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Abstra
t
Sear
h is one of the fundamental methods in arti�
ial intelligen
e (AI). It is at the 
oreof many su

esses of AI that range from beating world 
hampions in non-trivial gamesto building master s
hedules for large 
orporations. However, the appli
ations oftoday and tomorrow require more than exhaustive, brute-for
e sear
h, be
ause theseappli
ation domains have be
ome in
reasingly 
omplex. Traditional methods fail tobreak the 
omplexity barrier 
aused by the 
ombinatorial explosion that 
hara
terizesthese large, real-world domains.This thesis enhan
es our understanding of single-agent sear
h methods. A puzzle(Sokoban) is used to explore new sear
h te
hniques for single-agent sear
h. Sokobano�ers new 
hallenges to AI resear
h, be
ause it has a mu
h larger sear
h spa
e thanpreviously studied puzzle domains and exhibits a new, real-world-like sear
h-spa
eproperty. Deadlo
k, the possibility to maneuver into an unsolvable position, providestraditional sear
h methods with 
onsiderable diÆ
ulties. This thesis shows the failureof these traditional sear
h methods to solve more than trivial Sokoban problems. Thestate-of-the-art is signi�
antly improved when traditional methods are 
hanged su
hthat they are able to adapt to ea
h instan
e. Furthermore, several new te
hniquesare suggested to 
ombat the 
omplexities and 
hallenges exempli�ed by Sokoban.Most su

essful is a te
hnique that dynami
ally gathers knowledge during the sear
hto avoid deadlo
ks and to improve the sear
h's understanding of the sear
h spa
e.Another te
hnique is des
ribed and analyzed that uses the heuristi
 notion of relevan
eto fo
us the sear
h e�ort. This thesis 
loses with a suggestion of a framework and a
lassi�
ation for single-agent sear
h enhan
ements.



Prefa
eIt is quite interesting to ask people what they think of their PhD thesis after it is�nished. The rea
tions range from dismissive hand-waving, to ex
uses for a numberof things. It is rare to meet somebody who is openly proud of their PhD thesis. Thatis good. It means I am not alone...I have tried to understand how so mu
h enthusiasm, drive and optimism 
ould turninto impatien
e and a hope-it-will-be-over-soon attitude. By trying to understandwhat 
aused my frustration, I did regain some of the lost ex
itement for the resear
h.Of 
ourse, it always takes too long to �nish a thesis. Naturally, the dis
overy phase ismu
h more fun than do
umenting what has been found in full detail. We are hungryfor the knowledge, but not for the 
lean-up! The writing phase does not give thesame impression of progress { indeed, it seems it will never end. After doing a lot ofresear
h and un
overing many things, I feel that I know less now than ever before.How is this possible? We start out seeking the Truth, but inevitably �nd only deeperquestions."The more I know, the more I realize how little I know." { So
ratesIn the quest to enlarge our 
ir
le of knowledge, we inevitably enlarge the fron-tier, where the questions lie. In the end, the sear
h for answers is a sear
h for newquestions. A working title for the thesis was "The Sear
h is the Goal", a play onthe Zen Buddhist adage "the path is the goal". This might explain why the feelingof 
ompleteness that I was hoping to a
hieve is missing. To put it in more de�niteterms, thesis writing is about drawing the line. When enough new questions havebeen 
reated, it is time to stop. Thus, the thesis in front of you is a work in progress,halted for a moment in time to allow for proper do
umentation of the results a
hievedso far. The 
ir
le of knowledge does not stop expanding.I was privileged to have had the opportunity to 
ome to the University of Alberta,its Computing S
ien
e Department, and not least, the GAMES resear
h group. Stu-dents from around the world 
ome to Edmonton to study some of the hardest problemsthat games have to o�er. The diverse interests and expertise of all the members forma wonderful synergy that leads to high-performan
e programs and ex
iting resear
h.I 
an re
all 
ountless dis
ussions in resear
h meetings and at parties where games andpuzzles (and how to solve them) were the subje
t of intense debate.I have many people to thank, without whom this thesis would not be what it istoday. First and foremost, Jonathan S
hae�er and his relentless pursuit of ex
ellen
e{ nothing is good enough. Drawing from his wealth of knowledge and experien
e has



allowed me to solve many hard problems. I thank the members of my examining
ommittee, Peter van Beek, Joe Culberson, Ri
hard Korf, and Gordon Rostoker, fortheir time and valuable suggestions on how to improve the thesis. Yngvi Bj�ornsson,for being a sounding board for raw or unpolished ideas, and for the many valuablehints and ideas he shared. Darse Billings, for stimulating dis
ussions about gamesand how they pertain to other aspe
ts of life, as well as his e�orts in improvingmy speaken and wrotten English. Neil Bur
h, who rekindled my spirits after a longdrought of ideas. Tony Marsland, for being instrumental in my 
oming to Alberta.Other members of the GAMES group that helped produ
e ideas for this thesis, in somany dire
t and indire
t ways: Mark Bro
kington, Aske Plaat, Roel van der Goot,Duane Szafron, Denis Papp, Lourdes Pe~na, and Ja
k van Rijswij
k.And, last but not least, my family. Manuela, for her patien
e and support, whi
h
annot be repaid! Anne and Robert, for the joy and inspiration they gave during the�nal stages of this thesis. To all of you { Thanks!
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Chapter 1Introdu
tion\To �nd the way out of a labyrinth," William re
ited, \there is only onemeans. At every new jun
tion, never seen before, the path we have takenwill be marked with three signs. If, be
ause of previous signs on someof the paths of the jun
tion, you see that the jun
tion has already beenvisited, you will make only one mark on the path you have taken. Ifall the apertures have already been marked, then you must retra
e yoursteps. But if one or two apertures of the jun
tion are still without signs,you will 
hoose any one, making two signs on it. Pro
eeding through anaperture that bears only one sign, you will make two more, so that nowthe aperture bears three. All the parts of the labyrinth must have beenvisited if, arriving at a jun
tion, you never take a passage with three signs,unless none of the other passages is now without signs."\How do you know that? Are you an expert on labyrinths?"\No, I am 
iting an an
ient text I on
e read."\And by observing this rule you get out?"\Almost never, as far as I know..."Adso and William in the labyrinth, \The Name of the Rose", Umberto E
o.
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1.1 Arti�
ial Intelligen
e and Sear
hResear
h into sear
h methods is a fundamental bran
h of Arti�
ial Intelligen
e (AI).Without joining the debate over what intelligen
e is and how it 
an be a
hieved,it seems generally re
ognized that sear
h-based programs 
an solve problems thathumans would say require intelligen
e. Games and puzzles are examples of theseproblems. They have provided arti�
ial intelligen
e resear
hers with ex
ellent exper-imental domains. First, games are 
losed and well-de�ned appli
ations where im-provements are easily measured. Se
ond, they have supplied resear
hers with strongmotivation and 
lear goals, su
h as beating the best humans with an arti�
ial entity.Fifty years of AI resear
h using games as an experimental test bed has led to someimportant results:� Some games are solved. That means the 
omputer knows a strategy that allowsit to always a
hieve the best possible result. Among these games are Go-Mokuand Qubi
 [All94℄, Nine-Men's-Morris [Gas94℄ and Conne
t-4 [All88℄.� In several games, programs have surpassed the best humans. In 
he
kers, theprogramChinook won the World Championship in a regular mat
h and defendedits title several times until it retired [SLLB96, S
h97℄. The Othello programLogistello defeated the world 
hampion 6-0 in a mat
h [Bur97℄. The programMaven plays S
rabble at su
h a high level that it loses only a few possible pointsper game, 
onsistently surpassing human performan
e.� In other games, programs are approa
hing 
hampionship 
aliber that rivals thebest humans. In 
hess, strong programs 
an beat all but the very best humans.Deep Blue even defeated the World Champion Garry Kasparov in an exhibitionmat
h [New96℄. Gerry Tesaro's TD-Gammon plays ba
kgammon on par withthe best humans in the world [Tes95℄.� For games like bridge [Gin99℄ and poker [BPSS99℄, signi�
ant progress is beingmade that may lead to high quality play rivaling the best human players.These are important su

ess stories for AI resear
h. For some of these games,one 
ould argue that the Turing test has been passed, albeit in a limited domain.However, some of the programs play so well that they would have to start blunderingon
e in a while to appear to be human!Of 
ourse, there are many 
hallenges left. Games su
h as Go and Shogi still resistthe traditional approa
hes that are su

essful in most of the mentioned games. Webelieve it is no 
oin
iden
e that su

ess in writing programs for games appears tobe 
orrelated with our understanding of how to make sear
h work for them. Thisobservation unders
ores that sear
h is one of the most basi
 and important tools inAI.Domains besides two-player games in whi
h sear
h is su

essfully deployed areoptimization tasks, s
heduling, and, to a lesser extent, planning. These appli
ationsare examples of single-agent sear
h domains. In 
ontrast to adversarial games, su
h as
hess and poker, where opponents try to a
hieve opposing goals, single-agent sear
h2



assumes that only one agent is manipulating the world in order to a
hieve some(optimal) goal. Puzzles belong to the single-agent 
ategory as well.The resear
h into games and puzzles has produ
ed an enormous body of usefulte
hniques and methods for problem solving that has found its way into main stream
omputing s
ien
e. However, it has also some serious drawba
ks. The arti�
ial natureof games is re
e
ted in their sear
h-spa
e properties. Relatively manageable sear
h-spa
es, either small or well stru
tured, have been impli
itly assisting the early progressof AI resear
h. However, they do not 
ompare to the 
omplexities of the real-worldappli
ations s
ientists are working on today. Be
ause of the 
ombinatorial natureof most domains and the resulting exponential size of the sear
h spa
es, s
alabilityof sear
h methods is of great importan
e. If the domains used as resear
h vehi
lesdo not keep pa
e in 
omplexity and relevant properties, the resear
h results are lesslikely to be useful for pra
ti
al domains.The su

ess of sear
h depends on the ability of the program to visit most of therelevant parts of the sear
h spa
e. If the sear
h spa
e is too large and/or heuristi
knowledge to fo
us the sear
h is missing, su

ess is unlikely. Sin
e the sear
h-spa
esize of a problem is �xed, knowledge is needed to fo
us the sear
h. This is wherema
hines 
urrently fail and humans still have a 
onsiderable edge: �nding and usingknowledge to redu
e the problem 
omplexity. Thus, more resear
h on how to fo
ussear
h on relevant parts of the sear
h spa
e is needed.Methods that do not adapt to the problem instan
e, but instead rely on generalproperties of the domain, 
an help to improve sear
h eÆ
ien
y. But, they are limitedby the ne
essity of keeping their knowledge generally appli
able. However, humansare 
apable of learning during the problem solving pro
ess about how to solve the
urrent problem instan
e. This suggests developing dynami
 methods to glean and useknowledge that pertains to the spe
i�
 problem instan
e 
urrently under examination.This spe
i�
ity 
an help to break the 
omplexity barrier on a problem-by-problembasis. Spe
i�
 problem knowledge 
an remove irrelevant parts from the sear
h withthe pre
ision of a s
alpel. Of 
ourse, instan
e-dependent knowledge has its pri
e. Ithas to be found over and over again, and generalizing it is not only little understood,but it would turn this knowledge into a dull, even though larger, ma
hete.Dynami
 knowledge dis
overy is in fa
t a form of learning. It is performed at thelevel of problem instan
es, but shows all the properties of learning. As the learningprogresses, the 
lassi�
ation of subtrees as relevant/irrelevant be
omes more pre
ise.The result is a more eÆ
ient sear
h, redu
ing the 
omplexity of the sear
h spa
e athand. However, our 
urrent understanding of these dynami
 methods is limited atbest.In this thesis, a puzzle game (Sokoban) is used to explore new sear
h te
hniques forsingle-agent sear
h. Sokoban o�ers new 
hallenges, be
ause it has a mu
h larger sear
hspa
e than previously studied puzzle domains and exhibits real-world-like sear
h-spa
e properties. Deadlo
k, the possibility to maneuver into an unsolvable position,provides 
onsiderable diÆ
ulties to traditional sear
h methods. This thesis showsthat traditional sear
h methods fail to solve more than trivial Sokoban problems. Thestate-of-the-art is signi�
antly improved when traditional methods are 
hanged su
hthat they are able to adapt to ea
h instan
e. Furthermore, several new te
hniques3



