or new versions of old modules, we can develop
a new version which can do its task with less constraints. Not all versions have
been fully implemented at this stage of the project; these are flagged by [not

implemented] . Our main focus has not been on developing the most sophisticated
(and often recursive) versions of these modules, because we wanted to achieve the best
results with simple building blocks, at least as long as this is possible4. Those versions
will be useful at a later stage.

4We have also resisted the temptation of writing something by hand that could serve as a
complete solver
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3.4.1 Push barrel to destination

The getBarrelTo module finds a sequence of pushes which will bring a specific barrel
to a (far-away) destination.

Version 1: does not push any other barrel around.

Version 2: includes scenarios in which the barrel needs to be pushed in one direction
and then back the same way (c.f. figure 2.4).

Version 3: apart from manipulating the selected barrel it does only pushes that are
reversible (and reverses them at the end).[not implemented]

3.4.2 Move pusher into zone

The getPusherTo module looks for a sequence of pushes which will allow the pusher
to get into a different zone (or to a specific position), without creating a (detectable)
deadlock. It can also be used to try and open up an adjacent zone, which is a common
subgoal when playing Sokoban. Furthermore it can be used to get behind a barrel or
a barrier.

The planning algorithm that this involves is based on the concept of relevance.
A barrel can be relevant if it:

• is directly blocking a way to the goal,

• blocks a push of a relevant barrel, or

• forms a deadlock with a pushed relevant barrel.

Version 1: internally uses version 3 of detectDeadlock.

Version 2: (recursive) internally uses version 5 of detectDeadlock.[not implemented]

3.4.3 Reversible push-sequences

This module determines if a sequence of pushes is reversible, i.e. there exists a second
(reverse) sequence which, when executed after this one, leads back to the original
situation.

Version 1: tests only the exact symmetric sequence.

Version 2: same, but may change the order in the reverse sequence.[not implemented]

Version 3: (recursive) may also try to make different temporary pushes, if such
pushes are reversible.[not implemented]

Version 4: (recursive) may furthermore try to push previously untouched barrels
temporarily, if such pushes are reversible.[not implemented]

All versions are correct, but even the fourth version is not complete, as there might
be, for example, a structural constraint that forces a barrel to come back a different
way (see figure 3.3).

3.4.4 Ordering of storage locations

Often the storage locations are grouped in one area, with only a limited number of
access points. It simplifies finding an overall solution if we know in which order to
fill the individual storage locations. It avoids the situation in which we have almost
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Figure 3.3: Would pushing the barrel down once be reversible? Yes, but we
need to go all around. Imagining a situation like this set in a complex level
should make us believe that there cannot be a simple and complete algorithm
for determining reversible sequences.

solved a level but then noticed that we placed a barrel badly, and cannot undo that
without losing most of the solution.

The storageOrder module is executed only once, at the beginning, and the
sequential order that is found is stored and used the rest of the time. This is sufficient
because the order depends only on the static structure of the level (and the original
positions of the barrels).

Version 1: works on levels that have a strait, in the strict sense of the definition.

Version 2: works on levels that have all storage locations in the same chamber, but
so that a barrel will not exit that chamber once it is inside.[not implemented]

Version 3: works in general on levels that have all storage locations in the same
chamber.[not implemented]

The instruction that uses this module (bestStorage) will return the storage
locations in order, starting with the first one that is not occupied by a barrel. For
levels where the module cannot determine any order, this instruction will still return
an approximately reasonable answer, based on the heuristic of filling the furthest
positions first.

3.4.5 Temporary placement of barrels [not implemented]

A practical module would be one that could best use the available free space for
temporary placement of barrels that are hindering our progress elsewhere (see also
figure 2.7). We have not implemented this module for lack of time.

3.4.6 Deadlock detection

Before describing the detectDeadlock module, we have to acknowledge that building
a module that can detect any deadlock is a hard problem, in fact it is as hard as
building one that solves Sokoban directly (for a justification of this statement, please
have a look at figure 3.4). However, having a module that can detect a large number
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?
A

B

Figure 3.4: The question that we will ask our deadlock detector is the following:
is barrel A causing a deadlock? The answer is yes if the position marked by B
can never be reached by the pusher. This however is dependent on what is in the
big rectangle: it can be a Sokoban level of any complexity. We can even imagine
that the access to B is only possible after solving that level completely. In that
particular (but possible) case, detecting a deadlock is equivalent to finding a
solution for the level.

of deadlock situations will be very helpful. So the purpose of this module is to detect
a large number of deadlock situations, as early as possible.

Version 1: detects only static deadlocks (c.f. 2.8).

Version 2: detects structural deadlocks as well, i.e. a chamber without an exit (for
barrels) which has less storage locations than barrels .

Version 3: in addition to those before, detects simple pattern-based deadlocks (like
those in figure 2.9, but not exclusively).

Version 4: (recursive) for each barrier (with not enough storage locations behind it),
makes a call to getPusherTo (version 2) to see if it is possible to get behind
its barrels without causing a deadlock. This is not guaranteed to have a finite
execution time.[not implemented]

We originally had a different approach to the problem of detecting deadlocks: we
designed a pattern language adapted to Sokoban and tried to evolve a set of efficient
patterns that would be capable of detecting the most common deadlocks. We deemed
the results to be insufficient for our purposes and discarded the idea again, but not
without taking over some of the patterns we found into version 3 of this module.

Note. There is a kind of symmetry between the concepts of deadlock and of reversible:
one has very grave consequences and the other almost none. While solving a Sokoban
level we try to avoid all pushes that lead to a deadlock, but we also avoid playing around
too much with reversible manipulations because they are mostly meaningless. So the
choices that are actually interesting are those that fall in-between these extremes; they
are the ones a search-based solver should consider.
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Representation Language

4.1 Objective

The heart of the agents in our artificial economy are two pieces of code, one determines
how much the agent will bid for a given state of the game, and the other one determines
the action that it will perform on the game, in case it wins the auction. This procedure
is described in detail in the next chapter; here our focus is on how those two pieces of
code can be constructed.

The evolutionary process requires that the agents are structured in a way that they
can be generated randomly, as well as undergo mutations. Furthermore, we want
them to have a substantial expressive power because the problem domain is complex,
although we do not think that they need to be Turing-complete. But the quality
of the representation language for this code is not only determined by its expressive
power, but also by the proportion of possible expressions that are actually meaningful.
We therefore need a sufficiently restrictive syntax on one hand, and a minimal set of
instructions that can still cover the domain on the other hand. The design of our
representation language is thus striving for this delicate balance between expressive
power and meaningful restrictions. If we can achieve that, then the selection process
of our artificial economy will be able to reduce the set of meaningful code-fragments
by the criteria of usefulness and efficiency.

