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In the real world, one often has to make irrevocable decisions. Similarly,search applications (particularly if they are real-time) have to deal with thiscomplexity. In competitive games programs (such as for chess), the irreversiblemoves mean that one may play a move that loses. In the context of single-agentsearch, an irreversible move means that one may move from a solvable state toan unsolvable one. A short-term decision (within the constraints of real time)may lead to a long-term disaster (problem cannot be solved). How to deal withthis is a di�cult problem.Sokoban is a popular one-player game. Given a topology of rooms and pas-sageways, the object is to push a number of stones from their current locationsto goal locations. Of interest is that since you can only push, never pull, a singlemove can transform the problem from being solvable to being unsolvable. Manyof these so-called deadlock states are trivial to identify (and avoid in the search),but some require extensive analysis to prove their existence. For example, onecan easily construct an unsolvable Sokoban position that will require a massivesearch tree that is hundreds of moves deep to verify the deadlock.Sokoban is a di�cult search application for many reasons:1. it has a complex lower-bound estimator,2. the branching factor is large and variable (potentially over 100),3. the solution may be very deep in the search tree (some problems require over500 moves to solve optimally), and4. some states are provably unsolvable (deadlock).For sliding tile puzzles, for example, there are easy algorithms for generatinga non-optimal solution. In Sokoban, because of the presence of deadlock, oftenit is very di�cult to �nd any solution. Finding an optimal solution is much moredi�cult.In this paper, we evaluate the standard single-agent search techniques whiletrying to optimally solve Sokoban problems. We identify the existence of dead-lock as a new property of the search space that has not been addressed in pre-vious research. We argue that even though standard search techniques have adramatic impact on the size of the search, they are insu�cient to solve most ofthe standard Sokoban problems.We have constructed an IDA*-based program to solve Sokoban problems(Rolling Stone). In addition to using the standard single-agent search enhance-ments (such as transposition tables and move ordering) we introduce a goodlower-bound estimator, deadlock tables, the inertia heuristic and macro movesthat preserve the optimality of the solution. Despite these enhancements chop-ping orders of magnitude from the search tree size, we can solve only 16 of the 90benchmark problems. Although this sounds rather poor, it is the best reportedresult to date. We believe our techniques can be extended and more problemswill be solved. However, we also conclude that some of the Sokoban problemsare so di�cult as to be e�ectively unsolvable using standard single-agent searchtechniques.



2 SokobanSokoban is a popular one-player game. The game apparently originated in Japan,although the original author is unknown. The game's appeal comes from the sim-plicity of the rules and the intellectual challenge o�ered by deceptively di�cultproblems.The rules of the game are quite simple. Figure 1 shows a sample Sokobanproblem (problem 1 of the standard 90-problem suite available at http://xsoko-ban.lcs.mit.edu/xsokoban.html).The playing area consists of rooms and passage-ways, laid out on a rectangular grid of size 20x20 or less. Littered throughoutthe playing area are stones (shown as circular discs) and goals (shaded squares).There is a man whose job it is to move each stone to a goal square. The man canonly push one stone at a time and must push from behind the stone. A squarecan only be occupied by one of a wall, stone or man at any time. Getting all thestones to the goal nodes can be quite challenging; doing this in the minimumnumber of moves is much more di�cult.To refer to squares in a Sokoban problem, we use a coordinate notation. Thehorizontal axis is labeled from \A" to \T", and the vertical axis from \a" to \t"(assuming the maximum sized 20x20 problem), starting in the upper left corner.A move consists of pushing a stone from one square to another. For example, inFigure 1 the move Fh-Eh moves the stone on Fh left one square. We use Fh-Eh-Dh to indicate a sequence of pushes of the same stone. A move, of course, is onlylegal if there is a valid path by which the man can move behind the stone andpush it. Thus, although we only indicate stone moves (such as Fh-Eh), implicitin this is the man's moves from its current position to the appropriate squareto do the push (for Fh-Eh the man would have to move from Li to Gh via thesquares Lh, Kh, Jh, Ih and Hh).The standard 90 problems range from easy (such as problem 1 above) todi�cult (requiring hundreds of stone pushes). A global score �le is maintainedthat gives the best solution achieved to date (at the above www address). Thussolving a problem is only part of the satisfaction; improving on one's solution isequally important.Note that there are two de�nitions of an optimal solution to a Sokoban prob-lem: the number of stone pushes and the number of man movements. For a fewproblems there is one solution that optimizes both; in general they conict. Inthis paper, we have chosen to optimize the number of stone pushes. Both opti-mization problems are computationally equivalent. Using a single-agent searchalgorithm, such as IDA* [Kor85a], one stone push decreases the solution lengthby at most one, but may increase it by an arbitrary amount. Optimizing the manmovements involves using non-unitary changes to the lower bound (the numberof man movements it takes to position the man behind a stone to do the push).Sokoban has been shown to be NP-hard [Cul97,DZ95]. [DZ95] show thatthe game is an instance of a motion planning problem, and compare the gameto other motion planning problems in the literature. For example, Sokoban issimilar to Wilfong's work with movable obstacles, where the man is allowed tohold on to the obstacle and move with it, as if they were one object [Wil88].