are suggested to 
ombat the new 
omplexities and 
hallenges exempli�ed by Sokoban.Most su

essful is a te
hnique that dynami
ally gathers knowledge during the sear
hto avoid deadlo
ks and to improve the sear
h's understanding of the sear
h spa
e.Another method that uses the heuristi
 notion of relevan
e to fo
us the sear
h e�ortis des
ribed and analyzed. This thesis 
loses with a suggestion of a framework and a
lassi�
ation for single-agent sear
h enhan
ements.The resear
h presented here leaves a great number of important issues open. Theperforman
e of domain-independent solvers is still quite limited. The question is, how
an the enhan
ements suggested here (and, of 
ourse, many others already suggestedelsewhere) be automati
ally instantiated for a new domain? Can they be formulatedin a domain-independent way? Can we identify the essential properties a domain musthave to be amenable to a 
ertain sear
h enhan
ement? For simple enhan
ements,su
h as transposition tables, this is possible. Can we �nd su
h ways for other, more
omplex sear
h enhan
ements? After all, humans seem to be able to adapt their
ognitive pro
esses to a seemingly endless number of new problems. We are only atthe beginning...1.2 ContributionsThis thesis enhan
es our understanding of single-agent sear
h with the following 
on-tributions:� The puzzle game Sokoban is investigated and it is shown that its large sear
h-spa
e size and parti
ular sear
h-spa
e properties o�er signi�
ant new 
hallengesfor AI resear
h. One of these 
hallenges is the possibility of deadlo
ks: thesear
h 
an 
reate problem 
on�gurations that have no solution. In fa
t, state-of-the-art single-agent sear
h is shown to be insuÆ
ient to even solve Sokobanproblems of modest 
omplexity.� The 
on
ept of ma
ro moves [Kor85b℄ is improved by adding automati
 o�-linema
ro-move generation. Signi�
ant eÆ
ien
y gains are the result.� A new sear
h enhan
ement is introdu
ed: pattern sear
hes. Small, spe
ulativeon-line sear
hes gather dynami
 knowledge that helps avoid deadlo
ks and im-prove the heuristi
 estimate of the distan
e to the solution. The use of thisdynami
 knowledge allows orders-of-magnitude redu
tions in sear
h-tree sizesfor our Sokoban solver. The ne
essary properties of the appli
ation domain andheuristi
 fun
tion are identi�ed that allow the appli
ation of pattern sear
hes.The feasibility of pattern sear
hes for di�erent domains is shown using the ex-ample of the 15-puzzle.� Relevan
e 
uts, a new domain-independent forward-pruning te
hnique is pre-sented. It is theoreti
ally analyzed, and the risks and bene�ts are studied. Theanalysis is 
ontrasted with the experimental results. Relevan
e 
uts lead torelatively small sear
h-eÆ
ien
y improvements in the domain of Sokoban.4
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Figure 1.1: Chapter Dependen
ies� A traditionally su

essful method for overestimation (WIDA* [Kor93℄) is shownto fail in Sokoban. An explanation for this phenomenon is given. An alternate,domain-dependent method, driven by the dynami
 knowledge gathered with thepattern sear
hes, is shown to yield signi�
ant improvements in sear
h eÆ
ien
y.� A 
lassi�
ation of single-agent sear
h enhan
ements is presented. It revealsinteresting insights into the strengths and weaknesses of 
ertain fundamentalapproa
hes to enhan
ing sear
h algorithms.� Control knowledge and 
ontrol fun
tions, new 
on
epts in single-agent sear
h,are proposed. The distin
tion between task and 
ontrol knowledge allows for a
leaner treatment during design, implementation and tuning of sear
h enhan
e-ments.� A framework for single-agent sear
h enhan
ements is given. Four basi
 types ofsear
h enhan
ements are identi�ed.1.3 OrganizationFigure 1.1 
ontains a graph showing these inter-
hapter dependen
ies. After an in-trodu
tion to single-agent sear
h in Chapter 2, Chapter 3 introdu
es the puzzle gameSokoban in detail. Chapter 2 will be useful when reading through parts of Chapter 3,but it is not essential. Readers familiar with single-agent sear
h and/or Sokoban maywish to skip Chapter 2 and Chapter 3, respe
tively.Chapter 4 examines the performan
e of the standard single-agent sear
h te
h-niques that are available in the literature and shows how to enhan
e ma
ro moveswith o�-line pre
omputation. This 
hapter also lays out the experimental setup usedthroughout this thesis. It is fundamental to the understanding of either of the fol-lowing three 
hapters in terms of methodology and terminology.5



Chapter 5 introdu
es Pattern Sear
h, a method that dynami
ally learns how toavoid deadlo
ks and improve the lower bound.Chapter 6 dis
usses a new forward-pruning te
hnique 
alled Relevan
e Cuts.In Chapter 7, the possibilities for overestimation are explored. The reader of this
hapter should be 
omfortable with ideas and terms de�ned in Chapter 5.Chapter 8 shows how these te
hniques �t into a framework that extends the tra-ditional view on single-agent sear
h. To get the most from this 
hapter, the readershould be well versed with single-agent sear
h (Chapter 2), the standard single-agentsear
h enhan
ements (Chapter 4) and the new sear
h enhan
ements from Chapter 5to Chapter 7.1.4 Publi
ationsChapter 4 \Using Standard Single-Agent Sear
h Methods" is based on two papers.The �rst paper, \Sokoban: A Challenging Single-Agent Sear
h Problem" [JS97℄,was presented at the workshop \Using Games as an Experimental Testbed for AIResear
h" at IJCAI'97, Nagoya, Japan. The se
ond paper, \Sokoban: EvaluatingStandard Single-Agent Sear
h Te
hniques in the Presen
e of Deadlo
k" [JS98
℄, is arevised and updated version of the workshop paper. It was presented in 1998 at theCanadian AI 
onferen
e in Van
ouver, Canada.Chapter 5 \Pattern Sear
hes" is based on the paper \Single-Agent Sear
h in thePresen
e of Deadlo
k" [JS98b℄ whi
h was presented at AAAI'98, Madison/WI, USA.Chapter 6 \Relevan
e Cuts" stems from the paper \Sokoban: Improving theSear
h with Relevan
e Cuts" [JS99b℄ whi
h was a

epted in 1999 for a spe
ial issueof the Journal of Theoreti
al Computing S
ien
e. This paper is based on an earlierversion, \Relevan
e Cuts: Lo
alizing the Sear
h" [JS98a℄, whi
h was presented in1998 at \The First International Conferen
e on Computers and Games", Tsukuba,Japan.Chapter 8 \Single-Agent Sear
h Enhan
ements" is based on the paper \Domain-Dependent Single-Agent Sear
h Enhan
ements" [JS99a℄ whi
h was presented at IJ-CAI'99, Sto
kholm, Sweden.
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Chapter 2Single-Agent Sear
h
2.1 Purpose of Sear
hReal-world problems 
an often be abstra
ted into models where a state of the worldis des
ribed mathemati
ally. State-transition rules des
ribe the 
onditions for thetransitions between states in the model and the 
hanges these transitions 
ause.For example, the 
hildren's toy 
alled sliding-tile puzzle 
an be modeled in thefollowing way. A state 
onsists of the 
urrent lo
ation of the tiles and the emptyspa
e. The state-transition rules de�ne that any of the up to 4 neighboring tiles
an be pushed into the empty spa
e. This simple des
ription allows us to model the\real-world" problem of the sliding-tile puzzle e
onomi
ally.Single-agent sear
h assumes that only one \agent" is 
hanging the state of theworld, in prin
iple, having total 
ontrol within the rules de�ned by the model. Ad-versarial sear
h assumes multiple (typi
ally two) agents that both 
hange the worldto a
hieve opposing goals. We will restri
t ourselves to single-agent sear
h in thisthesis.State des
riptions and state-transition rules (
olle
tively, the \model") impli
itlyde�ne a graph that is 
alled the problem or state spa
e. The nodes in this graphrepresent the states and the edges are transitions between states. A problem is givenby a start state of the world and a des
ription of at least one goal state. A solutionwould be a path leading from the start state to any of the goal states. A solutionpath indi
ates the sequen
e of transitions needed to transform the start state intothe goal state. Some restri
tions on that path might be given, su
h as the shortestpossible path in terms of number of transitions.In a problem des
ription as de�ned above, �nding a solution means �nding a pathin a graph. Di�erent algorithms have been proposed that attempt exa
tly that. Theyfollow di�erent strategies.
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Figure 2.1: Example Sear
h Graph (Tree) With Legend2.1.1 Notation and TerminologyFirst we will introdu
e some notation and terminology to help explain the algorithmsin the next se
tions. The exa
t distan
e1 from a state s to the 
losest goal is usuallyreferred to as h�(s). The fun
tion h�(s) is generally unknown. If we had a perfe
tfun
tion for h�, �nding an optimal path to a goal would be trivial and sear
h would beunne
essary. The heuristi
 fun
tion h(s) estimates h�(s) and is said to be admissible,if h(s) � h�(s); 8s 2 S, where S is the set of all states in the sear
h spa
e. Inother words, h(s) is a lower bound on h�(s). The fun
tion h(s) is 
alled 
onsistent, ifh(s1) � h(s2)+ 
(s1; s2); 8s1; s2 2 S, with 
(s1; s2) being the 
ost to get from s1 to s2.Consisten
y means that ea
h transition having 
ost 
(s1; s2) 
an de
rease the heuristi
value by at most that 
ost. Consistent heuristi
s are ne
essarily admissible. For anyof the goal states h(sg) = 0, where sg 2 G and G is the set of all goal states andG � S. The value g(s) is the 
ost of all the transitions (or a
tions) performed to rea
hs from the start state s0, therefore g(s0) = 0. We will also use the fun
tion f(s), whi
his de�ned as f(s) = g(s)+ h(s). Intuitively, f(s) is the estimate of the total distan
efrom the start state to a goal state via s. f �(s) is de�ned as f �(s) = g(s) + h�(s).Thus, f �(s) is the a
tual 
ost along an optimal path through the state s. We will
all a generated node in a sear
h graph open if all of its su

essors have not yet beengenerated by the sear
h algorithm and 
losed otherwise.Figure 2.1 shows an example of a state spa
e whi
h we will use throughout this
hapter to illustrate the di�erent sear
h algorithms. Nodes are marked with h andh�, and with g and f , as indi
ated in the legend of Figure 2.1.1Cost and distan
e will be used inter
hangeably, sin
e we assume 
ost to be equal to distan
e.This simplifying assumption does not invalidate the generality of the following statements, sin
edistan
e 
ould be de�ned di�erently.
8