4.2 Syntax

The syntax of our representation language is based on typed S-expressions [15].
These are recursively defined as a symbolic expression (as in Lisp), consisting of either
a symbol or a list of S-expressions. A comprehensive way to look at them is to see
them as a n-ary tree where each leaf and each node is a symbol. Each symbol has a
type, and if it is not a terminal symbol, it has a determined sequence of types which
it takes as arguments (i.e. subtrees). See figure 4.1 for an illustration.

4.2.1 Types

We have a relatively large number of data types in our instruction set. Apart from
basic types like integers, booleans or lists, we also have many domain-specific ones.

20
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plus

(int)

neighborZones

(zonelist)

length

(int)

1

(int)

if

(int)

0

(int)

pushBarrel

(bool)

randomSelect

(barrel)

bestStorage

(position)

focusBarrels

(barrellist)

Figure 4.1: An example S-expression, shown in its tree representation. Its
canonical form is:
if(pushBarrel(randSelect(focusBarrels),bestStorage),0,plus(length(neighborZones),1)).

basic bool
int

domain-specific position
direction
barrel
push
sequence
zone

Table 4.1: This table contains a listing of types used in our representation
language. Not listed are the list-types: there is one for each standard type, but
there are no lists of lists.

These are introduced to increase the meaningfulness of generated S-expressions, and
to reduce the number of failures or exceptions during execution.

Example. Although in the implementation position and barrel are each equivalent
to a pair of integers, we name them differently for they have different uses: a push
instruction is only meaningful if its first argument is a barrel and the second is a
position without a barrel.

The complete list of types is given in table 4.1. We have paid attention to code
this part of the project in such a way that it is very easy to extend, reduce or modify
the set of types because we believe this will be necessary as the project progresses and
the needs of the representation language change.

4.2.2 Special treatment: loops

At the current stage of the project, we have only implemented one type of loop
expressions: they iterate over the elements of a list. This guarantees a finite execution,
but not necessarily a short one, as it is possible to have an unlimited1 number of levels
of inner loops. The tree on figure 4.2 shows how such a loop is represented.

1Not quite unlimited: there are parameters that restrict the maximal depth of an S-
expression, so they indirectly limit the number of inner loops as well
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forEach

(bool)

intoFocus

(bool)

pushable

(barrellist)

barrelVar

(barrel)

Figure 4.2: An S-expression that contains a loop: the root node (forEach)
executes the expression of its right subtree for as many times as there are
elements in the list returned by its left subtree. The barrelvar node is a
variable that iterates over these elements.

Loop expressions return a boolean value, for forEach it is True if all its iterations
(there must be at least one) return True, and for the analogous loop expression forAny

the behavior is the same but the return value is True if at least one of its iteration
returns True.

Although we will only see how generation and mutation work in sections 4.5
and 4.6, we can already specify the particular treatment that is required there for loops:
the pool of symbols available at a certain node only contains the iterator-variables of
the loop expressions that are its ancestors in the S-expression-tree. Furthermore, a
specific type of mutation for loops will be explained in that section.

4.3 Execution

Execution of S-expression is done similarly to programming languages: for operators
(both arithmetic and logical ones) as well as domain-specific instructions, all arguments
are executed and the results are used in the encompassing instruction (the parent node
of the arguments). The arguments of functional instructions like loops or conditional
clauses are only executed if, and as often as, they need to be.

4.3.1 Exception handling

In case of an execution failure (i.e. a push that is not possible, a selection from an
empty list) the execution of the whole expression is canceled, and the system continues
normally. If this happens while calculating a bid, we assume that the agent did not
bid at all, and if it happens while acting on the game, we assume that the action failed
and undo any manipulations that have been done before the exception.

4.3.2 Time limits

We allow each S-expression only a limited amount of execution time. We measure here
the total elapsed time instead of the actual processing time, for no other reason than
to keep it simple. The parameters that determine this time are set in a way that the
time restriction is very loose; our goal is to avoid only the worst cases2. A timeout
has the same consequences as a normal exception.

2Our current representation makes infinite loops theoretically impossible, but future
extensions might add that possibility, if the expressive power was increased.
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Name return type arguments
plus int int, int
minus int int, int
times int int, int
and bool bool, bool
or bool bool, bool
not bool bool
equals bool int, int
lessthan bool int, int
morethan bool int, int
next position position, direction
previous position position, direction
dir direction position, position positions must be next to each other
distance int position, position manhattan distance
boolval int bool type conversion
pushval push barrel, position type conversion
isEmpty bool list
length int list
select any list, int return type depends on list elements
randSelect any list idem
if bool/int bool, bool/int, bool/int either all 3 are bool or all 3 are int
forEach bool list, bool see section 4.2.2
forAny bool list, bool idem

Table 4.2: Basic instructions

4.4 Instruction set

The tables in this section list the instructions that are used in our representation
language. The descriptions are brief, but all the important instructions are described
in their context, in chapter 3. The notation ‘type1, type2/type3’ means that the
instruction takes two arguments, the first of type1 and the second of either type2 or
type3. We distinguish three categories:

• Table 4.2 shows basic instructions, like arithmetic operators or control flow
commands; these can be evaluated independently of the state of the game.

• Table 4.3 shows perceptive instructions: they have access to information about
the state of the game, but are not allowed to modify it.

• Table 4.4 shows active instructions: these are the ones that can act on the
game. They all have a boolean return type, and the value True indicates that
they have in fact changed the state of the game. The value False means that
they failed (the state is left unchanged).

• Table 4.5 show shortcuts for common combinations of instructions. They do
not add any new functionality but should make expressions more compact and
speed up evolution.