He-Ge Hd-Hc-Hd Fe-Ff-Fg Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh-Rg Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-Ri Fc-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh Hd-He-Ge-Fe-Ff-Fg-Fh-Gh- Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-QiCh-Dh-Eh-Fh-Gh-Hh-Ih- Jh-Kh-Lh-Mh-Nh-Oh-Ph-QhFig. 1. Sokoban problem 1 and a solutionSokoban can be compared to the problem of having a robot in a warehouse movea number of speci�ed goods from their current location to their �nal destination,subject to the topology of the warehouse and any obstacles in the way. Whenviewed in this context, Sokoban is an excellent example of using a game as anexperimental test-bed for mainstream research in arti�cial intelligence.3 Why is Sokoban so Interesting?Although the authors are well-versed in single-agent search, it quickly becameobvious that Sokoban is not an ordinary single-agent search problem. Much ofthe single-agent search literature concentrates on \simple" problems, such asthe sliding tile puzzles or Rubik's Cube. The following is a listing of problemsencountered with Sokoban that make it di�cult and essentially cause a programbased solely on the standard single agent-search techniques to fail to solve morethan a handful of problems.3.1 Lower BoundIn general, it is hard to get a tight lower bound on the solution length forSokoban problems. The tighter the bound, the more e�cient a single-agent searchalgorithm can be. The stones can have complex interactions, with long elaboratemaneuvers often being required to reposition stones. For example, in problem 50(see Figure 2), the solution requires moving stones through and away from thegoal squares to make room for other stones. Our best lower bound is 100 stone



pushes (see section 4.1), whereas the best human solution required 370 moves{ clearly a large gap, and an imposing obstacle to an e�cient IDA* search. Forsome problems, without a deep understanding of the problem and its solution,it is di�cult to get a reasonable bound.
Fig. 2. Sokoban problem 503.2 DeadlockIn most of the single-agent search problems studied in the literature, all statetransitions preserve the solvability of the problem (but not necessarily the op-timality of the solution). This is a consequence of all state transitions (moves)being reversible (there exists a move sequence which can undo a move). Sokobanhas irreversible moves (e.g. pushing a stone into a corner), and these moves canlead to states that provably cannot lead to solutions. In e�ect, a single move canchange the lower bound on the solution length to in�nity. If the lower boundfunction does not reect this, then the search will spend unnecessary e�ort ex-ploring a sub-tree that has no solution. We call these states deadlocks becauseone or more stones will never be able to reach a goal.Deadlocks can be as trivial as, for example, moving a stone into a corner(in Figure 1, moving Ch-Bh1 creates a deadlock state; the man can never get1 This is in fact an illegal move in that position, since the man can't reach the stone.We assume here, that the stone on Fh was not in the maze.