2.2 AlgorithmsMany di�erent algorithms have been proposed to traverse sear
h spa
es. We will
on
entrate on the most important and relevant to this thesis. We will start withthree uninformed sear
hes: random walk, breadth-�rst sear
h and depth-�rst sear
h.We then move on to informed sear
hes, like A*, that use additional information inthe form of heuristi
 knowledge to guide the sear
h. This se
tion 
loses with someintuitive explanations of sear
h spa
es and heuristi
 fun
tions.2.2.1 Uninformed Sear
hRandom Generation and Random WalkRandom walk does what the name suggests: The algorithm walks randomly throughthe sear
h spa
e, 
hoosing any of the neighbors. This might sound silly, but it 
an bea good idea if the goal density (the ratio of goal to non-goal states) is high enough, thequality (
ost) of a solution is not a major issue, and little or no knowledge about theproblem domain is available. Systemati
 sear
h algorithms 
an su�er from problemssu
h as spa
e requirements, 
y
les, transpositions, and in�nite paths { problems thatare almost no issue in random algorithms. However, random algorithms are easilyoutperformed by more systemati
 approa
hes when sear
hing for good quality solu-tions, or sear
hing in large sear
h spa
es with low goal density, or when high-qualityknowledge about the problem is available.Figure 2.2 shows pseudo 
ode for a random-generation algorithm. Instead of
hoosing a neighbor, it randomly sele
ts any of the open nodes. OpenStorage refersto a data stru
ture that 
an simply hold states visited, su
h as a list. The routinesStore and Sele
tRandomly store and retrieve as well as remove states from that datastru
ture. Empty tests if the data stru
ture still 
ontains states. Child expands astate (
reates all possible su

essors by applying all legal a
tions) and Solution testsif a state is a goal state.Some humans pra
ti
e a form of random walk when they try to �nd, for example,baby food in a big department store that they visit for the �rst time. Withoutknowledge of where the produ
ts are lo
ated, most of their steps take them in arandom dire
tion, eventually rea
hing the shelf with the baby food.Breadth-First Sear
hIntuitively, breadth-�rst sear
h traverses the sear
h spa
e systemati
ally by visitingall the nodes that are 
losest to the start state before visiting the ones further away,hen
e breadth-�rst. Figure 2.3 shows an order the nodes of the example graph inFigure 2.1 are expanded.Figure 2.4 shows the pseudo 
ode for breadth-�rst sear
h. It starts by storingthe start state into a �rst-in-�rst-out (FIFO) queue that holds all open states, statesthat are due to be expanded.2 Until a goal state is found, breadth-�rst sear
h takes2Note that Store for OpenStorage in the random walker and Store for OpenFIFO have slightly9



RandomWalk( StartState )f Store( OpenStorage, StartState );Su

ess = FALSE;DO fCurrentState = Sele
tRandomly( OpenStorage );IF( Solution( CurrentState ) )Su

ess = TRUE;ELSEFOREACH( Child( CurrentState ) ) DOStore( OpenStorage, Child( CurrentState ) );g UNTIL( Su

ess OR Empty( OpenStorage ) );IF( Su

ess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.2: Random-Generation Algorithm
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Figure 2.3: Illustration of Breadth-First Sear
h
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BreadthFirst( StartState )f Store( OpenFIFO, StartState );Su

ess = FALSE;DO fCurrentState = GetFirstIn( OpenFIFO );IF( Solution( CurrentState ) )Su

ess = TRUE;ELSEFOREACH( Child( CurrentState ) ) DOStore( OpenFIFO, Child( CurrentState ) );g UNTIL( Su

ess OR Empty( OpenFIFO ) );IF( Su

ess ) RETURN( CurrentState );ELSE RETURN( NULL );gFigure 2.4: Breadth-First Algorithm (for Unit-Cost A
tions)the next state from the queue, expands it and stores all su

essors at the end of thequeue.Consider an analogy. When we drop our last mat
h in a dark 
ellar, one wouldusually kneel down, tou
hing the immediate area on the 
oor, slowly extending ourrea
h, enlarging the area sear
hed until we tou
h the mat
h. This is in prin
iple abreadth-�rst sear
h. This approa
h seems reasonable, sin
e we expe
t the mat
h tobe 
lose by.This simple algorithm is guaranteed to �nd an optimal solution, if all a
tions havethe same (unit) 
ost. In the 
ase of non-unit-
ost a
tions, having found a solution,we have to 
ontinue to expand all states in the queue that have a 
ost less than the
urrently best solution. Two 
hanges are ne
essary to a
hieve this. First, a simple
he
k of ea
h new state is added before it is put into the queue to see if its 
ost is lessthan the 
urrent best solution. Se
ond, the algorithm stops only after the queue isempty. Dijkstra's shortest-path algorithm is the generalisation of breadth-�rst sear
hto this 
ase.The immediate 
on
ern with this algorithm is its spa
e requirement. The queue
ontains the entire sear
h frontier, all the open states. This 
an qui
kly exhaust thememory 
apa
ity, even for moderately 
omplex problems. For problems where thatis the 
ase, we need an alternative.Depth-First Sear
hDepth-�rst sear
h explores the sear
h spa
e from top to bottom a
ross the graph (like
olumns in a table). More spe
i�
ally, before sear
hing the siblings of a node, all its
hildren are sear
hed. Thus, the deepest open nodes are expanded �rst. Figure 2.5di�erent semanti
s, ea
h a

ording to the kind of data stru
ture they are operating on.11
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Figure 2.5: Illustration of Depth-First Sear
hshows depth-�rst sear
h for our example graph in Figure 2.1.To a
hieve the behavior from the sket
h of the breadth-�rst algorithm above, wesimply 
hange the queue into a sta
k (last-in-�rst-out = LIFO)3. Figure 2.6 showsthe pseudo 
ode for the depth-�rst algorithm. If the algorithm stops after the �rstsolution is found, we 
annot be guaranteed to have an optimal solution. We willhave to explore all 
hildren of the start state to make sure. However, there is oneobservation that 
an be used to improve the eÆ
ien
y. On
e a state s has a 
ost f(s)larger than or equal to the 
urrently best solution, exploring its su

essors will notyield any better solution and we 
an stop sear
hing this part of the sear
h spa
e, ifno a
tions have negative 
ost.The advantage of depth-�rst sear
h over breadth-�rst sear
h is in the spa
e re-quirements. The sta
k only holds all the neighboring states of the states on the
urrent path. That means that the spa
e needed for the sta
k is linear in the lengthof the 
urrent sear
h path, whi
h is logarithmi
 in the size of the tree. On the otherhand, breadth-�rst sear
h stores the sear
h frontier, whi
h, be
ause of the exponentialgrowth of the sear
h tree, grows exponentially.When Columbus set out from Spain to �nd India in the West, he did not wastetime trying to �nd it in the immediate vi
inity of Spain; he went straight West. Weknow today that this depth-�rst approa
h, be
ause of the size of the goal (we assumeit was Ameri
a), makes perfe
t sense.The obvious drawba
k of this algorithm is the possibility of 
y
les or in�nite paths.3The attentive reader will noti
e a slight in
onsisten
y here. If the nodes are generated from leftto right, as is usually assumed, and immediately pla
ed on the sta
k, they would be expanded rightto left. However, Figure 2.5 shows a left-to-right expansion.12



DepthFirst( StartState )f Push( OpenSta
k, StartState );Su

ess = FALSE;DO fCurrentState = Pop(OpenSta
k);IF( Solution( CurrentState ) )Su

ess = TRUE;ELSEFOREACH( Child( CurrentState ) ) DOPush( OpenSta
k, Child( CurrentState ) );g UNTIL( Su

ess OR Empty( OpenSta
k ) );IF( Su

ess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.6: Depth-First AlgorithmIf the problem domain allows for either of these, the simple algorithm of Figure 2.6might fail to �nd a solution. If the algorithm had a notion of how mu
h e�ort wasspent on a 
ertain path and an estimate about how far a potential solution was away,these two problems 
ould be avoided.Iterative DeepeningIterative deepening is an attempt to re
tify the problems depth-�rst sear
h fa
eswith in�nite paths or loops, without in
urring the ex
essive spa
e requirements ofbreadth-�rst sear
h. It was �rst introdu
ed in [SA77, Kor85a℄, albeit for minimax-like algorithms and with a slightly di�erent purpose.The basi
 idea is to iteratively deepen the maximum depth a depth-�rst sear
h
an traverse into the sear
h tree. If a 
ertain iteration has �nished without �ndinga goal, the maximal depth is in
reased and the depth-�rst sear
h is restarted. At�rst this might sound like a lot of wasted work, but sin
e the sear
h-tree size growsexponentially with the depth, the size of the tree is dominated by the e�ort spentin the last iteration. Thus, all previous iterations sear
h a relatively small portionof nodes when 
ompared with the 
urrent iteration. Additionally, if a goal is found,it must be an optimal goal, sin
e the previous iteration sear
hed all nodes rea
hablewith less moves then the 
urrent iteration allows (given unit-
ost a
tions).Iterative BroadeningIterative broadening [Gin93a℄ is to breadth-�rst sear
h what iterative deepening isto depth-�rst sear
h. The number of su

essors explored at ea
h node in the tree isrestri
ted to a �xed portion (or alternatively a �xed number) of all su

essors. If nosolution is found, the sear
h 
an be restarted with more su

essors 
onsidered at ea
h13



node. It is important to note here that the sear
h-tree size growth is only dampened;it still grows exponentially!Sin
e iterative broadening does not impose depth limits per se, loops and in�nitepaths 
an lead to problems if not sear
hed in a breadth-�rst manner. To avoidex
essive spa
e requirements, one 
an use the iterative deepening idea in 
onne
tionwith iterative broadening. However, if a sear
h iteration failed to �nd a solution, it ishard to de
ide if the sear
h should broaden or deepen the sear
h e�orts. Very littleresear
h has been done to investigate me
hanisms that might be useful to 
ontrolsu
h hybrid sear
hes.Beam Sear
hBeam sear
h [Win92, Bis92℄ restri
ts the number of open states per level in the treeto a 
onstant { the beam into the sear
h tree. Obviously, the sear
h trees are onlygrowing linearly in depth. Even though the idea might seem appealing at �rst, it
omes with its own set of problems that are similar to the hybrid iterative approa
hes.If a sear
h returns failure, how mu
h wider should the sear
h beam be? Whi
h nodesshould be kept at a parti
ular level? These and similar issues are under investigation(For an example see [Zha98℄.).2.2.2 Informed Sear
hAll previous algorithms had no more information about a state other than the 
ostneeded to rea
h it from the start state. Informed algorithms use additional knowledgeto estimate how far away a solution is. This domain-dependent knowledge is en
odedinto a heuristi
 fun
tion. It returns an estimate of the distan
e to the goal for anyarbitrary state. This heuristi
 fun
tion is 
alled admissible if it never overestimatesthe distan
e (or 
ost) from any state in the sear
h spa
e to the 
losest goal. Thisestimate is also 
alled a lower-bound estimator.To get a lower-bound heuristi
, one 
an remove 
onstraints from the original setof rules for the domain and use this simpler problem to 
ome up with an optimisti
estimate on the 
ost to a
hieve a solution. For example, in the sliding-tile puzzle (seeSe
tion 2.6.1), we might 
hoose to ignore the rules that only one tile 
an be at onesquare at a time and that a blank has to be beside a tile to be moved. With thesetwo relaxations of the rules of the game, we get the Manhattan distan
e heuristi
 (seeSe
tion 2.3.3). Of 
ourse, the more simplifying (or ignorant) the assumptions are, thegreater the error between the lower-bound estimator and the real 
ost to a goal.The fewer the simpli�
ations, the smaller the error between h and h� will poten-tially be. Taking more details of the domain into a

ount makes the lower-boundestimator more expensive to 
ompute. However, sin
e de
reasing the error in thelower-bound estimator means a more eÆ
ient sear
h4, the gains in eÆ
ien
y 
ano�set the more expensive lower-bound 
al
ulations.Many of the good lower-bound fun
tions used for spe
i�
 domains, su
h as thesliding-tile puzzle, are hand-
rafted. Often, they result from 
lever redu
tions into4This relationship will be
ome more apparent in up
oming se
tions.14