The instruction set is in an early stage of developement, and it does not pretend to
be complete or optimal. As for the data types, we have also constructed the instruction
set in a way that it is very easy to extend, reduce or modify it at later stages of the
project. Specifically, each instruction can be removed or added to the set individually,
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Name return type arguments brief description
solved bool is the game solved?
reachable bool position from where the pusher is now
reversible bool sequence see section 3.4.3
detectDeadlock bool barrel see section 3.4.6
focusBarrels barrellist all barrels in focus
focussable barrellist barrels that are reachable but not in focus
allPushes pushlist all currently possible pushes
getPushes pushlist barrel all pushes for the specified barrel
allStorage positionlist all storage locations
reachableStorage positionlist all those reachable by the pusher
usableStorage positionlist all reachable ones that are empty
neighborZones zonelist adjacent to the pusher’s zone
pusher position the position of the pusher
furthestBarrel barrel of those in focus, relative to the pusher
biggestZone zone of the adjacent ones
bestStorage position see section 3.4.4
getBarrelTo sequence barrel, position see section 3.4.1
getPusherTo sequence position see section 3.4.2
getBehind sequence zone break through the barrier and into the zone
getStrictBehind sequence zone same, but without building any new barrier

Table 4.3: Perceptive instructions

Name arguments brief description
pushBarrel push does the push if it is legal
executeSequence sequence does all the pushes in the sequence
intoFocus barrel adds a barrel to the focus
outOfFocus barrel removes a barrel from focus

Table 4.4: Active instructions. The return type is not mentioned anymore
because it is always bool.

Name equivalent expression
increaseFocus intoFocus(randSelect(focussable))
openUpAZone getStrictBehind(randSelect(neighborZones))
bringBarrelsHome forAny(focusBarrels, getBarrelTo(barrelvar, bestStorage))

Table 4.5: Shortcut instructions. These instructions do not take any arguments,
and their return type is bool.
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with a minimum of effort. For the purpose of further refinement, we vary the subset
of these instructions that are actually available for a given simulation, as described in
section 6.3.

4.5 Random generation

All nodes in an S-expression are generated randomly, from the root downwards, while
being subject to the following criteria:

1. Depending on the use of the generated S-expression for bidding or acting,
the instruction set is different: as the S-expressions that are responsible for
evaluating an agent’s bid are not supposed to change the state of the game
(i.e. do pushes), we eliminate all active instructions from their instruction set3.

2. With an increasing depth in the expression tree, instructions are favored
that have no arguments. This guarantees that an S-expression cannot grow
indefinitely.

3. The generated instruction has to have the appropriate return type (i.e. the
type of the value returned by its execution). It has to conform to the type that
the parent node specified, or, in case of the root node, it must be int for bidding
expressions and bool for action expressions.

In other words, any two instructions that are not differentiated by any of these
criteria will be used with the same probability. This is the simplest way of doing it,
and we are aware that this might be a drawback once the set of instructions becomes
larger, in which case we are prepared to extend the model.

4.6 Mutation

An S-expression can undergo a mutation, which implies that it is changed at exactly
one node. This change can be one of the following:

1. a simple substitution of the node by one with the same type and argument types,
without changing the subtrees of the arguments. See figure 4.3.

2. a substitution of a subtree: replacing a subtree by a newly generated one (of
the same type). See figure 4.3.

3. insertion of a new node with, if applicable, a newly generated argument-subtree.
The original subtree is not changed. See figure 4.4.

4. a special purpose mutation which transforms a selection from a list into a loop
over that list. See figure 4.5.

3Their allocated execution time is also smaller.
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(int)
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(int)
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Figure 4.3: A mutation of type 1 on the left and of type 2 on the right, both
times acting on the plus-node.
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(bool)
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Figure 4.4: A mutation of type 3: the if-node has been inserted, and the subtrees
of its condition and else clause have been generated.
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(barrellist)

forEach

(bool)

pushBarrel

(bool)

barrelVar

(barrel)

focusBarrels

(barrellist)

bestStorage

(position)

Figure 4.5: A mutation of type 4: the mutated node is randSelect, but the
mutation changes the whole structure of the tree.
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Evolutionary framework

5.1 The Hayek economy

The fundamental idea behind the Hayek economy is self-organization. A group of
agents compete among themselves for the right to perform an action (on the level), for
many rounds. Each round starts with an auction, where each agent may choose to
make a bid, and the highest bidder gains the right to perform an action. An action
can consist of any combination of manipulations onto the state of the game. As a
counterpart, it has to pay an amount equal to its bid to the winner of the previous
round. Once the level is completely solved, the last agent ‘sells’ it to the bank for a
high reward. Section 5.5 illustrates this economic procedure. The amount of the bid
can be interpreted as the agent’s estimate of the current state’s value.

The structure of the system produces rational and cooperative agents that try to
solve the level as good as they can, because this is the only way money can come into
the system. Irrational agents are exploited and go broke.

To keep the agents’ money from accumulating, all agents pay a small tax for each
action they make. This also makes the agents sensitive to computational cost.

Contrary to genetic algorithms where the key element is usually a potentially very
complex fitness function which has to be hand-coded, this system eventually learns its
fitness function. It is implicit in the bids that agents make.

Giving partial rewards can speed the evolution, but we cannot give them, because
we can never be sure that a situation that looks partially solved (many barrels in a
storage location) is not in fact a deadlock. Fortunately this framework is not dependent
on them.

5.2 Structure

The structure of the artificial economy is shown in figure 5.1.

• The simulator coordinates the system: it determines which levels should be
attempted, in which order, and also how much effort should be allocated to
each one1.

1The simulator can also change the parameters of the system during execution to
accommodate different types of levels.
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Figure 5.1: The structure of the evolutionary framework

• The bank has multiple tasks:

1. hold auctions and let the highest bidder interact on the level,

2. keep the system alive by providing credit for new agents,

3. collect taxes, which are dependent on the computational effort that the
agents require, and

4. eliminate inefficient agents when they go broke.

• The agents do the actual work: they analyze the current state of the game,
make a bid accordingly and, if they win, they do manipulations on the level.
Their genome consists of the S-expressions: one that determines how its bid is
calculated, and one that determines the action it will do.

5.3 Bidding

The type of auction we use is very simple: each agent is allowed to bid once (without
knowledge on how high the other agents bid) and the one with the highest bid wins.
The bids are usually in the same order of magnitude as the final reward, which,
depending on the parameter settings, is between a thousand and a million. This is
much higher than the number of agents, so it almost guarantees that no two bids are
ever the same. Should that particular situation rise anyway, we randomly pick one of
the winners. A sequence of auctions is illustrated in the example in section 5.5.

As mentioned before, the bid of an agent is determined by an S-expression.
However, to achieve a smooth distribution of bids in the appropriate range (above a
thousand) without requiring unnecessarily complex S-expressions, we do not directly
take the returned int at face value, but put it in a linear function to produce the
actual bid:

bid = a ∗ bidexpr + b

The two constants (a and b) are determined at the birth of the agent, and can be
negative. If the final bid is negative, we consider that the agent did not want to bid
at all.
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Figure 5.2: A simple level with two barrels, but which can easily be pushed into
a deadlock.