behind the stone to push it out). Some deadlocks can be wide ranging and quitesubtle, involving complex interactions of stones over a large portion of the maze(in Figure 1, moving Fh-Fg creates a deadlock). Any programming solution toSokoban must be able to detect deadlock states so that unnecessary search canbe curtailed.The presence of deadlock states in a search space creates a serious dilemmafor a real-time search applications (anytime applications). If we have to committo a move (because of resource constraints) we may move to a deadlock state,guaranteeing insolvability. Since many of these deadlock scenarios cannot bedetermined without search, the real-time algorithm will have a di�cult timeallocating resources to guarantee that a solution will be found.3.3 Size of Search SpaceSliding tile puzzles have a branching factor of less than 4 and the maximumsolution length for the 15-puzzle is 80. Rubik's Cube has a branching factor of18 and a maximum solution length of 20 [Kor97].The large size of the search space for Sokoban is due to potentially largebranching factors and long solution lengths, compared to the previously studiedproblem domains. The number of stones ranges from 6 to 34 in the standardproblem set. With 4 potential moves per stone, the branching factor could bewell over 100! The solution lengths range from nearly 100 to over 650 pushes.The trees are bushier and deeper than previously studied problems, resulting ina search space that is considerably larger.The large size of the search space for Sokoban gives rise to a surprising result.Consider problem 48 (Figure 3). Our program computes the lower bound as 200moves. Since human players have solved it in 200 moves, we can conclude that theoptimal solution requires exactly 200 moves. Knowing the solution length is onlypart of the answer { one has to �nd the sequence of moves to solve the problem.In fact, problem 48 is di�cult to solve because of the large branching factor.Although IDA* will never make a non-optimal move according to its heuristicestimate of the distance to the goal, it has no idea what order to consider themoves in. An incorrect sequence of moves can lead eventually to deadlock. Forthis problem, to IDA* one optimal move is as good as another. The programbuilds a huge tree, trying all the optimal moves in all possible orders. Hence,even though we have the right lower bound, our program builds an exponentiallylarge tree and fails to solve problem 48.4 Towards Solving SokobanAlthough we believe that standard search algorithms, such as IDA*, will beinadequate for solving all 90 Sokoban problems, as a �rst step we decided toinvest our e�orts in pushing the IDA* technology as far as possible. Our goal isto eventually demonstrate the inadequacy of single-agent search techniques forthis puzzle. This section discusses our work with IDA* and the problems we areencountering.



Fig. 3. Sokoban problem 484.1 Lower BoundA naive but computationally inexpensive lower bound is the sum over the dis-tances of all the stones to their respective closest goal. It is clear however thatonly one stone can go to any one goal in any solution. Since there are as manystones as there are goals and every stone has to be assigned to a goal, we are try-ing to �nd a minimum cost (distance) perfect matching on a complete bipartitegraph. Edges between stones and goals are weighted by the distance betweenthem, and assigned in�nity if the stone cannot reach a goal.Essentially the problem can be summarized as follows. There are n stonesand n goals. For each stone, there is a minimumnumber of moves that is requiredto maneuver that stone to each goal. For each stone and for each goal, there is adistance (cost) of achieving that goal. The problem then is to �nd the assignmentof goals to stones that minimizes the sum of the costs.Minimum cost perfect matching for a bipartite graph can be solved usingminimumcost augmentation [Kuh55]. Given a graph with n nodes and m edges,the cost of computing the minimal cost matching is O(n � m � log(2+m=n)n).Since we have a complete bipartite graph, m = n2=4 and the complexity isO(n3 � log(2+n=4)n). Clearly this is an expensive computation, especially if ithas to be computed for every node in the search. However, there are severaloptimizations that can reduce the overall cost. First, during the search we onlyneed to update the matching, since each move results in a single stone changingits distance to the goals. This requires �nding a negative cost cycle [Kle67]involving the stone moved. Second, we are looking for a perfect matching, whichconsiderably reduces the number of possible cycles to check. Even with these



optimizations, the cost of maintaining the lower bound dominates the executiontime of our program. Most of the lower bounds used in single-agent search inthe literature, such as the Manhattan distance used for sliding tile puzzles, aretrivial in comparison.One advantage of the minimum matching lower bound is that it correctlyreturns the parity of the solution length (Manhattan distance in sliding tilepuzzles also has this property). Thus, if the lower bound is an odd number, thesolution length must also be odd. Using IDA*, this property allows us to iterateby two at a time.