BestFirst( StartState )f Insert( OpenSortedList, StartState );Su

ess = FALSE;DO fCurrentState = GetBest( OpenSortedList );IF( Solution( CurrentState ) )Su

ess = TRUE;ELSEFOREACH( Child( CurrentState ) ) DOInsertSortedOnH( OpenSortedList, Child( CurrentState ) );g UNTIL( Su

ess OR Empty( OpenSortedList ) );IF( Su

ess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.7: Best-First Algorithmfun
tions that are easy to 
ompute or approximate. The Manhattan distan
e is onesu
h fun
tion: a number of table lookups and a summation are suÆ
ient to 
al
ulateit. Furthermore, one 
an in
rementally update the Manhattan distan
e as moves aremade. This 
an result in e�e
tive and eÆ
ient implementations.However, these good lower-bound fun
tions are appli
ation-dependent. Ea
h newappli
ation domain requires new e�orts to �nd good heuristi
s. For large and non-intuitive domains this 
an be a hard problem. Holte et.al. [HPRA96℄ suggest usinghierar
hi
al sear
hes to establish lower bounds on distan
es to goals. By abstra
tingthe real sear
h spa
e (often by simplifying it), a smaller sear
h in an abstra
t sear
hspa
e 
an produ
e a lower bound on the number of steps required to rea
h a goalin the real sear
h spa
e. Ge�ner [BG98, BG99℄ suggests a similar approa
h for hisstate-spa
e planner.Naive (Pure) Best-First Sear
hBest-�rst sear
h always expands the best open node next. \Best" is de�ned withrespe
t to some measure, typi
ally the estimated distan
e to the 
losest goal stateh(s). Thus, at ea
h step a best-�rst sear
h expands the node that it believes tobe 
losest to a goal. This behavior 
an be a
hieved by keeping all open states in asorted list, ordered by the estimate of the distan
e to the goal (see pseudo 
ode inFigure 2.7).Unfortunately, this algorithm is not guaranteed to �nd an optimal solution. Thesear
h might be misled by an optimisti
 estimator for a path to a non-optimal solution.For example, if the heuristi
 returns a distan
e of 1 on the path to a non-optimal goal(see Figure 2.8), the path to an optimal goal is ignored and the suboptimal goal isfound �rst. Best-�rst sear
h will follow this suboptimal path to arbitrary depth. A
loser goal was ignored be
ause of a slightly larger estimate of the distan
e to the15
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Figure 2.8: Illustration of Best-First Sear
hgoal on an optimal path. This happens be
ause the 
ost of a
tually getting to the
urrent state from the start state is ignored.A*A* [HNR68℄ is a best-�rst algorithm whi
h uses f(s) as the measure for \best". Bytaking both the a
tual 
ost of getting to a state and the admissibly estimated distan
eto a goal into a

ount, A* is guaranteed to �nd an optimal solution. Furthermore,A* handles sear
h graphs, not just trees. This 
an lead to important eÆ
ien
y gainswhen identi
al parts of a sear
h tree (or 
y
les) are dete
ted and multiple traversalof these parts is avoided. Unfortunately, this 
omes at a pri
e: every time a node isgenerated, it must be 
he
ked to see if it was already visited or generated. Two listsare used to keep tra
k of open and 
losed nodes, an OPEN list and a CLOSED list,respe
tively.The des
ription of A* in Figure 2.9 shows a simpli�ed version that ignores all thedetails we have to take 
are of when we want to 
onne
t parent and 
hild nodes inthe graph. If a shorter path to a node is found, PropagateG is used to update theimproved g value in all the su

essors of that node. Note that the fun
tion Get doesnot remove the node from any of the lists. InsertSortedOnF sorts the states in thequeue a

ording to the f value.It is interesting to note that by appropriately 
hoosing values for g and h, A* 
anbehave like any of breadth-�rst, depth-�rst or the naive best-�rst algorithms. Settingthe 
ost of an a
tion to 1 and h to 0, A* defaults to breadth-�rst sear
h. If we setthe 
ost of an a
tion to -1 and keep h at 0, depth-�rst behavior results. And �nally,16



A STAR( StartState )f StartState.g = 0;Insert( OpenSortedList, StartState );Su

ess = FALSE;DO fCurrentState = GetBest( OpenSortedList );IF( Solution( CurrentState ) )Su

ess = TRUE;ELSEf FOREACH( Child( CurrentState ) ) DO fIF( IsIn( OpenSortedList( Child( CurrentState ) ) ) )f OldState = Get( OpenSortedList( Child( CurrentState ) ) );OldState.g = min( OldState.g, Child( CurrentState ).g );gELSIF( IsIn( ClosedList( Child( CurrentState ) ) ) )PropagateG( Get( ClosedList( Child( CurrentState ) ) ) );ELSEInsertSortedOnF( OpenSortedList, Child( CurrentState ) );gInsert( ClosedList, CurrentState );gg UNTIL( Su

ess OR Empty( OpenSortedList ) );IF( Su

ess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.9: A* Algorithm
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Figure 2.10: Illustration of A*by setting the 
ost of a
tions to 0 (resulting in g being 0) and using the normal h, wea
hieve the naive best-�rst behavior.The maintenan
e and size of the OPEN and CLOSED lists, with the expensive Getand InsertSortedOnF operations, are the main drawba
ks of A*. Even moderately
omplex problems 
an bring the spa
e requirements beyond the a

eptable.IDA*Korf [Kor85a℄ applied the idea of iterative deepening to A*. The resulting algorithm(see Figure 2.11), Iterative Deepening A* (IDA*), traverses the sear
h tree in a depth-�rst manner, iteratively deepening the tree. Ea
h iteration of IDA* tries to �nd asolution with a path length equal to PathLimit. For the �rst iteration, PathLimit isset to the heuristi
 estimate for the start state (h(s)). If the heuristi
 is admissible,any node s with g(s) + h(s) = f(s) > PathLimit 
annot be on a solution path oflength PathLimit and 
an therefore be ignored (pruned from the tree in this iteration).Exhaustively sear
hing the tree during an iteration and not �nding a solution is proofthat no solution with length PathLimit exists. PathLimit is in
reased and a newiteration started. Eventually, we will in
rease PathLimit to a value that is as large asthe optimal solution length (
ost). During this last iteration we will �nd an optimalsolution.Is this approa
h eÆ
ient? 18



IDA STAR( StartState )f PathLimit = H( StartState ) - 1;Su

ess = FALSE;DO fPathLimit ++;StartState.g = 0;Push( OpenSta
k, StartState );DO fCurrentState = Pop( OpenSta
k );IF( Solution( CurrentState ) )Su

ess = TRUE;ELSIF( PathLimit >= ( CurrentState.g + H( CurrentState ) ) )FOREACH( Child( CurrentState ) ) DOPush( OpenSta
k, Child( CurrentState ) );g UNTIL( Su

ess OR Empty( OpenSta
k ) );g UNTIL( Su

ess OR Resour
eLimitsRea
hed() );IF( Su

ess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.11: IDA* Algorithm
3
2

Step 1

0
2 3

2

2
21

3

1
3

0
2

1
2

Step 2

2
2

3
2

1
2

1
3

1
3

0
2

1
2

2
5

2
3

Step 3

3
4

3
2

Step 1

0
2 3

2

2
21

3

1
3

0
2

1
2

Step 2

2
2

3
2

1
2

1
3

1
3

0
2

1
2

2
5

2
3

Step 3

3
4

2
2

1
1

1
2

1
2

0
2

2
5

3
4

1
3

2
3

1
3

3
2

Step 4

3
4

2
21

3

1
1

1
2

0
2

1
2

2
5

3
4

2
3

1
3

3
2

Step 5

3
4 3

2
1
1

2
2

3
2

1
3

1
2

0
2

1
2

2
5

2
3

1
3

1
1

3
2

3
4

1
1 3

3
0
0

Step 6

3
4

2
2

3
2

1
3

1
2

0
2

1
2

2
5

2
3

1
3

1
1

3
2

3
3

0
01

1
3
4

Step 7

3
4

It
er

at
io

n 
2 

(P
at

hL
im

it 
3)

It
er

at
io

n 
1 

(P
at

hL
im

it 
2)

Figure 2.12: Illustration of IDA*19



� Ea
h iteration is a depth-�rst sear
h, restri
ting the spa
e requirements to log-arithmi
 spa
e in the size of the sear
h tree, whereas A* needed linear spa
e inthe size of the sear
h tree.� No expensive list operations are needed anymore, lists are repla
ed with a 
heapsta
k.� With the limit on the solution length, an additional 
uto� 
riterion is given that
ontrols the size of the sear
h tree.� Sin
e we are dealing with trees that grow exponentially in size, earlier iterationsare usually small enough to be virtually negligible in 
ost 
ompared to the lastiteration.These four reasons make IDA* a viable 
ontender for pra
ti
al appli
ations in sear
h.The eÆ
ien
y of IDA* depends dire
tly on the quality of the heuristi
 fun
tion h.If h = h� the sear
h would simply walk to the solution. It is important to note thatthe quality of the heuristi
 fun
tion depends on the average error over all the states inthe sear
h spa
e, not just the root node. Even if the root node is estimated perfe
tly(no error), the sear
h might not be able to �nd a solution be
ause the heuristi
 ispoor in the rest of the sear
h spa
e. In the worst 
ase, h = 0 for all states, IDA* willdegenerate to a series of depth-limited depth-�rst sear
hes.Depth-First Bran
h and BoundIDA* starts with a lower bound on the solution length and in
reases this lower boundea
h time it proves that no solution with this lower bound exists. Depth-�rst bran
hand bound (DFBB) [LW66℄ starts with an upper bound on the solution length. Theupper bound is used to prune parts of the sear
h spa
e that 
annot 
ontain a solutionbetter than the 
urrent best solution. That means that whenever DFBB en
ountersa node s in the sear
h spa
e that has an f -value (f(s) = g(s) + h(s)) equal or largerthan the best solution found so far, s gets 
ut o�. DFBB traverses the sear
h spa
ein a depth-�rst manner. Whenever it �nds a new goal when attempting to expand it,this goal must be better than the previously found. The 
ost of the new goal is usedto adjust (lower) the upper bound and the sear
h 
ontinues. Depth-�rst bran
h andbound depends on a high goal density, otherwise it will su�er from the same problemsas depth-�rst sear
h.Bidire
tional Sear
hNothing for
es us to solve the problem in a \forward" dire
tion [Nil80℄. Why notsear
h \ba
kwards", starting from the goal state and attempting to �nd a path tothe start state? Choosing the right dire
tion (\forward" or \ba
kward") 
an lead tosigni�
ant savings, sin
e tree shapes might not be symmetri
 and a forward tree mightbe larger than the 
orresponding ba
kward tree. However, so far we are not talkingabout something new, just that the sear
h dire
tion might be an issue. Ba
kwardsear
h would use inverse a
tions to 
reate all possible prede
essors of a node in a20