An agent is allowed to have a constant bid (a = 0), in which case it pays less taxes,
but it is also less flexible.

Note. We have devised an alternative bidding mechanism that works with negative
bids as well as positive ones: a high negative bid could be interpreted as the agent
believing that the state is in a deadlock. In that case, once the deadlock is detected
by the bank, the last agent has to pay a penalty, but it can still make a profit if it
receives enough money through its negative bid. We have not progressed far enough
in the project to make use of this mechanism: we intended to keep it as simple as
possible as long as possible.

5.4 Taxes

All agents pay taxes, for everything they do. One part of the taxes are proportional to
the number of nodes in their S-expressions, the other part is determined dynamically
and is approximately proportional to the execution time needed to process the
instructions during bidding or acting. The taxes for bidding are lower, because these
instructions get executed at each round, and we do not want agents to go broke before
they even get a chance to act. There is a high tax associated with leading the game
into a (detectable) deadlock. Furthermore there is a special tax for agents that bid
high (and win the auction) but do not perform a successful action, in order to keep
agents from holding the control for a long time without doing anything.

The existence of taxes guarantees that the agents will evolve to be efficient: an
equivalent expression with less instructions (or faster ones) will out-compete its rival
in the long run.

5.5 Example

This section shows a cold run of the artificial economy (i.e. without creation or
elimination of agents) on the level shown in figure 5.2. We assume that the following
two agents are in the system (there may be more, but they are not relevant).

Agent 1:
bid: 300 ∗ length(E) + 200
action: executeSequence(E)
with E = getBarrelTo(randSelect(focusBarrels)), randSelect(allGoals))

Agent 2:
bid: 400 ∗ length(neighborZones) − 100
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round winning bid winning agent manipulation wealth agent 1 wealth agent 2
1 500 1 (2,2)→(3,2) 1000-30-500 1000-10
2 300 2 - 470-10+300 990-130-300
3 300 2 (3,2)→(4,2) 760-10 560-30
4 500 1 (2,1)→(1,1) 750-30-500 530-10+500
5 500 1 (4,2)→(3,2) 220-30 1020-10
6 1000 bank - 190+1000 1010

Table 5.1: This table shows the state of the system at each bidding round. The
wealth is shown in the following format: wealthold −

∑
taxes ± bid.

action: executeSequence(getBehind(randSelect(focusBarrels)))

The table 5.1 shows what is happening in the system, and how the wealth of the
two agents evolves. The agents start out with an initial wealth of 1000. They pay
what they bid to the last winner (which may be themselves if they win repeatedly,
like in rounds 3 and 5). At each round the agents pay a tax, to simplify the example,
we made them 10 for bidding and an additional 20 for acting; in the real case, the
numbers would be dependent on the actual execution. In round 2, the winning agent
does not make a successful action (it might have attempted (2,1)→(3,1)→(4,1)→(5,1)
which is not valid because it leads to a deadlock) and it therefore pays a special tax of
100. In the end, the bank buys the state for a final reward of 1000. The agents may
not be the most efficient ones, but they both made profit.

5.6 Agent creation and elimination

We start out with a set of randomly generated agents. All agents start life with a
specified amount of money. Over time, as weak agents are eliminated, new random
ones will be generated. We artificially keep the environment in balance by setting
upper and lower bounds on the number of agents that can exist at a given time.

Apart from that, rich agents are allowed to create offspring. The genome of the
children is a mutated version of their parents’: the mutation can take place in the
bidding expression or constants, or in the acting expression. Those children also share
a percentage of their profit (or loss) with their parents (recursively).

In the special situation when no agent wants to bid for a state, new agents will be
generated until one of them is willing to bid. This agent is added, and the system is
allowed to go its course. This guarantees that the system cannot get stuck.

Agents are eliminated if they are bankrupt, or if the population limit is reached
and another agent is added (for example in the situation mentioned above). In that
case, one of the existing agents has to be eliminated, and we pick the one with the
lowest score:

score = wealth + c ∗

∑
auctionswon

age

This formula for the score was fixed ad hoc, with a parameter (c) that makes a trade-off
between activity and economic success.

5.7 Behavior

Let’s first look at some behaviors that are automatically eliminated by the system:
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• Agents that bid too high lose in the long run, because this reduces their profit.

• Agents that bid too low will go broke because they lose money each round from
taxes but they do not gain enough to compensate for that

• Agents that have a tendency to lead the state into a deadlock are punished
directly if the deadlock can be detected, and indirectly because eventually no
other agent will want to bid on a blocked state.

• Agents that are not acting on the state will continuously lose money until they
are broke (this is sped up by the special tax).

• Agents that have very complex S-expression, or whose actions take a lot of time
will lose a lot of money on taxes, and so they can only survive if their actions
are very appropriate.

If all goes well, we reach an equilibrium where a small set of agents do all the
work. During a run, their bids will continuously increase, until the level is solved (the
last agent’s bid is almost as high as the reward for solving the level). All involved
agents make a profit that is high enough to cover their expenses (i.e. taxes).

There are other possible behaviors of the system, that lead to a less desirable state:

• a too high rate of turnover among the agents leads to an unstable pool of agents,
which cannot end up in an equilibrium.

• a successful agent or group of agents can produce a large number of children2,
and this clan can dominate the economy so that there is no innovation anymore.

• high taxes make the environment too hard to survive in, even for ‘good’ agents:
it leads to a system with only random agents.

• an agent can accumulate so much money on some levels that it is capable of
dominating and thus immobilizing the economy for a long time on a level it
cannot solve.

5.8 Seeding

In some simulations we make use of the special mechanism of seeding the system
originally with some hand-coded agents. We write them in a way that we consider
to be close to optimal for the given task (or at least close to how we would solve
it). However we try to keep the code as simple as possible, so that the probability
of randomly generating the exact agent is still acceptably large. We use seeding for
levels that the system cannot solve, or for those which it can but we believe that the
effort it requires is too large.

We keep track of how well those agents perform in the artificial economy, if they
survive, and by which agents (if any) they are superseded. If they perform well, we
take them out again, one after another, and see how and how quickly the system
replaces them by evolved agents. If this replacement does not take place, we try to
analyze the reasons for that: one possibility are agents that are quite complex, but
that could not survive if amputated by one part of their code, i.e. they can not be
evolved incrementally.