Fig. 4. Illustrating lower bound calculationsThere are a number of ways to improve the minimummatching lower bound.Here we introduce two useful enhancements. First, if two adjacent stones are ineach other's way towards reaching their goal, then we can penalize this positionby increasing the lower bound appropriately. We call this enhancement linearconicts because of its similarity to the linear conicts enhancement in sliding-tile puzzles [HMY92]. Figure 4 shows an obvious example. The four stones onIf, Ig, Ih and Ii are obstructing each others' optimal path to the goals2. We haveto move two stones o� their optimal paths to be able to solve this problem (forexample, Ig-Hg to allow the man to push If, and Ii-Hi to move the stone on Ih).In each case, two additional moves are required. In addition, the stones on Cdand Ce have a linear conict. Hence, in this example, the lower bound will beincreased by six.The second enhancement notes that sometimes stones on walls have to bebacked out of a room, and then pushed back in just to re-orient the position of2 The optimal path is de�ned as the route a stone would take if no other stone was inthe maze obstructing its movements.



the man. In Figure 4, the stone on Gi has a backout conict. Consider this stonewhile pretending there are no other stones on the board. The man must move thestone to a room entrance (Gi-Gh), push it out of the room (Gh-Fh-Eh-Dh), andthen push it back into the room it came from (Dh-Eh-Gh-Hh). This elaboratemaneuver is required because the man has to be on the left side of the stoneto be able to push it o� the wall. In this problem, there is only one way to getto the left of the stone { by backing it out and then back into the room. Thisconict increases the lower bound by six3.Table 1 shows the e�ectiveness of our lower bound estimate. The table showsthe lower bound achieved by minimum matching (MM), inclusion of the linearconicts enhancement (+LC), inclusion of the backout enhancement (+BO), andthe combination of all three features (ALL). The upper bound (UB) is obtainedfrom the global Sokoban score �le. Since this �le represents the best that humanplayers have been able to achieve, it is an upper bound on the solution length.The table is sorted according to the last column (Di�), which shows the di�erencebetween the lower and upper bound. Clearly for some problems (notably problem50) there is a huge gap. Note that the real gap might be smaller, as it is likelythat some of the hard problems have been non-optimally solved by the humanplayers.4.2 Transposition TableThe search tree is really a graph. Two di�erent sequences of moves can reachthe same position. The search e�ort can be considerably reduced by eliminatingduplicate nodes from the search. A common technique is to use a large hash table,called the transposition table, to maintain a history of nodes visited [SA77]. Eachentry in the table includes a position and information on the parameters thatthe position was searched with. Transposition tables have been used for a varietyof single-agent search problems [RM94].One subtlety of Sokoban is that saving exact positions in the transpositiontable misses many transpositions. While the exact positions of the stones iscritical, the exact position of the man is not. Two positions, A and B, areidentical if both positions have stones on the same squares and if the man inA can move to the location of the man in B. Thus, when �nding a match inthe transposition table, a computation must be performed to determine thereachability of the man. In this way, the table can be made more useful, byallowing a table entry to match a class of positions.4.3 Deadlock TablesOur initial attempt at avoiding deadlock was to hand-code a set of tests for simpledeadlock patterns into Rolling Stone. This quickly proved to be of limited value,3 Another increase by 4 is achieved by observing that stones moving into the goalroom and targeted at the two lower goals need two extra pushes each to allow theman into the room, before pushing it to the right.