During Search Path Found Dark Gray: Possible SavingsFigure 2.13: Illustration of Bidire
tional Sear
hforward sense, whi
h are the su

essors in a ba
kward sense. We would also have toex
hange goal with start state(s).But why do we sear
h only in one dire
tion? Could it be bene�
ial to sear
h fromboth sides? Bidire
tional sear
h [Poh71℄ pro
eeds to deepen the tree from both sidesuntil both trees interse
t at one node, 
onne
ting a path between the start and agoal state. This path is not ne
essarily an optimal path. The sear
h strategies forthe forward and ba
kward sear
h do not need to be the same. Depending on thedi�erent sear
h-spa
e properties, di�erent strategies might be 
hosen for the di�erentdire
tions.Figure 2.13 shows the sear
h trees for the two dire
tions. As they grow towardsea
h other, they will eventually meet. A unidire
tional approa
h would have toexpand a deeper tree with a potentially larger number of nodes than the two smallertrees together. The dark gray area in the third part of the �gure shows what thepotential savings 
ould look like.All this sounds rather 
onvin
ing. The question is why is this approa
h not widelyused? There are several problems with bidire
tional sear
h. For a long time it wasassumed that it was hard to be able to make the sear
h frontiers meet. However,Kaindl and Kainz [KK97℄ show that �nding a solution was not so mu
h the problemas �nding an optimal solution. The sear
h spends a lot of e�ort making sure anoptimal solution is returned. Furthermore, the savings shown in Figure 2.13 are notne
essarily a
hievable, if the unidire
tional sear
h is eÆ
ient. If, for example, IDA*'slast iteration is small be
ause of good move ordering, the savings a
hievable withbidire
tional sear
h are small.Furthermore, it is a problem to dete
t when sear
h frontiers even meet, sin
e atleast one frontier has to be kept in memory to �nd interse
tions. Sin
e trees grow21



exponentially, sear
h frontiers and, thus, spa
e requirements do too, a major drawba
kfor bidire
tional sear
h.Ba
kward sear
hes often fa
e another problem. Sin
e the goal state is not ne
-essarily one state, but a set of states, the ba
kward sear
h 
ould potentially haveseveral possible start states. This in
reases the amount of work to be done and simul-taneously de
reases potential savings. Other, more pra
ti
al reasons might in
ludediÆ
ulties with reverse a
tions and the overhead of �nding, tuning and 
oding theadditional heuristi
s.2.2.3 Choosing the Right AlgorithmWhen presented with the 
hoi
e of whi
h algorithm to implement for a 
ertain domain,one might be 
onfused by the multitude of di�erent approa
hes and ideas behind thealgorithms. So what drives the sele
tion of an algorithm? What are the properties ofthe sear
h spa
e that are used to de
ide whi
h algorithm to use?The �rst 
hoi
e between informed and uninformed algorithms depends on theavailability of domain knowledge. Usually, informed sear
hes perform better thanuninformed. Therefore, if knowledge is available, informed algorithms are the pre-ferred 
hoi
e. As long as the sear
h spa
e �ts into memory and the overhead ofmaintaining the OPEN and CLOSED lists is no 
on
ern, A* is the 
hoi
e. However,if memory or list maintenan
e is a 
on
ern, IDA* is the preferred 
hoi
e.Now, when would a bran
h and bound sear
h be useful? Bran
h and boundsear
hes operate on the fa
t that we 
an easily �nd a solution, but want to improveon the quality of that solution. A high density of goal states in the sear
h spa
e isneeded if DFBB is used. Otherwise DFBB will degenerate into a depth-�rst sear
h.Random walk algorithms are of use when fa
ed with huge sear
h spa
es where wehave little or no knowledge of the sear
h spa
e and we are looking for just any solution,and not ne
essarily a high-quality solution. Re
ent interest in random walk appli
a-tions was sparked by advan
es in the satis�ability (SAT) domain, where WALKSAT[SKC94℄ seems to perform rather well. Other random walk algorithms are heuristi-
ally guided, but use the random element to avoid lo
al minima. Geneti
 algorithms,and 
ertain hill 
limbers, su
h as simulated annealing, belong to that group.2.3 Enhan
ementsThe des
ription of the algorithms in the previous se
tion 
onveyed only the basi
ideas. Most of these algorithms are used in 
onne
tion with powerful enhan
ements.Sear
h enhan
ements potentially in
rease the sear
h eÆ
ien
y by orders of magnitude,depending on the problem domain and algorithm. Often, the 
hoi
e of the rightalgorithmi
 enhan
ement(s) is more diÆ
ult and 
ru
ial to the performan
e of theprogram than 
hoosing the right algorithm. This problem will be dis
ussed in moredetail in Chapter 4.
22



Figure 2.14: Example Problem to Illustrate Transposition Tables and Ma
ros
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Figure 2.15: Impa
t of Transposition Tables2.3.1 Transposition TableEven though sear
h spa
es are generally graphs, most sear
h algorithms treat themas trees. If a state 
an have several prede
essors, this 
an lead to dupli
ate work.The sear
h 
ould revisit nodes and even entire subtrees several times. These \trans-positions" are dete
ted using a large transposition table [SA77℄5 in whi
h useful in-formation about previously visited nodes is stored. Before expanding a node, thetransposition table is 
onsulted, and if valid information is found, it is used to po-tentially 
urtail the sear
h. Transposition tables are usually implemented as hashtables.Furthermore, when iterative deepening is used, the transposition table serves tostore information that 
an be used to make subsequent iterations more eÆ
ient (seeSe
tion 2.3.2 \Move Ordering").Consider the position in Figure 2.14: Two stones need to make three moves in arow. We will use a,b,
 for the moves of the left stone and d,e,f for the right stone.The moves of ea
h stone have to be made in sequen
e, but 
an be interleaved in anyway between the two di�erent stones. Figure 2.15 shows what happens if the sear
h isenhan
ed with a transposition table. Solid nodes represent nodes sear
hed normally,while light nodes represent 
uto� nodes be
ause of a transposition table mat
h, withdotted lines 
onne
ting identi
al positions in the tree. For example, the top mostlight node is rea
hed with the move sequen
e d,a whi
h results in the same positionthat was previously sear
hed after the moves a,d.5Another way of dete
ting transpositions involves �nite state ma
hines [TK93℄.23



Another way of looking at the fun
tion of the transposition table is by des
ribingit in terms of the heuristi
 lower bound and IDA*. Ea
h state s sear
hed in IDA*must have the following property: g(s) + h(s) = f(s) <= PathLimit, otherwise thesear
h would not 
onsider this state. When a state was sear
hed exhaustively and thesear
h ba
ks up with failure, we have proven that our heuristi
 fun
tion h(s) was o�.We know now that g(s) + h0(s) = f 0(s) > PathLimit, or h0(s) > PathLimit � g(s),or h0(s) >= PathLimit � g(s) + 1. When storing h0(s) in the transposition table,we allow the sear
h to improve on the heuristi
 value h(s) every time it revisits thestate s. The value stored in the transposition table is used to improve the lowerbound. This dynami
 improvement of the lower bound leads to additional 
uto�s inthe sear
h in two ways.� Within an iteration, revisiting a state with the same or larger g(s) allows us toimprove the lower bound with a transposition table lookup. The improved lowerbound will be enough to 
ause a 
uto� (g(s) + h0(s) = f 0(s) > PathLimit).� If the sear
h revisits the state s with a lower g(s), no 
uto� 
an happen, thesear
h will pro
eed. However, in the next iteration, if we visit node s in thesame order, the h0(s) stored in the transposition table is now suÆ
ient to 
ausea 
uto� when rea
hing s via a non-optimal g(s).This s
heme also handles 
y
le dete
tion. Rather than storing the new lowerbound after we sear
hed the subtree, we update the transposition table before de-s
ending into the tree. If we ever 
y
le ba
k into a state that is on the 
urrent path,g(s) must be larger than it was previously and thus, a 
uto� will o

ur. No spe
ial
ode is needed to dete
t 
y
les.62.3.2 Move OrderingInstead of visiting su

essors of a move in an arbitrary order, one 
an try to look at\good" su

essors �rst.Move ordering is not used in best-�rst sear
hes; the algorithm itself provides fora global ordering of the alternatives. In depth- and breadth-�rst sear
hes, moveordering 
an lead to eÆ
ien
y gains be
ause goals are found earlier (left in the tree)rather than later (right in the tree). Reinefeld and Marsland [RM94℄ 
omment onthe e�e
tiveness of move ordering in single-agent sear
h. For IDA*, ordering movesat interior nodes makes no di�eren
e to the sear
h, ex
ept for the �nal iteration.Be
ause the �nal iteration is aborted on
e a solution is found, �nding a solution earlyin the �nal iteration 
an signi�
antly improve the performan
e, espe
ially 
onsideringthat the last iteration is potentially the largest.The information used to order moves 
an 
ome from di�erent sour
es, usuallydomain-dependent knowledge. Sometimes domain-independent knowledge gathered6Some readers might feel un
omfortable with this statement, be
ause there is the remote possi-bility of 
ollisions in the hash table that overwrite entries, resulting in undete
ted 
y
les. While thisis true, this should happen very infrequently and in su
h rare 
ases we are willing to go the extradepth until g(s) is large enough to 
urtail the sear
h.24



in the sear
h tree (e.g., tree sizes, tree depths...) 
an be useful. In the 
ase ofiterative deepening, move ordering information is passed from one iteration to thenext by means of the transposition table.The alpha-beta algorithm, used in adversarial sear
h, relies on good move orderingto a
hieve maximal eÆ
ien
y by establishing good bounds early (worst 
ase tree sizeis wd, best 
ase with perfe
t move ordering is wd=2, where w is the bran
hing fa
torand d is the depth of the tree). In single-agent sear
h, move ordering 
an be mu
hmore 
ru
ial. If a depth-�rst sear
h had perfe
t move ordering, it 
ould go straight tothe goal. In the worst 
ase, depth-�rst sear
h spends exponential e�ort. Of 
ourse,perfe
t move ordering does not exist in sear
h, sin
e it would entirely obsolete sear
hper se. However, the better the move ordering the more eÆ
ient the sear
h, if theoverhead of a
hieving this ordering does not o�set the gains.2.3.3 Pattern DatabasesLower-bound fun
tions provide the sear
h with guidan
e in the form of 
ost estimatesfor rea
hing a goal from a position in the sear
h. These fun
tions usually ignore someof the domain 
onstraints to allow for eÆ
ient implementations. A 
ommon approa
his to de
ompose the total 
ost of solving the problem into solving independent sub-tasks. These subtasks usually 
onsist in moving physi
al obje
ts to goal squares. Forexample, for the sliding-tile puzzles, the distan
e of ea
h tile to its target square issummed to produ
e a lower bound on the total number of steps required to solve theentire problem. This heuristi
 is 
alledManhattan distan
e. The Manhattan distan
eassumes that every tile 
an dire
tly move to its goal without detour.Lower-bound fun
tions following this approa
h 
an be very eÆ
iently 
omputedand are even amenable to in
remental updates during the sear
h be
ause of the in-dependen
e of the subgoals.However, the 
hallenge of these puzzles and real-world problems lies in the inter-a
tions of the subgoals. Negle
ting them 
reates poor lower bounds. An improvementto the sliding-tile puzzle's Manhattan distan
e, 
alled linear 
on
i
ts, was proposedby Hannson et al. [HMY92℄. It uses the observation that one of two neighboringsquares that are in ea
h others way to rea
h their goal square optimally has to makeat least two non-optimal moves o� the optimal path. Identifying two su
h squaresallows us to in
rease the lower bound by 2.Linear 
on
i
ts 
ontain the 
ore idea used for pattern databases [CS96℄. Instead oflooking at one of the (physi
al) elements or subgoals at a time, 
ombinations of theseelements (patterns) are used. For ea
h of these patterns a pre
omputation determinesthe minimum 
ost to get all the elements of the pattern to their respe
tive goals. Thepre
omputation takes intera
tions of these elements into a

ount and stores the 
ostsin a database that 
an be queried during the sear
h. The more elements are takeninto a

ount the more a

urate the lower bound. One 
ould even 
all the Manhattandistan
e a one-tile pattern database and the Manhattan distan
e plus linear 
on
i
tsa two-tile pattern database.Culberson and S
hae�er [CS96℄ show results for the sliding-tile puzzle and Korf[Kor97℄ applies the te
hnique to Rubik's Cube. The improvements in lower-bound25
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Figure 2.16: Impa
t of Ma
ro Movesquality lead to signi�
ant gains in the sear
h eÆ
ien
y.Cazenave [Caz99℄ suggests an interesting improvement on the idea of patterndatabases for the domain of Go. A 
ore pattern is annotated with external 
ondi-tions. The 
ore patterns are de�ned by the physi
al arrangement of stones. External
onditions are logi
al properties of the board around the 
ore pattern that help todetermine the state of the 
ore pattern. The use of external 
onditions redu
es thenumber of total patterns, be
ause a large number of essentially irrelevant details areabstra
ted into a few rules.2.3.4 Ma
ro MovesThe sear
h algorithms dis
ussed so far treat all the moves equally. After making amove, all legal moves are 
onsidered as su