If the seeded agents do not perform well, we either did not code them well enough,
or there are flaws in the workings of the economy (usually inappropriate parameter
values). Thus, in any case, we can incrementally improve our system.

2We have a parameter that restricts this number and makes the scenario quite unlikely



Chapter 6

Experimental Setup

In brief, we test our system on individual levels or on sequences of levels, while in the
same time varying the instruction set. We then analyze the outcomes qualitatively
and quantitatively.

6.1 Simulation modalities

We consider a level to be solvable at the moment the system solves it for the first
time. This is not powerful enough as a criterion though, because it might have been
lucky or found the solution by trying many random manipulations. We say that it
understands a level, if it can repeatedly solve it efficiently, i.e. the large majority of
agents that act on the state actually contribute to its solution. We determine this by
looking at the proportion of fruitless actions from start to solution1.

At the moment a level is solved for the first time, money flows into the system
in form of the reward. This is the first positive feedback, which can speed up the
evolution, up to the level of understanding.

The simulator will have evolutionary runs on one level at a time, until it considers
that the level is understood, or until a specified number of runs have been completed
unsuccessfully. Then it repeats the procedure with the next level in the set.

If a run ends up in a (detectable) deadlock, we restart from the original position of
the level, while keeping the agents (because the economic environment will eventually
eliminate the responsible ones, even without our interference). If this happens a certain
number of times, we skip the level.

For those deadlocks that we cannot detect the situation is slightly different: as
we cannot distinguish a long but fruitful run from a random erring in an undetected
deadlocked state, we have to make a trade-off: we limit the number of auctions in
a run. We fix it to a number that we deem largely high enough for getting to the
solution, and restart after reaching that limit. As before, the number of restarts is
limited itself (see also appendix B).

Once a level is understood, we halt the evolution on that level. We are aware that
may therefore not evolve the most efficient agents and the most appropriate bids. We
are making this trade-off because at this stage of the project we are more interested

1A parameter determines the exact proportion, but it is ususally around 25%.
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in qualitative results: we want to see how much effort and which instructions are
necessary to understand a level.

After the evolution is halted, we do an additional experiment that we call cold

run: we disable the generation/elimination of agents (this means that the pool of
agents is kept artificially constant), and have the system solve the last level again,
while observing the auctions.

6.2 Level sets

A run is either made on one level, or on a sequentially ordered set of levels. In the latter
case, we assume that all levels but the last one are easy, and measure the performances
only on that last one. The difference is that in one case the level is attempted with a
starting pool of random agents, whereas in the second case that pool contains already
a few agents that have proved to be useful on the previous levels in the set.

We now list all the level sets we used, and give them an identifier, for reference
in the experimental data. The singleton with only the last level of the set setname is
noted setname0.

A1 contains only the level shown in figure D.1, page 49.

A2 adds the level shown in figure D.2 to the set A1.

A3 adds some more levels that have only one barrel to A2, the last one is shown in
figure D.3.

A4 adds some more, longer, levels that have only one barrel to A3, the last one is
shown in figure D.4.

B1 add some levels that have two barrels to A4, the last one is shown in figure 5.2,
page 29.

B2 adds some more, longer, levels that have two barrels to B1, the last one is shown
in figure D.5.

C1 B2 plus the first ‘interesting’ level (figure 2.3, page 8).

Similarly, the sets Cn (with n ∈ [2, 90]) are defined to be the extensions of Cn −

1, with the last level being one of the traditional levels (number n) from Hiroyuki
Imabayashi. So far we only built the first few of these sets, because the system was
unable to solve any others than C1. Furthermore we have the tools in place to build
much larger sets which would include simplified versions (see section 2.4) of the last
level in front of it. This is supposed to favor incremental learning, but we have not
exlored this option for lack of time.

6.3 Instruction sets

A certain number of basic instructions is always available to evolution: the minimal
set which satisfies the condition that if any instruction was removed, some trivial
levels2 would not be solvable anymore (not to talk about understandable). These
basic instructions are:

• int, push

• allPushes, focusBarrels

2The ones shown in figures D.1 to D.4 (page 49).
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• allStorage, usableStorage, reachableStorage, bestStorage

• biggestZone, neighborZones

• randselect

• pushBarrel, executeSequence

• getBarrelTo

We vary the content of the instruction set by enabling or disabling different groups
of instructions. Those groups are the following:

Logic: this group enables logical operators, like if, and, not.

Arithmetics: this enables all other mathematical functions, allowing more expressive
power for determining the bid.

Loops: enabling this group allows looping S-expressions.

Low-level access: enables the instructions that can manipulate positions and direc-
tions directly (i.e. next, distance). This opens up more possibilities, but also
increases the probability of generating meaningless code.

Advanced concepts enables the modules getPusherTo and storageOrder. This
includes the instructions bestStorage, getPusherTo, getStrictBehind and
getBehind. These are usually more expensive but also very powerful.

Focus: if this group is enabled, no barrels are originally in focus but instructions are
available to increase or reduce the focus. If it is disabled, all barrels are in focus
all the time.

Shortcuts: enables the shortcuts of table 4.5.

6.4 Measures

As mentioned in section 6.1, the qualitative measures are:

• is the level solvable?

• is the level understood?

We limit ourselves to only two quantitative measures, namely the total number of
auctions required to achieve the solved/understood state and the number of auctions
in a cold run (after the level is understood). We take the average of these numbers
over multiple simulations.

There would be different measuring criteria, but we have picked the number of
auctions because it is a good indicator of the evolutionary effort. We believe that it is
more objective than the execution time which is affected by implementation details,
processing power and processor load. Furthermore that measure would be subject to
large irregularities, e.g. in some cases, agents are generated that use extensive amounts
of computational power.

Note. To give a general impression of the computational effort involved in our
simulations, we can give an average execution time (on an average PC) for 104 auctions:
30 minutes for a simple level and a reduced instruction set, 90 minutes for the full
instruction set on a moderately large level. The latter is strongly influenced by the
parameters that specify timeout limits. Fortunately the limit of 104 auctions is usually
not reached because often, results are found significantly earlier.
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Empirical results

This chapter presents our empirical results. The different tables correspond to different
instruction sets. Each table shows the performance of the system on the different level
sets. The numbers are the number of auctions needed (applied on the last level of the
set) to attain a certain qualitative state. These numbers are averages over 10 to 15
runs (more if the variance was high). The column named ‘previous’ shows the number
of auctions spent on average to understand the preceding levels in the set; it is only
applicable if the set has more than one level. Only runs that achieve the qualitative
state are counted in the average, e.g. if B1 is understood only 10% of the time, the
number shown in the cell understood/B1 is the average over only those runs. The
limit for the total number of auctions is 104 for all runs. All other parameters of the
system have been kept constant (see also appendix B). We will further interpret the
data in the next chapter.