# MM +LC +BO ALL UB Di�51 118 118 118 118 118 055 118 118 120 120 120 078 134 134 136 136 136 053 186 186 186 186 186 083 190 194 190 194 194 048 200 200 200 200 200 080 219 225 225 231 231 04 331 331 355 355 355 01 95 95 95 95 97 22 119 119 129 129 131 23 128 132 128 132 134 258 189 189 197 197 199 26 104 106 104 106 110 45 135 137 137 139 143 460 148 148 148 148 152 470 329 329 329 329 333 463 425 427 425 427 431 473 433 433 437 437 441 484 147 147 149 149 155 681 167 167 167 167 173 610 494 496 506 506 512 638 73 73 73 73 81 87 80 80 80 80 88 882 131 135 131 135 143 879 164 166 164 166 174 865 181 185 199 203 211 812 206 206 206 206 214 857 215 217 215 217 225 89 215 217 227 229 237 814 231 231 231 231 239 862 235 235 237 237 245 872 284 288 284 288 296 877 360 360 360 360 368 854 177 177 177 177 187 1056 191 191 193 193 203 1076 192 194 192 194 204 1047 197 199 197 199 209 108 220 220 220 220 230 1027 351 353 351 353 363 1086 122 122 122 122 134 1244 167 167 167 167 179 1217 121 121 201 201 213 1259 218 218 218 218 230 1287 221 221 221 221 233 1243 132 132 132 132 146 14

# MM +LC +BO ALL UB Di�34 152 154 152 154 168 1471 290 294 290 294 308 1440 310 310 310 310 324 1435 362 364 362 364 378 1436 501 507 501 507 521 1441 201 203 219 221 237 1645 274 276 282 284 300 1619 278 280 282 286 302 1622 306 308 306 308 324 1620 302 304 444 446 462 1618 90 90 106 106 124 1821 123 127 127 131 149 1813 220 220 220 220 238 1831 228 232 228 232 250 1864 331 331 367 367 385 1825 326 330 364 368 386 1890 436 436 442 442 460 1849 96 96 104 104 124 2042 208 208 208 208 228 2061 241 243 241 243 263 2028 284 286 284 286 308 2268 317 319 319 321 343 2239 650 652 650 652 674 2246 219 219 223 223 247 2467 367 369 375 377 401 2423 286 286 424 424 448 2432 111 113 111 113 139 2616 160 162 160 162 188 2685 303 303 303 303 329 2689 345 349 349 353 379 2624 442 442 516 518 544 2615 94 96 94 96 124 2833 140 140 150 150 180 3026 149 149 163 163 195 3211 197 201 201 207 241 3475 261 263 261 263 297 3429 124 124 122 122 164 4274 158 158 172 172 214 4237 220 220 242 242 290 4888 306 308 334 336 390 5452 365 367 365 367 423 5630 357 359 357 359 465 10666 185 187 185 187 325 13869 207 209 217 219 443 22450 96 96 96 100 370 270Table 1. Lower bounds



since it missed many frequently occurring patterns, and the cost of computingthe deadlock test grew as each test was added. Instead, we opted for a more\brute-force" approach.Rolling Stone includes a pattern database [CS96] that we call deadlock tables.An o�-line search is used to enumerate all possible combinations of walls, stonesand empty squares for a �xed-size region. For each combination of squares andsquare contents, a small search is performed to determine if deadlock is presentor not. This information is stored in a tree data structure. There are many opti-mizations that make the computation of the tree e�cient. For our experiments,we built two di�erently shaped deadlock tables for regions of roughly 5x4 squares(containing approximately 22 million entries).When a move Xx-Yy is made, the destination square Yy is used as a basesquare in the deadlock table and the direction of the stone move is used to rotatethe region, such that it is oriented correctly. In Figure 4 if the move Gi-Gh ismade, then a deadlock table could cover the 5x4 region bounded by the squaresEh, Ee, Ie and Ih. Note that the table can be used to cover other regions as well.To maximize the usage of the tables, reections of asymmetric patterns alongthe direction the stone was moved in are considered.Although a 5x4 region may sound like a signi�cant portion of the 20x20playing area, in fact many deadlocks encountered in the test suite extend wellbeyond the area covered by our deadlock tables. Unfortunately, it is not practicalto build larger tables.Note that if a deadlock table pattern covers a portion of the board containinga goal node, most of the e�ectiveness of the deadlock table is lost. Once a stoneis on a goal square, it need never move again. Hence, the normal conditions fordeadlock do not apply. Usually moving a stone into a corner creates a deadlock,but if the square is a goal node, then the position is not necessarily a deadlock.4.4 Macro MovesMacro moves have been described in the literature [Kor85b]. Although theyare typically associated with non-optimal problem solving, we have chosen toinvestigate a series of macro moves that preserve the solution's optimality. Weimplemented the following two macros in Rolling Stone.Tunnel Macros In Figure 1, consider the man pushing a stone from Jh to Kh.The man can never get to the other side of the stone, meaning the stone canonly be pushed to the right. Eventually, the stone on Kh must be moved further:Jh-Kh-Lh-Mh-Nh-Oh-Ph. Once the commitment is made (Jh-Kh), there is nopoint in delaying a sequence of moves that must eventually be made. Hence, wegenerate a macro move that moves the stone from Jh to Ph in a single move.The above example is an instance of our tunnel macro. If a stone is pushedinto a one-way tunnel (a tunnel consisting of articulation points4 of the underly-ing graph of the maze), then the man has to push it all the way through to the4 Squares that divide the graph into two disjoint pieces.