essors. These algorithms are therefore
onsidering all sequen
es of moves even though their order does not matter.Consider trying to solve the problem of driving to work in the morning. Whentrying to devise a plan to get from home to work, all the algorithms are 
onsideringsequen
es su
h as: leave-the-house, mow-the-lawn, open-garage, get-in-
ar, exit-
ar,mow-the-lawn, get-in-
ar... All a
tions are legal, but not ne
essarily related. Themethod of ma
ro moves [Kor85b℄ is an attempt to group related atomi
 a
tions intohigher level 
omposed a
tions: ma
ros. This 
an result in impressive sear
h-spa
eredu
tions. Spe
ial attention has to be paid to the impa
t these ma
ro moves 
anhave. They might in
uen
e the 
orre
tness and/or the 
ompleteness of the sear
h aswell as the ability of the algorithm to �nd optimal solutions.Figure 2.16 shows the impa
t of the move sequen
e a-b-
 being treated as a ma
roin the position of Figure 2.14. The e�e
t on the sear
h-tree size is visible, instead ofexploring every possible 
ombination of inter
hanging moves a, b, 
, and d, e, f, thesear
h visits less nodes and even the depth of the tree is redu
ed.James [Jam93℄ builds on an idea from Iba [Iba89℄ and dynami
ally 
reates ma
rosby \tunneling" peaks in the sear
h-spa
e lands
ape. Figure 2.17 shows what happens.Iba suggested tunneling from one valley in the 
ost lands
ape to the next, leading26
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Figure 2.17: Tunneling: The Dynami
 Creation of Ma
rosto long ma
ros with many pre
onditions that are hard to mat
h. James observedthat diÆ
ulty and improved on the tunneling idea by suggesting the shortest possibletunnel that \drains" the water into the next valley. This results in fewer pre
onditionsand the in
reased 
han
e to mat
h a ma
ro.It is important to note that tunneling 
hanges the sear
h spa
e by 
reating ma
rosthat behave as short
uts. They detour the error of the heuristi
 estimate, rather thende
reasing it.2.3.5 SummaryEnhan
ements to sear
h algorithms 
an improve sear
h eÆ
ien
y dramati
ally. De-pending on the appli
ation domain, those savings 
an be several orders of magnitudefor every one of those enhan
ements. Ea
h enhan
ement is impli
itly bene�ting fromproperties of the sear
h spa
e. Transposition tables work only if the underlying sear
htree is in reality a graph. Ma
ro moves assume that treating several moves as one doesnot 
hange the rest of the problem and ultimately its solvability (or 
ompleteness7).For related results see Culberson and S
hae�er [CS94℄.Ea
h new enhan
ement will have a limited s
ope of domains to whi
h it applies.The No-Free-Lun
h (NFL) theorem, that we will be talking about later, ba
ks this7Whereas 
ompleteness is an important theoreti
al 
onsideration, we feel it has little or evenno pra
ti
al value. \Complete" algorithms use exponential time to ensure 
ompleteness. Sin
e wefa
e time 
onstraints in pra
ti
e, this theoreti
al 
ompleteness is of little value. Furthermore, itis always easy to 
onstru
t a 
omplete algorithm. After exhausting a predetermined time limit,any theoreti
ally 
omplete algorithm 
an be exe
uted. This two-phase approa
h is also theoreti
ally
omplete, but with a 
onstant run-time overhead. In pra
ti
e it is only important how many problems
an be solved within the time limit. Complete algorithms have the ni
e property that they 
anprove that no solution exists. But again, if they 
ould do that in a reasonable time frame, the moreeÆ
ient algorithm would stop without �nding a solution even earlier and the se
ond phase of ourhypotheti
ally 
omplete algorithm will prove that the problem has no solution. Be
ause the �rstphase sear
hes less of the sear
h spa
e, it will use less time than the se
ond phase. Our two-phasealgorithm will therefore take at most twi
e the time for this proof than the 
omplete algorithm ofthe se
ond phase would have used on its own. 27
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SpaceFigure 2.18: Sear
h Spa
e Without Heuristi
 Knowledgeintuitive statement up. There is no magi
 bullet, neither in the form of an algorithmnor as an enhan
ement, that 
ould be used to solve every possible domain moreeÆ
iently.2.4 Heuristi
 Fun
tions and Sear
h Spa
esThis se
tion is an attempt to underpin the formal 
on
epts introdu
ed earlier. Ex-amples are used that will help the reader develop a more intuitive feeling for sear
hspa
es and how heuristi
 knowledge 
an help to guide algorithms through them.Sear
h spa
es are multi-dimensional stru
tures that are very hard to visualize. Wewill therefore use simpli�ed sear
h spa
es here. Figure 2.18 shows a one dimensionalsear
h spa
e along the horizontal axis of the graph. The fun
tion g(s) shows thedistan
e from the start state. Sin
e sear
h spa
es are dis
rete stru
tures, g(s) shouldbe a step fun
tion. For simpli
ity, we are using 
ontinuous fun
tions here.A breadth-�rst sear
h would expand nodes in waves; after all nodes at a 
ertaindepth Ti are visited, the next depth is started until the last level, here T6, is rea
hed.It now depends on the order of expansion, when the goal state is found. If the sear
his \lu
ky", it visits states to the right �rst, �nding the goal state without expandingstates to the left of the start state.Depth-�rst sear
h is fa
ed with a di�erent problem. Assume our sear
h spa
e ismu
h larger than shown. If depth-�rst sear
h starts sear
hing to the left, it will not�nd the solution until it has visited all the states to the left. However, starting tothe right, it would get lu
ky. Note that in pra
ti
e, with the many dimensions of areal sear
h spa
e, getting \lu
ky" would mean making the right de
ision many times{ an unrealisti
 hope.Figure 2.19 shows the same sear
h spa
e with good heuristi
 knowledge. In addi-tion to g(s), the distan
e from the start state, h(s), the lower-bound estimate of thedistan
e to the goal, is available. The knowledge is 
onsistent with the lo
ation of the28
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h Spa
e With Good Heuristi
 Knowledgegoal state, h(s) de
reases towards the goal state. A*, whi
h uses f(s) for guidan
e,will expand states in the sear
h spa
e in similar \waves" as breadth-�rst sear
h does.Ea
h new wave Ti+1 is larger then the previous wave Ti. However, A* needs fewerwaves and ea
h wave-front is smaller than in breadth-�rst sear
h, be
ause heuristi
knowledge allows A* to prune portions of the sear
h spa
e whi
h would be visited bybreadth-�rst sear
h.While Figure 2.19 shows an example with good heuristi
 knowledge, heuristi
knowledge 
an be misleading. Figure 2.20 shows su
h an example. The path awayfrom the goal looks initially better than the path to the goal state. Due to misleadingknowledge more states are expanded in ea
h wave. However, as long as the heuristi
knowledge is admissible, A* will not expand more nodes than breadth-�rst sear
h.Figure 2.21 shows the ideal 
ase. If the sear
h knew the 
orre
t distan
e to the goalat ea
h state in the sear
h, it 
ould dire
tly go to the goal. As dis
ussed earlier, thisis not an interesting 
ase for sear
h, but it 
an show what better heuristi
 knowledgewill asymptoti
ally lead to.Sin
e Figures 2.18, 2.19, 2.20, and 2.21 show trivial, one-dimensional sear
h spa
es,they 
annot 
onvey the exponential growth of 
onse
utive waves. Figure 2.22 showstwo sear
h graphs with the waves shown in di�erent shades of gray. One 
ould imaginethese graphs to show the sear
h spa
e from the top. The exponential growth of ea
hlarger wave is now visible.Improvements in the heuristi
 knowledge that is available to the sear
h algorithmsusually lead to two kinds of eÆ
ien
y gains:� Fewer waves: With an in
rease in the heuristi
 value of the start state, thedi�eren
e between h(start) and h�(start) de
reases, leading to fewer iterations29
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h-Spa
e Waves(IDA*) or fewer waves (A*).� Smaller waves: Improvements to the lower bound for many states in the sear
hspa
e lead to more 
uto�s in the tree whi
h in turn results in smaller waves.For some problems the solution length is known. That is equivalent to an improvedlower bound for the start state and helps to remove the initial iterations for IDA*,be
ause it 
an start with the 
orre
t threshold.8 However, the last iteration is still aslarge as it was before. Be
ause of the exponential growth of the sear
h tree, the lastiteration dominates the e�ort of the sear
h and thus, the savings are relatively small.It is more important to improve the lower-bound fun
tion on average for theentire sear
h spa
e to remove large portions of the last iteration. These savings arepotentially mu
h larger. Figure 2.22 shows a 
ombination of the two when 
omparingthe left with the right �gure: on the right side there are fewer iterations sear
hed andthere are fewer states in ea
h of the iterations.2.5 No-Free-Lun
h Theorem(s)Throughout the 
omputing s
ien
e literature, the quest for the Holy Grail 
an befound: a universal problem solver, universal fun
tion optimizer and alike. Some8This tri
k has one side e�e
t worth mentioning: The �rst a
tion away from the start state 
anlead to a large redu
tion in the heuristi
 value, potentially larger than the 
ost of the a
tion. Theresulting heuristi
 is therefore not 
onsistent. 31



people even 
laim to have found su
h a tool. Others are more modest in their 
laims;they restri
t their statement to a 
ertain 
lass of problems, su
h as sear
h problems.The last wave of su
h 
laims 
ould be observed during the advent of evolutionaryalgorithms. This was, unfortunately, surely not the last.2.5.1 Bad NewsAs sedu
tive as the thought of a one-size-�ts-all algorithm is, su
h an algorithm doesnot exist. Wolpert and Ma
ready [WM96℄ prove with their No-Free-Lun
h (NFL)theorems that all algorithms that sear
h for an extremum of a 
ost fun
tion performexa
tly the same when averaged over all possible 
ost fun
tions. A \universally best"sear
h algorithm would have to outperform all other algorithms on average. Wolpertand Ma
ready show that if an algorithm A outperforms algorithm B on some 
ostfun
tions, then B must outperform A on others. Culberson [Cul96℄ uses adversarialarguments to 
ome to the same 
on
lusion.What does that mean? If we look at all possible 
ost fun
tions (or, for that matter,sear
h spa
es), there exists no algorithm that 
an outperform all other algorithms.Worse still, all algorithms, even totally random sear
hers, will perform the same onaverage on all possible sear
h spa
es.Extensions of these theorems in [Cul96℄ even show that learning does not work overall possible instan
es. Not even adaptive (learning) algorithms that try to extrapolatefrom what they have seen so far to guess into the future will work better, whenaveraged over all sear
h spa
es. Heuristi
 knowledge 
an also be only problem spe
i�
and not absolutely general. The 
laim of \universal" 
an 
learly be reje
ted, in all
ases.2.5.2 Good NewsHowever, not all is lost. By restri
ting our algorithm to domains where we haveknowledge available, the knowledge 
an help to in
rease performan
e in that domainas 
ompared to a knowledge-poor algorithm. Given the above reasoning, we trade theperforman
e in
rease for \our" problem with a performan
e de
rease in some otherdomain, but we are happy with that trade.That means that algorithms and algorithmi
 enhan
ements work for 
ertain prob-lem domains. What are these domains, what makes them suited for a 
ertain algo-rithm and not for another? Usually, the knowledge we are en
oding in our algorithmsre
e
ts sear
h-spa
e properties that 
an be exploited by the sear
h. For example, ifwe know that our sear
h spa
e is a graph and not a tree, the use of a transpositiontable 
an yield performan
e improvements.The general strategy for ta
kling a domain is to look for 
ertain sear
h-spa
eproperties and exploit that knowledge for eÆ
ien
y gains. Therefore, the questionabout the generality of a sear
h enhan
ement (or 
onversely, how domain dependentis this enhan
ement) is not the proper question to ask. One should rather ask, whatthe properties of those sear
h spa
es are that the enhan
ement in question relies onto yield a performan
e in
rease. 32