7.1 Basic instructions

The first batch of runs is based on the simplest instruction set. The table 7.1 shows the
results. Level sets A1-A4 are reliably understood, B1-B2 are reliably solved, but rarely
understood and not a single run has solved any of the C-levels during our experiments.

For the sets A1-A4, the solution was almost always given by a single agent. As it
solved the levels by itself, the bidding expression is not relevant, it only needs to be
high enough to keep on outbidding all other agents. Its action expression was usually
similar to:

executeSequence(getBarrelTo(randSelect(focusBarrels), randSelect(usableStorage)))

but sometimes the expression for a simple random push dominated:

pushBarrel(randSelect(allPushes))

7.2 Adding direct-access instructions

This batch uses the basic instruction set and the instructions of direct access. We did
a small-scale experiment to determine if this changes the qualitative results; we test:

• A4 to see how the performance on the simple levels changes,
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Level set solved understood previous comment
A1 1.0 1.0
A2 7.1 11.4 4.6
A20 3.8 3.8
A3 1.7 1.9 7.8
A30 3.1 4.6
A4 12.3 15.5 9.8
A40 10.5 17.4
B1 60 493 18.9
B10 88 282 understood 25% of the time
B2 37 1083 38.4
B20 45 1342
C1 - - -
C2 - - -
C3 - - -
C4 - - -
C5 - - -

Table 7.1: Results: basic instruction set

Level set solved understood previous comment
A4 3.0 80 10.9 very high variance for understanding
B10 60 228 understood 55% of the time
B20 98 656
C1 - - -

Table 7.2: Results: basic and direct-access instructions

• B10 and B20 to see if they are now easily understood and

• C1 to see if a harder level can now be solved at all.

The results are not significantly different from before, as table 7.2 shows, some runs
are a little better, some are a little worse. The winning agents are similar to before.

7.3 Adding general-purpose operations

This batch uses the basic instruction set plus logical and arithmetic operators as well as
the loops (not the instructions of direct access anymore). We did another small-scale
experiment to determine if this changes the qualitative results. Again, table 7.3 shows
that the results are not significantly different from using only the basic instruction set.
The main difference in the agents is that the bidding expressions are becoming more
complex, which increases the overall execution time but might be an advantage at a
later stage.
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Level set solved understood previous comment
A4 14.0 15.2 31.2
B10 70 208 understood 50% of the time
B20 111 680
C1 - - -

Table 7.3: Results: basic and general-purpose instructions

Level set solved understood previous
A4 14.4 32.5 11.8
A40 9.1 9.8
B1 13.4 55 19.4
B10 13.5 53
B2 37.5 220 15.0
B20 43.8 298
C1 165 - 21
C10 273 -
C2 - - -
C3 - - -
C4 - - -
C5 - - -

Table 7.4: Results: full instruction set

7.4 All instructions

Our last experiment uses all instructions, including the shortcut expressions but not
those related to focus (we consider it to be too early to introduce them). Table 7.4
shows the results for all level sets except the easiest. The following action expression
(or a variation of it) was the most commonly found among successful (i.e. rich) agents:

or(bringBarrelsHome, openUpAZone)

The most important result is that the last level of C1 (see figure 2.3) can now be
solved, even if it is not yet understood. Also, the performance on the levels in B1 and
B2 is significantly improved.

7.5 Cold runs

For all the levels — except the ones of the C-sets, which have not been understood —
the cold runs were very quick, usually involving only a single or very few agent actions.
The only exception are the cases where the level can be efficiently solved by always
doing a random push (i.e. every push leads us closer to the solution, like in the level
shown in figure D.3): there the cold runs would be sometimes made up of the required
number of such random pushes.
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Discussion

8.1 Critical Evaluation

Using the basic instruction set, the system solves levels with one barrel easily. This is
not surprising because once the system has evolved an agent whose action is always

executeSequence(getBarrelTo(randSelect(focusBarrels), randSelect(usableStorage)))

all levels with one barrel are trivially solved by a single action of that agent. In other
words, what we usually measure in the sets A1-A4 is how quickly such an agent evolves.
The key here is the module getBarrelTo.

We observe that the performance is generally better if the system has been trained
on easier levels before having to solve the last one. This is a common-sense result, and
it suggests that our approach of using incrementally harder instances is reasonable.

The exception to this rule is A20 which is solved faster from scratch than by a set
of agents evolved on the early levels of A2. We can understand that by looking at the
actual agents: in fact the preceding levels biased the agents towards doing random
pushes (this led to the most efficient solution for those levels) but this is not good
for A20. Encountering this negative consequence of the incremental approach at such
an early stage indicates that we should use it with care, and critically reevalute it
continuously, as the system becomes more complex.

When comparing the effort necessary between solving a level for the first time and
understanding it, we realize that for the sets A1-A4 it is very similar, and for some
levels it is even exactly the same (A1, A20). This means that an agent that can solve
the level has ususally understood everything about it as well, i.e. it is not probable
that the level can be solved by pure luck.

For the levels B1-B2, this gap opens very wide, which means that our instruction
set is less well adapted to understanding them. In fact, when observing the agents in
detail, we realize that the system does not gain an understanding in a way we would
like it to, it merely manages to trick our measuring criteria into believing that it does,
while in reality continuing to make random choices. This also explains why B10 does
not always reach the understanding criterion.

For the far more complex levels in the C-sets the basic instruction set, even with
its first extensions are not sufficiently powerful to lead to a solution. Only when
introducing in addition the modules storageOrder and getPusherTo can one of them
be solved. The fact that it can not yet be understood shows that even the full
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instruction set is not powerful enough. We are either missing some more fundamental
concepts, or we need to improve the possibilities of combining them.

This same full instruction set is leading to good results on understanding the B1-B2
levels; the power of the instructions is sufficient for them.