other end. Hence this sequence of moves is collapsed into a single macro move.Note that this implies that macro moves have a non-unitary impact on the lowerbound estimate.Goal Macros As soon as a stone is pushed into a room that contains goals,then the single-square move is substituted with a macro move to move the stonedirectly to a goal node. Unlike with the tunnel macro, if a goal macro is present,it is the only move generated. This is illustrated using Figure 1. If a stone ispushed onto the room containing the goal squares (such as square Oh), then thismove is substituted with the goal macro move. This pushes the stone all theway to the next highest priority empty goal square (Rg or Ri if it is the �rststone into the goal area). The goals are prioritized in a pre-search phase. This isnecessary to guarantee that stones are moved to goals in an order that precludesdeadlock and preserves optimality of the solution.In Figure 1 a special case can be observed: the end of the tunnel macrooverlaps with the beginning of the goal macro. The macro substitution routinewill discover the overlap and chain both macros together. The e�ect is that onelonger macro move is executed. In the solution given in Figure 1, the macromoves are underlined (an underlined move should be treated as a single move).
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Figure 5 shows the dramatic impact this has on the search. At each nodein the �gure, the individual moves of the stone are considered. There are twostones that can each make a sequence of 3 moves, a-b-c for the �rst stone, andd-e-f for the second stone. The top tree in Figure 5 shows the search tree with nomacro moves; essentially all moves are tried, whenever possible, in all possiblevariations. The left lower tree shows the search tree, if a-b-c is a tunnel macroand the lower right tree if a-b-c is goal macro.4.5 Move OrderingWe have experimented with ordering the moves at interior nodes of the search.For IDA*, move ordering makes no di�erence to the search, except for the lastiteration. Since the last iteration is aborted once the solution is found, it canmake a big di�erence in performance if the solution is found earlier rather thanlater ([RM94] comment on the e�ectiveness of move ordering in single-agentsearch). One could argue that our inability to solve problem 48 (Figure 3) issolely a problem of move ordering. For this problem, we have the correct lowerbound { it is just a matter of �nding the right sequence of moves.We are currently using a move ordering schema that we call inertia. Lookingat the solution for problem 1 (Figure 1), one observes that there are long runswhere the same stone is repeatedly pushed. Hence, moves are ordered to preservethe inertia of the previous move { move the same stone in the same direction ifpossible.5 Experimental ResultsGiven 20 million nodes of search e�ort, our program can currently solve 16problems. Table 2 shows these problems and contains in the second column thenumber nodes needed to �nd a solution (all search enhancements enabled).These results illustrate just how di�cult Sokoban really is. Even with a goodlower bound heuristic and many enhancements to dramatically reduce the searchcost, most problems are still too di�cult to solve.The later columns in table 2 attempt to quantify the bene�ts of the vari-ous enhancements made to IDA*. The table shows the results for IDA* usingminimum matching enhanced with: a transposition table (128k entries { TT),deadlock table (5x4 region { DT), macro moves (goal and tunnel macros { MM),linear conicts and backout enhancements (CB), and inertia move ordering (IN).The ALL column is the number of nodes searched by Rolling Stone with all theabove features enabled. The columns thereafter show the tree size when one ofthese features is disabled.These experiments highlight several interesting points:1. Because of macro moves, the size of the search tree for problem 1 is smallerthan the solution path length!