2.6 Example Domains from the LiteratureThe following subse
tions introdu
e the domains used most often in resear
h on single-agent sear
h in the literature. The goal here is to introdu
e the reader to the general
omplexities, spe
ial properties, and issues of the sear
h spa
es of those domains.2.6.1 Sliding-Tile PuzzlesThe sliding-tile puzzles are a family of the 
ommonly known toys, where a (usuallysquare) matrix of tiles has to be ordered. In a 4x4 matrix of tiles, there are 15 tilesand one blank square. The tiles 
an only be moved into the blank. Other studiedvariations are the 24-puzzle (5x5), the 8-puzzle (3x3), and even the 19-puzzle (4x5,and really MxN).A state of the 15-puzzle 
an be des
ribed with the lo
ation of all tiles. Ea
h state
an have a maximum of 4 legal moves if the blank is in the middle 4 squares, 3 ifit is at the edge and 2 moves if the blank is in a 
orner. However, sin
e one moveled into the 
urrent position, the move unmaking it does not need to be 
onsidered.Therefore, the resulting e�e
tive bran
hing fa
tors are 3, 2 and 1, for the respe
tivepositions of the spa
e. Edelkamp and Korf derive 2.13 as the asymptoti
 bran
hingfa
tor for the 15-puzzle [EK98℄.For the 24-puzzle, Korf [Kor96℄ reports average solution lengths (for randomlygenerated instan
es) of over 112, for the 19-puzzle 71.5 and for the 15-puzzle 52.6.The 8-puzzle is small enough to be enumerated exhaustively [S
h67, Rei93℄. Thesear
h spa
es are almost 1025, 1018, 1013 and 105 for the 24-, 19-, 15- and 8-puzzle,respe
tively.The state-of-the-art systems solving sliding-tile puzzles use IDA* with transposi-tion tables and improved Manhattan distan
e as the admissible heuristi
. Improve-ments of the Manhattan heuristi
 are derived from the fa
t that there might be
on
i
ts among di�erent tiles when trying to push them straight to their respe
tivegoals (linear 
on
i
ts) [HMY92℄. Taking this idea even further, Culberson and S
ha-e�er [CS96℄ suggest to use pattern databases that re
ord the optimal number of movesrequired to push subsets of tiles to their goal positions. A uni�ed view on this issueis that ea
h of these approa
hes allows more and more of the real 
onstraints to beused in the lower-bound 
al
ulation. Whereas the Manhattan distan
e assumes norestri
tions in the tile movements, linear 
on
i
ts take the movements of up to 4 tilesinto a

ount and treat the rest as non-existent. Pattern databases 
onsider even moretiles (
onstraints).Current state-of-the-art sear
h te
hniques and 
omputers allow us to solve anyrandom instan
e of the 15 and 19-puzzles within a reasonable amount of time. The24-puzzle is still presenting a 
onsiderable 
hallenge though.2.6.2 Rubik's CubeRubik's Cube, the famous 
ombinatorial puzzle invented by Erno Rubik in the late1970s, is also used in the literature to investigate sear
h algorithms and their en-33



han
ements [Kor85b, FMS+89, Pri93, Kor97℄.Rubik's Cube has a sear
h-spa
e 
omplexity of about 1019 and a median solutionlength of 18. The longest solution is believed to be no longer than 20 moves [Kor97℄.Edelkamp and Korf [EK98℄ 
al
ulate the asymptoti
 bran
hing fa
tor to be 13.35,if a move 
an be more than a 90 degree twist. Programs to solve Rubik's Cubeproblems are very similar to programs solving sliding-tile puzzles. IDA* is used asthe sear
h algorithm and large pattern databases are used to a
hieve a good lower-bound estimator. Korf reports solving 10 random instan
es of the Rubik's Cubeoptimally [Kor97℄.2.6.3 MazesRao, Kumar and Korf [RKK91℄ introdu
e another domain into the literature: mazes.The task is to �nd optimal routes between two points in the maze. The 
omplexityof mazes 
an be adjusted arbitrarily by s
aling. Transpositions 
an be simulated byallowing mazes with a graph stru
ture (holes in walls). Whereas Rao, Kumar andKorf [RKK91℄ used mazes of size 120 x 90, Kainz and Kaindl [KK96℄ used mazes ofsize 2000 x 2000.The domain of mazes is interesting be
ause of the property of the lower bound.When the Manhattan distan
e is used, the ratio between the 
orre
t distan
e h� andthe estimated distan
e h 
an be large. IDA* performs rather poorly, sin
e manyiterations are performed, without �nding a solution. A*, be
ause it keeps the entiregraph in memory, should be a better 
hoi
e.2.7 SummaryThere are a wide variety of strategies for eÆ
iently traversing sear
h spa
es. Unin-formed sear
hes traverse the sear
h spa
e blindly in a systemati
 fashion. Informedalgorithms exploit knowledge about the sear
h spa
e to sear
h more eÆ
iently. Sear
hstrategies and algorithmi
 enhan
ements are 
hosen to exploit spe
i�
 properties ofthe underlying sear
h tree or graph.The NFL theorems provide us with the arguments as to why di�erent sear
hstrategies and enhan
ements are needed for di�erent problem domains. Thus, algo-rithms should not be judged by obs
ure performan
e measures, that were proven notto exist, but should be quali�ed by the sear
h-spa
e properties they depend on. Aninteresting followup question then might be, if these properties are 
ommon amongthe domains we are interested in solving.
34



Chapter 3Sokoban
3.1 The Game

He-Ge, Hd-H
-Hd, Fe-Ff, Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh-Rg,Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-Ri,F
-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg,Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh,Hd-He-Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-Qi,Ch-Dh-Eh-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-QhFigure 3.1: Sokoban Problem #1 With One SolutionSokoban is a popular one-player puzzle game. The rules and stru
ture of the gameare simple. Figure 3.1 shows a sample Sokoban problem. The playing area 
onsists ofrooms and passageways, laid out on a re
tangular grid of size 20x20 or less. Litteredthroughout the playing area are stones (shown as 
ir
ular dis
s) and goals (shadedsquares). There is a man whose job it is to push ea
h stone to a goal square. Theman must push from behind the stone and 
an only push one stone at a time. Atany time, a square 
an only be o

upied by one of a wall, stone or man. The initial
hallenge is to push all of the stones onto goal squares. To in
rease the diÆ
ultyone 
an try to �nd more eÆ
ient solutions by redu
ing the required number of stonepushes and man moves. 35



Figure 3.2: Sokoban Problem #39To refer to squares in a Sokoban problem, we use a 
oordinate notation. Assumingthe maximum sized 20�20 problem, the horizontal axis is labeled from \A" to \T",and the verti
al axis from \a" to \t", starting in the upper left 
orner. In our notationwe fo
us on stone pushes. For example, in Figure 3.1 Fh-Eh pushes the stone on Fhleft one square. We use Fh-Eh-Dh to indi
ate a sequen
e of pushes of the samestone. A push, of 
ourse, is only legal if there is a valid path by whi
h the man 
anmove behind the stone and push it. Thus, although we only indi
ate stone pushes(su
h as Fh-Eh), impli
it in this are the man's moves from its 
urrent position to theappropriate square to do the push. For example, for the move Fh-Eh the man wouldhave to move from Li to Gh via the squares Lh,Kh,Jh,Ih, and Hh.3.1.1 History and Test SuiteThe game was apparently invented in the early 1980s by Thinking Rabbit, a 
omputergames 
ompany in the town of Takarazuka, Japan. The game design is said to havewon �rst prize in a 
omputer games 
ontest. Be
ause of the simpli
ity and elegan
eof the rules, and the intelle
tually 
hallenging 
omplexity of the 
omposed problems,Sokoban qui
kly be
ame a popular pastime.Several versions of the game appeared over the years, among whi
h are PC, Ma
-intosh and Unix versions. XSokoban is a popular version for Unix running X windowsand 
an be downloaded at http://xsokoban.l
s.mit.edu/xsokoban.html. There existsa quasi-standard set of 50 problems, ordered roughly easiest to hardest in diÆ
ulty fora human to solve. A

ording to Hiramatsu [Hir98℄, this set of 50 problems is derivedfrom a PC version by Spe
trum Holobyte from 1984. Similar problem 
on�gurations
an be found in the problem 
olle
tions \Sokoban 2" from 1984 and are now in
ludedin \Sokoban Perfe
t". Some of the problems have been altered slightly, probably to�t into a 19x16 format.The test suite we are using in this thesis 
onsists of 90 problems in
luding the 50standard problems plus 40 more of varying degree of diÆ
ulty. These 90 problems36



Figure 3.3: Examples of Deadlo
kswere downloaded from the XSokoban web-site. Problem 1, shown in Figure 3.1, is theeasiest of the set of 90. Figure 3.2 shows maze #39. The shortest re
orded solution todate needs 674 stone pushes. However, the solution length is not a reliable indi
ationfor how hard a problem is to solve. One 
an easily think of problem 
on�gurationsthat require even more pushes to solve, but are 
on
eptually simple.An Internet high-s
ore �le is maintained that shows who has solved whi
h prob-lems and how eÆ
ient their solution is (http://xsokoban.l
s.mit.edu/xsokoban.html).Thus solving a problem is only part of the satisfa
tion; improving it is equally impor-tant.3.1.2 Deadlo
kA player new to the game will qui
kly dis
over that the 
onstraints given by therules of Sokoban o�er some unique 
hallenges. If a stone is pushed into a 
orner, it ispermanently immobilized, and 
an never be pushed to a goal. Therefore, the problembe
omes unsolvable.Figure 3.3 shows a variety of simple stone 
on�gurations that 
annot be solved.For example, the stone on Hm 
annot rea
h a goal despite having legal moves, be
auseit 
an never be pushed o� the bottom wall. New players will soon understand that
ertain squares in the maze are tabu for stones. We 
all these squares dead squares.Stones that 
an never be pushed to a goal are dead, and a problem 
on�guration
ontaining a dead stone is said to be deadlo
ked, or simply a deadlo
k.The two stones on Dh and Eg are also dead. Even though neither of the stones sitson a dead square, they intera
t in su
h a way that the man 
annot push the stones tothe goals. The four-stone group (Ck, Cl, Dk, Dl) in the lower left part of the maze isalso a deadlo
k { the man 
an only push one stone at a time, but that is impossiblein this 
on�guration. The group of stones in the upper right 
orner shows a more
ompli
ated deadlo
k. None of the �ve legal moves allows the man to get \behind"the stones to push them out.In all the examples in Figure 3.3 the deadlo
ks are lo
al. In general, deadlo
ks
an be arbitrarily 
omplex and far rea
hing. Figure 3.4 shows an example of how37



Figure 3.4: A Large Deadlo
k in Maze #8
Figure 3.5: Position of the Man Matterslarge and involved these deadlo
ks 
an be
ome. They 
an potentially in
lude all thestones in the maze.3.1.3 Position of the ManThe pre
eding �ve-stone deadlo
k in Figure 3.3 identi�es an important issue: theposition of the man. Figure 3.5 shows two identi
al 
onstellations of stones with theman in two di�erent parts of the maze. The position on the left is a deadlo
k, whereasthe maze on the right is solvable.Furthermore, the stone on Gd needs a di�erent number of moves to rea
h a goal,depending on the position of the man. If the man is on the right side of the stone,the stone must be pushed into the left room �rst before the man 
an reposition itselfbehind the stone to push it towards the goal. Therefore, the position of the mana�e
ts deadlo
ks as well as the number of pushes required to rea
h a solution.The intera
tions between the stones and the man 
an be quite 
ompli
ated, andavoiding deadlo
ks be
omes the main 
hallenge of the game.
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Figure 3.6: Parking