When looking at the successful agents for all experiments, we realize that the
tendency seems to go toward very simple single agents, that are able to solve a level
by themselves. We can explain that by the fact that there is a reward only at the
very end of a solution, therefore cooperation is necessarily slow to evolve: agents start
out looking for their own immediate reward, and single all-purpose agents can achieve
that by simply keeping the control over the level.

Our good results concerning cold runs are not a surprise, as by our definition the
system is only considered to understand the level if it is doing very efficient cold runs.
Unfortunately we have not yet understood levels that are complex enough so that
analyzing the respective cold runs in detail would be interesting.

8.2 Objectives revisited

Now we will try to analyze the previous parts from the perspective of the questions
that we intended to resolve originally:

1. Does the problem space have an underlying structure that can be described

sufficiently well with concepts? We believe that we can answer this question
affirmatively: our analysis of the problem domain naturally led to such concepts,
and we could successfully found the core of our evolved program on hand-coded
modules that correspond to them.

2. How difficult is it to code those concepts manually? We have successfully coded
some useful concepts, low-level and high-level ones. Some of them were necessary
for our progress but involved complex algorithms (e.g. getPusherTo module).

3. How efficiently can evolution combine them? We have found that if the
representation language and the instruction set are flexible enough, then
evolution can find good combinations very quickly, i.e. in at most a few hundred
iterations.

4. Can we evolve a compact program that solves simple Sokoban instances? Yes we
can, and we can even evolve such a program quite easily, based in only a few
fundamental concepts (and the corresponding instructions).

5. How well does such a program scale to hard or very hard ones? We have observed
a moderate success in scaling from easy to medium instances. It does not permit
a prediction on how well the system will scale to hard ones, but at least it allows
us to stay optimistic.

8.3 Future Work

Now, as mentioned before, this project is meant to be but the first stepping stone of a
much more ambitious project. It was done in less than six months, whereas the whole
project is currently expected to last at least for three years. This is one of the reasons
why this section is as large as it is: we try hereby to sketch an outline of what the
next stages of the project may involve.
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During our work, we have identified quite a few dead ends, but also a large
number of paths branching off into different directions, which might lead to a deeper
understanding.

Straight ahead

The following are the logical continuations of our work, they do not involve new ideas,
but more time to develop the elements we have introduced.

More experiments: with our current experimental setup, we could invest many
more days of execution time

More levels: we have based our experiments on a small set of simple levels; using
what is available in the web, appropriately scaled down if necessary by the
techniques we have seen, we could achieve much more robust results, and
probably more complex agents as well.

Better versions of existing modules: we have described some versions that are
not yet implemented, but certainly useful. There may be even more powerful
versions, as soon as new concepts are available for use.

New concepts: when adding new levels, new high-level concepts will need to be
developed, that make them solvable.

More instructions: these new concepts should be made usable by incorporating
them in appropriate instruction. Furthermore our agents are, so far, quite
restricted as to how much they can perceive about the world (for appropriate
bidding), just as they have only a reduced set of possible actions. So the set
of instructions should be expanded to include new ones that combine old and
new concepts in a variety of ways. This might go hand in hand with careful
expansion of the set of shortcut instructions.

Extended language: the current representation is far from being able to code any
given algorithm. However we might have to expand on it for more representative
power, i.e. by adding variables, or new control flow instructions.

Tuned parameters: we have not devoted much time to tuning the parameters
involved in controlling the evolution and the economy. Much remains to be
done to achieve the greatest diversity while properly rewarding the most efficient
agents (see also appendix B).

Systematic use of seeding: so far, we have used the technique of seeding only for
testing purposes: we believe that a systematic use of it may lead to significant
improvements.

Along the way

Here are a few new ideas, which fit well into our current approach, but their usefulness
remains to be proved:

Systematic building of level sets: we have determined the level sets subjectively,
but although it is not easy to classify levels objectively (see section 2.4), a more
systematic approach to building level sets should be attempted.

Crossover: additionally to mutation, this could be used to better exploit existing
knowledge in the evolutionary process: a natural (although simplistic) way of
doing this would be to take the bidding expression from one parent and the
acting expression from the other.
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Undo instruction: giving the power to undo manipulations of their predecessors to
agents might completely change the behavior of the system, and might even be
an important step toward resolving the causality problem

Bidding on failure: this idea of allowing negative bids is introduced in section 5.3.

Faster implementation: it might become necessary to make the implementation
more efficient, for example by recoding some recurrent loops in C (see
appendix A).

Evolved concepts: we predict that some concepts will be very hard to code by hand,
but given the whole system that will be developed when they are encountered,
it might be worthwhile to use a similar evolutionary framework, no longer to
solve levels, but to evolve code for a specific concept.

Alternate paths

There are some alternate approaches, which do not fit immediately into our current
work, but whose pursuit at a later stage might turn out to be a fruitful complement
or replacement for our strategies.

Subgoals and planning: a significant part of human strategies to solve Sokoban
instances involves some degree planning, sometimes with very clearly specified
subgoals and constraints (i.e. get barrel A to position B before touching barrel
C). It is an open question if that behavior could somehow be realized by our
system of agents.

Chunking: we are already using shortcut instructions that are derived from fre-
quently used expressions. We could imagine an extension that would auto-
matically determine which instructions to chunk together into new ones, and
that would manage this pool efficiently (i.e. instead of only accumulating new
instructions).

Different representations: we have based our representation language on S-expressions,
but for the sake completeness it would be good to try different representations
and compare the results.

Meta learning: so far we have few mutation options but already a certain set of
parameters. One could imagine of extending the options and then optimizing
the parameters by means of meta-learning. In that case our system would also
contain a number of creation-agents, which do not act themselves but produce
offspring of the active agents by different means; they then participate in the
profit of their creatures. For example, these creation-agents might attach a
specific probability to each instruction for the purpose of generating the genome
of new agents.

Psychological parallels: helpful information for this project might come out of a
systematic psychological study on how human players (especially beginners)
learn concepts in Sokoban, what these concepts are, and how they use them.

On the horizon

We are not able to see further into the future, but we can suppose that if the project
progresses successfully and Sokoban is solved, its priorities will shift, mainly toward
making the concepts generalizable to other problem domains. At that point there
will be opportunities to use this knowledge in concrete applications, for example in
robot motion planning problems [14]. It might also stimulate research on the nature
of human understanding.
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8.4 Conclusions

With an approach based on Occam’s Razor and the idea that understanding means
exploiting underlying structure, we have attempted to evolve compact concept-based
code in the specific domain of Sokoban. We have gained insights into how hard this
problem is and developed a framework in which to tackle it. Using concepts derived
directly from playing Sokoban, an adapted representation language and the Hayek
economic system, we laid the foundation for evolving such compact code. We have
demonstrated experimentally that our approach is viable because our system can solve
interesting Sokoban instances. It remains to be seen if it will be able to outperform
the competing approaches to Sokoban, and how well the approach will generalize to
broader problem domains.