Problem ALL ALL-TT ALL-DT ALL-MM ALL-CB ALL-IN1 61 61 70 116 61 1602 1,646 1,036,503 6,855 370,213 >20,000,000 1,7983 876 42,732 15,225 16,289 26,940 1,4704 213,670 >20,000,000 >20,000,000 >20,000,000 >20,000,000 743,6396 10,004 >20,000,000 10,846 >20,000,000 11,393 10,0037 88,890 >20,000,000 6,166,124 744,912 253,404 77,53917 126,121 >20,000,000 155,506 >20,000,000 >20,000,000 133,43938 1,063,178 >20,000,000 2,958,995 8,999,852 1,267,181 450,01751 125,413 >20,000,000 182,125 19,817,875 >20,000,000 103,02163 256,835 >20,000,000 415,011 >20,000,000 >20,000,000 6,233,53765 4,203,390 >20,000,000 6,438,584 13,561,416 >20,000,000 >20,000,00078 76 76 76 154 1,195 1,90280 237 237 237 627 >20,000,000 2,52481 11,887,844 >20,000,000 >20,000,000 >20,000,000 >20,000,000 7,864,58782 1,167,457 >20,000,000 1,989,577 >20,000,000 1,359,703 1,101,12283 200 232 200 764 13,003 318Table 2. Experimental Data2. The program can �nd deep solutions with nominal depth. For example, thesolution to problem 78 is 136 moves, and yet it is found by building a treethat is only 64 levels deep!3. Problem 63 has a solution length of 431 moves and yet it is found with asearch of only 257,000 nodes.4. Transpositions tables are much more e�ective than seen in other single-agent and two-player games. For example, removing transposition tables forproblem 6 increases the search by more than a factor of 2000!5. Without the improvements of the lower-bound estimator (linear and backoutconict), the search tree for problem 80 increases by over a factor of 84,000!All the other improvements on the other hand have no or only minor e�ecton the search tree size.6. Each of the enhancements can have a dramatic impact on the search treesize (depending on the problem).Rolling Stone spends 90% of its execution time updating the lower bound.Clearly this is an area requiring further attention.6 Enhancing the Current ProgramOur program is still in its infancy and our list of things to experiment with is long.The following details some of the ways we intend to extend our implementation.{ To help detect larger deadlocks, we propose using localized searches thatprove that for a certain stone combination no solution exists to push themto goals. It remains to be investigated if the search e�ort spent in testing for



deadlocks will be o�set by the savings gained from avoiding sub-trees withno solution.{ Our version of IDA* considers all legal moves in a position (modulo goalmacros). For many problems, local searches make more sense. Typically, aman rearranges some stones in a region. Once done, it then moves on to an-other region. It makes sense to do local searches rather than global searches.A challenge here will be to preserve the optimality of solutions.{ The idea of partition search may be useful for Sokoban [Gin96]. For example,partition search could be used to discover previously seen deadlock states,where irrelevant stones are in di�erent positions.{ A pre-search analysis of a problem can reveal constraints that can be usedthroughout the search. For example, in Figure 1 the stone on Ch cannotmove to a goal until the stone on Fh is out of the way. Knowing that thisis a prerequisite for Ch to move, there is no point in even considering legalmoves for that stone until the right opportunity.{ So far, we have constrained our work by requiring an optimal solution. Intro-ducing non-optimality allows us to be more aggressive in the types of macroswe might use and in estimating lower bounds.{ Looking at the solution for Figure 1, one quickly discovers that having placedone stone into a goal, other stones follow similar paths. This is a recurringtheme in many of the test problems. We are investigating dynamically learn-ing repeated sequences of moves and modifying the search to treat them asmacros.