This research has been a promising start with a relatively original approach, but
much remains to be done before it can achieve its ambitious goal.
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Implementation

A.1 Programming language

We use Python, version 2.3.1. Here is a short description of the language, taken
from [16]:

Python is an interpreted, interactive, object-oriented programming
language. It combines remarkable power with very clear syntax. It has
modules, classes, exceptions, very high level dynamic data types, and
dynamic typing. There are interfaces to many system calls and libraries,
as well as to various windowing systems. New built-in modules are easily
written in C or C++. The Python implementation is portable: it runs on
many brands of UNIX, on Windows, OS/2, Mac, Amiga, and many other
platforms.

We consider this language to be appropriate for our purposes, because it is a high-
level language, has a simple syntax, and allows easy prototyping. Also, although we
are not yet concerned with optimizing performance, it is good to know that we can
achieve that at a later stage by recoding some parts in C, without rewriting the whole
project.

Note. We did our main developement on the Windows platform, but executed some
of the simulations on a Linux machine. At that time, no Python version 2.3.1 was
available for that platform, so we had to make a number of minor adjustments to make
the code compatible with version 2.2.

A.2 Tools

We have developed a few tools that contribute only indirectly to the project.

File storage: we used the pickle module of Python to store level collections as well
as complete environments with evolved agents 1 .

1The pickle module does not permit the storing of function objects (like those forming
the instruction set), so we have to remove the references to the instruction set from all agents
before saving and reestablish them after reloading from a file.
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Logging: we wrote our own little tool to take care of logging the information of
simulations, and writing them into files.

Performance tests: we used the profiling module (profile) that comes with
Python, to analyze which parts of our code use up most of the execution time.
We used it mainly to make the access to our main datastructure reasonably
efficient, not on the evolutionary system anymore.

GUI: at an early stage we built a small graphical user interface as well, but it did
not prove very useful, and we did not keep the new versions of our framework
integrated with it.



Appendix B

Parameters

A large number of parameters are involved in this system, and while some are critical
for the delicate balance described in the last section, many of them influence the
efficiency of the evolution. As most of them have been set to ad hoc values and have
not been further investigated, we will not give any numerical values. We will however
try to give qualitative constraints where we can.

It is explained elsewhere (chapters 6 and 7) how different instructions can be
enabled or disabled and how that influences the whole system.

Generation and mutation

The goal here is to favor a large diversity of S-expressions and at the same time not
to make them more complex than necessary. For that we can tune:

• probabilities influencing how S-expressions are generated

• average depth of S-expressions

• probabilities for different kinds of mutations

Economic balance

We want to evolve many agents, let each a chance to be make profit if they are good,
and eliminate them as quickly as possible if they are not. Furthermore we want to
keep all the good properties of a working Hayek economy. All the following influence
this domain:

• initial wealth

• final reward

• punishment taxes, e.g. for deadlocks

• taxes on using instructions

• difference in these taxes between bidding and acting

• wealth required for investment in offspring

• distribution of generated bidding constants
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Stable system

We want the execution time to be regular enough for repeated experiments, so we have
to avoid time traps. The following parameterize the means we have to guarantee this:

• minimal and maximal number of agents

• timeouts, different for bidding and acting

• number of auctions before restarting

• number of restarts before skipping the level

• how to increase all these numbers with increasingly difficult levels
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Pseudocode

C.1 Dynamic structure: graph of zones

We have built a datastructure that keeps track of zones (as defined page 14) and
barrels. It is an undirected graph where each node is either a barrel or a zone, and if
two nodes are linked, that means that they have adjacent spaces on the level grid.

Each push modifies the graph, using two auxiliary functions that refer to it:

FUNCTION PushBarrel (fromPos, toPos)

IF push is legal THEN

move Pusher in front of fromPos

RemoveBarrel (fromPos)

AddBarrel (toPos)

ENDIF

END FUNCTION

FUNCTION RemoveBarrel (Pos)

SET N to the node corresponding Pos

remove the barrel at Pos

define N to be a new zone

FOR each node Ni that is connected to N in the graph

IF Ni is a zone (not a barrel) THEN

merge Ni with N

ENDIF

END LOOP

END FUNCTION

FUNCTION AddBarrel (Pos)

SET N to the node corresponding Pos

add a new node B

define B to be a new barrel at Pos

IF the zone N can be split at Pos THEN

split N into the zones N1 and N2

remove N

add N1

add N2

connect N1 to B
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connect N2 to B

FOR each node Ni that was connected to N

IF Ni is touching N1 THEN

connect Ni to N1

ELSE

connect Ni to N2

ENDIF

END LOOP

ELSE

connect B to N

ENDIF

END FUNCTION

C.2 Static structure: graph of chambers

We construct a directed graph of chambers using the following algorithm:

create a directed graph G

FOREACH space S

IF S is not a wall AND S is not forbidden THEN

create node N containing only S

add N to G

ENDIF

END LOOP

FOREACH two adjacent spaces S1, S2 and their respective nodes N1, N2

IF a barrel could get from S1 to S2 in one push THEN

link N1 to N2

END IF

END LOOP

WHILE something changes

FOREACH two nodes N1, N2

IF G contains a path from N1 to N2 and a path from N2 to N1 THEN

merge N1 and N2

END IF

END LOOP

END LOOP
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Some levels
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Figure D.1: The simplest possible level.
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Figure D.2: A very simple level with one barrel.
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Figure D.3: A simple level with one barrel, introducing a concept.
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Figure D.4: A level with one barrel and a longer solution.
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Figure D.5: A level with two barrels and a longer solution.

0

1

2

3

4

0 1 2 3 4 5 6 7

5

6

7

8

9

10

8

Figure D.6: A small but very difficult level from Aymeric du Peloux[17].



APPENDIX D. SOME LEVELS 52

0

1

2

3

4

0 1 2 3 4 5 6 7

5

6

7

8

9

10

8 9 10 11 12 13 14 15 16 17 18

11

12

Figure D.7: Level 29 from the original set of levels by Hiroyuki Imabayashi using
the concept of one-way passages described in section 2.5.
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