{ Sokoban can also be solved using a backward search. The search can startwith all the stones on goal nodes. Now the man pulls stones instead of pushingthem. The backward search may be useful for discovering some properties ofthe correct order that stones must be placed in the goal area(s) (the inverseof how a backward search can pull them out). This is an interesting approachthat needs further consideration.7 Conclusions and Future WorkSokoban is a challenging puzzle { for both man and machine. The traditionalenhanced single-agent search algorithms seem inadequate to solve the entire 90-problem test suite, even with their dramatic impact on the search tree size.The property of deadlocks contained in a search space adds considerable com-plexity to the search. Since deadlock situations are an important consideration inreal world applications, the notion of deadlock needs further attention. Deadlocktables are bene�cial but inadequate to handle these situations. Further work isneeded to identify when deadlocks are likely to occur and either avoid them (ifpossible) or invest the resources (search) to verify their existence. The problemof deadlocks is critical for any real-time application.



8 AcknowledgmentsThe authors would like to thank the German Academic Exchange Service, theKillam Foundation and the Natural Sciences and Engineering Research Councilof Canada for their support. This paper bene�ted from interactions with YngviBjornsson, John Buchanan, Joe Culberson, Roel van der Goot, Ian Parsons andAske Plaat.References[CS96] J. Culberson and J. Schae�er. Searching with pattern databases. In G. Mc-Calla, editor, Advances in Arti�cial Intelligence, pages 402{416. Springer-Verlag, 1996. Proceedings of CSCSI'95.[Cul97] J. Culberson. Sokoban is PSPACE-complete. Technical Report TR97-02, Dept. of Computing Science, University of Alberta, 1997. Also:http://web.cs.ualberta.ca/~joe/Preprints/Sokoban.[DZ95] D. Dor and U. Zwick. SOKOBAN and other motion planing problems, 1995.At: http://www.math.tau.ac.il/~ddorit.[Gin96] M. Ginsberg. Partition search. In Proceedings of the National Conference onArti�cial Intelligence (AAAI-96), pages 228{233, 1996.[HMY92] O. Hansson, A. Mayer, and M. Yung. Criticizing solutions to relaxed modelsyields powerful admissible heuristics. Information Sciences, 63(3):207{227,1992.[Kle67] M Klein. A primal method for minimal cost ows. Management Science,14:205{220, 1967.[Kor85a] R.E. Korf. Depth-�rst iterative-deepening: An optimal admissible tree search.Arti�cial Intelligence, 27(1):97{109, 1985.[Kor85b] R.E. Korf. Macro-operators: A weak method for learning. Arti�cial Intelli-gence, 26(1):35{77, 1985.[Kor90] R.E. Korf. Real-time heuristic search. Arti�cial Intelligence, 42(2{3):189{211, 1990.[Kor97] R.E. Korf. Finding optimal solutions to Rubik's Cube using patterndatabases. In AAAI National Conference, pages 700{705, 1997.[Kuh55] H.W. Kuhn. The Hungarian method for the assignment problem. Naval Res.Logist. Quart., pages 83{98, 1955.[RM94] A. Reinefeld and T.A. Marsland. Enhanced iterative-deepening search. IEEETransactions on Pattern Analysis and Machine Intelligence, 16(7):701{710,July 1994.[SA77] D. Slate and L. Atkin. Chess 4.5 | The Northwestern University chessprogram. In P.W. Frey, editor, Chess Skill in Man and Machine, pages 82{118, New York, 1977. Springer-Verlag.[Wil88] G. Wilfong. Motion planning in the presence of movable obstacles. In 4thACM Symposium on Computational Geometry, pages 279{288, 1988.