Figure 3.7: Sokoban Problem #503.1.4 High-Level Themes and StrategiesThe beginner will soon �nd that there are a few general prin
iples and high-levelstrategies for solving Sokoban problems. We want to brie
y introdu
e some of themhere, to fa
ilitate later dis
ussions.Most of the problems appear 
rowded in the beginning. Problem #39 in Figure 3.2is an example. To make progress, the stones have to be reorganized to simplify themaneuvering of stones into the goal area. This reorganization often requires stonesto be pa
ked into a small spa
e without 
reating a deadlo
k. Pa
king is an importantskill that a Sokoban player must a
quire early on.Often stones simply need to be moved out of the way safely until other tasks area

omplished. We 
all this maneuver parking, and it is demonstrated in Figure 3.6.Before any of the stones 
an be pushed to a goal square, one stone has to be parkedat the square Gb. To understand this, the reader should try to think about �lling inboth goal squares Ib and Id. These s
enarios 
an be arbitrarily 
omplex. In problem#50 (see Figure 3.7), many stones have to be moved through the goal area and thenparked and pa
ked in a remote area of the maze before they 
an �nally be pushed tothe goals.Other problems in the standard suite introdu
e the player to the important 
on-
ept of goal-room pa
king. There are several potential problems to 
onsider. A poorlypla
ed stone may 
ause other goal squares to be ina

essible. It 
ould also 
ause a39



Figure 3.8: Sokoban Problem #38
Figure 3.9: Hiroshi Yamamoto's Masterpie
edeadlo
k by 
utting o� vital paths for the man, be
ause the goal area is needed for theman to rea
h 
ertain parts of the maze. Problem #38 (see Figure 3.8) is an ex
ellentexample of these kinds of problems.One 
an �nd several problems that live or die on 
ommuni
ation 
hannels forthe man being a

essible to 
ertain regions. Ina

essibility of areas 
an form subtledeadlo
ks that require a lot of higher level reasoning by the player to be avoided.3.1.5 Creativity, Art and ChallengePlaying our test suite, one 
ould easily get the impression that Sokoban 
an be in-ordinately beautiful and intelle
tually stimulating. But it is mu
h more than that.Sokoban is also an art. For some people it is 
reative work and espe
ially in Japanit is very serious fun. The results are wonderfully elaborate and 
hallenging designs.There are designs with only a few stones that shine with elegan
e and beauty be
ausethey 
ombine simpli
ity and 
hallenge. The game of Sokoban has so many \levels"that there is no end to dis
overy. If solving problems should ever be
ome monotonous,there is always the possibility of 
reating new ones.Figure 3.9 shows the winning design of the last Sokoban 
ontest held in 1996. Thedesigner Hiroshi Yamamoto su

eeded in putting many of the 
ompli
ations of a goodSokoban puzzle into a small spa
e.For some humans simpli
ity is not a ne
essary element of beauty. Masato Hi-ramatsu 
reated the intelle
tual monster shown in Figure 3.10. It is an ex
ellentexample of the level of reasoning that humans are 
apable of. The understanding40



Figure 3.10: Masato Hiramatsu's Creation

Figure 3.11: Mi
hael Reineke's Christmas Treeof intri
ate details and the ability to abstra
t them into subproblems and in the end
ombine those subsolutions to solve the entire problem, taking all the interrelated spe-
ial 
ases into a

ount, is the hallmark of human intelligen
e. Creating su
h problemsgoes beyond...The 
hallenge in Sokoban 
an be 
ombined with fun as well. An ex
ellent exampleis Mi
hael Reineke's Christmas tree shown in Figure 3.11.The examples shown here 
an only skim the surfa
e of Sokoban, only playing thegame 
an give an indepth understanding of the beauty of the game.3.2 Why Is Sokoban Challenging?Many of the a
ademi
 appli
ations used to illustrate single-agent sear
h, su
h assliding-tile puzzles and Rubik's Cube, have some or all of the following properties:� Given a solvable start state, every move preserves solvability.� These domains also have small bran
hing fa
tors and moderate solution depths,resulting in moderate-sized sear
h spa
es.41



Figure 3.12: Example of Ne
essary Irreversible Moves� Furthermore, simple and e�e
tive lower-bound estimators are available to guidethe sear
h.Sokoban has none of these desirable properties, nor is a good lower-bound fun
tionknown. This se
tion examines these di�eren
es in more detail.3.2.1 Deadlo
kIn most of the single-agent sear
h problems studied in the literature, all state transi-tions preserve the solvability of the problem, though not ne
essarily the optimality ofthe solution. That is be
ause all state transitions (moves) are reversible { there existsa move sequen
e whi
h 
an undo a move. For example, a tile just pushed in a sliding-tile puzzle 
an be pushed ba
k, and any rotation on a Rubik's Cube 
an be undone.Sokoban has irreversible moves (e.g. pushing a stone into a 
orner), and these moves
an lead to states that provably have no solution. In e�e
t, a single move 
an 
hangethe lower bound on the solution length to in�nity. If the lower-bound fun
tion doesnot re
e
t this, then the sear
h will spend unne
essary e�ort exploring a subtree thathas no solution.The presen
e of deadlo
k states in a sear
h spa
e 
reates a serious dilemma forreal-time sear
h algorithms. While we are sear
hing, even irreversible moves arereversible via ba
ktra
king in the sear
h spa
e. This situation 
hanges if we have to
ommit to a move in the real world before the sear
h has found a solution, be
auseof 
onstraints on time or other resour
es. We may inadvertently move to a deadlo
kstate { a part of the sear
h spa
e without solution. Sin
e many of these deadlo
ks
enarios 
annot be determined without sear
h, a real-time algorithm will have adiÆ
ult time allo
ating resour
es to guarantee that a solution will be found.The simple problem in Figure 3.12 demonstrates that irreversible moves may bene
essary to solve a problem. Therefore, simply avoiding irreversible moves is notfeasible.The existen
e of irreversible moves reveals an important property of the underlyingsear
h spa
e: It is a dire
ted graph. The traditional domains used to examine single-agent sear
h map onto undire
ted graphs. This distin
tion leads to a rather signi�
antdi�eren
e. In a domain with an underlying undire
ted graph, a move of 
ost 
 
anonly 
hange the distan
e to the goal by at most 
. In domains with a dire
ted graphsear
h spa
e, a legal move 
an de
rease the distan
e to a goal by at most 
, but 
anin
rease it by an arbitrary amount. In the extreme that is in�nity, meaning deadlo
k.42



3.2.2 Sear
h-Spa
e SizeThe large size of the sear
h spa
e for Sokoban is due to potentially large bran
hingfa
tors and long solution lengths 
ompared to previously studied domains. The num-ber of stones ranges from 6 to 34 in the standard problem set. With 4 potential movesper stone, the bran
hing fa
tor 
ould be over 100. The solution lengths range from97 to over 650 stone pushes, ignoring man moves. The trees are bushier and deeperthan in previously studied problems, resulting in a sear
h spa
e that is many ordersof magnitude larger.Note that there are di�erent de�nitions of an optimal solution to a Sokoban prob-lem: minimizing the number of stone pushes, minimizing the number of man moves,or minimizing some ratio between pushes and moves. For a few problems there isone solution that optimizes both stone pushes and man moves, but in general they
on
i
t.Cal
ulating an upper bound for the sear
h-spa
e 
omplexity for Sokoban revealsthe startling size of the sear
h task. For simpli
ity, let's restri
t the size of the problem
on�gurations to mazes of size 20 x 20. Requiring walls around the perimeter leavesan internal area of at most 18 x 18 = 324 squares where stones 
an move. Maximizingthe possible arrangements of stones in this area requires (18 � 18)=2 = 162 stones.This leads to  324162 ! = 324!(324� 162)! � 162! � 1096possible stone 
on�gurations. Sin
e the man 
an be on any of the empty squares, weneed to multiply this number by 162, resulting in a number of the order 1098. When
onsidering equivalent man positions for the task of minimizing stone pushes, the sizeof the sear
h spa
e is somewhere between 1096 and 1098.In these 
al
ulations we assume that there are no dead squares and that the mazeis as large as possible with no other walls. In pra
ti
e that is not the 
ase. In ourtest suite the average number of squares is 113, of whi
h 77 squares are not dead, andthere are 16 stones on average. Table 3.1 shows the sear
h-spa
e size for ea
h maze
onsidering only the non-dead squares. This number assumes that the sear
h will notgenerate moves onto dead squares, a reasonable assumption.The median sear
h-spa
e size for all 90 problems using only non-dead squares isroughly 1018 { far less then the initial estimate of 1098. However, the sear
h-spa
esize is not ne
essarily a good indi
ator of the diÆ
ulty of the problem, sin
e it doesnot re
e
t the de
ision 
omplexity [All94℄. If a problem is over-
onstrained or under-
onstrained, it might be easy to solve or prove that no solution exists, respe
tively.The hard problems 
an be expe
ted to be in the middle zone. Sin
e the problemsin the test sets are 
omposed by humans for humans, we 
an assume that they aregenerally 
hallenging and have a high de
ision 
omplexity. The property of a suddenin
rease in diÆ
ulty at 
ertain 
onstraint levels is 
alled a phase transition ([CKW91℄is an ex
ellent referen
e).
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# stones squares non-deadsquares sear
hspa
esizes1 6 56 41 1082 10 70 46 10113 11 56 43 10114 20 112 77 10205 12 71 54 10136 10 60 41 10117 11 64 43 10118 18 109 85 10209 14 83 60 101510 32 172 116 103111 14 93 68 101612 15 104 66 101613 16 118 78 101814 18 121 85 102015 15 104 77 101716 15 81 55 101517 6 87 53 10918 11 105 70 101419 15 123 84 101820 18 151 96 102121 13 94 64 101522 27 167 116 102823 18 127 104 102224 22 157 114 102525 19 140 88 102126 13 80 58 101427 20 122 92 102228 20 112 85 102129 16 107 59 101630 18 119 78 101931 20 110 85 102132 15 73 59 101533 15 93 62 101634 14 93 62 101535 17 150 101 102136 21 124 92 102237 20 130 92 102238 8 49 40 10939 25 142 105 102640 16 107 77 101841 15 94 67 101642 24 118 98 102543 9 88 61 101244 9 95 64 101245 17 98 68 1017

# stones squares non-deadsquares sear
hspa
esizes46 14 97 68 101647 16 85 73 101848 34 94 84 102549 12 81 57 101450 16 134 96 102051 14 72 54 101452 18 132 101 102253 15 133 76 101754 16 135 82 101955 12 128 72 101556 16 123 82 101957 16 130 90 101958 15 135 92 101959 16 122 81 101860 13 121 77 101661 20 131 82 102162 16 126 86 101963 17 140 94 102064 16 117 82 101965 15 130 80 101866 18 144 89 102067 20 121 82 102168 15 132 84 101869 18 139 82 102070 18 130 84 102071 18 135 77 101972 16 132 84 101973 14 139 88 101874 16 126 73 101875 17 130 77 101976 17 130 88 102077 14 126 80 101778 8 90 66 101279 12 100 68 101580 12 110 80 101681 12 95 72 101582 12 85 65 101483 10 102 66 101384 12 104 75 101585 15 145 78 101886 10 75 49 101287 12 111 74 101588 23 133 114 102689 21 155 104 102490 25 181 133 1029AVG: 16 113 77 1018Table 3.1: Sear
h-Spa
e Sizes for the Test Suite44



3.2.3 Lower BoundIn general, it is hard to admissibly estimate the number of stone pushes needed tosolve a Sokoban problem.1 The tighter the bound, the more eÆ
ient a single-agentsear
h algorithm 
an be. The stones 
an have 
omplex intera
tions with elaboratemaneuvers often being required to reposition stones. For some problems, without adeep understanding of the problem and its solution, it is diÆ
ult to obtain a reason-able bound. For example, in problem #50 (see Appendix A), the solution requiresmoving stones through and away from the goal squares to make room for other stones.Our best lower-bound fun
tion returns 100 stone pushes (see Se
tion 4.3), whereasthe best known human solution requires 370 moves. This is 
learly an enormous gap,and an imposing obsta
le to an eÆ
ient IDA* sear
h.Several ideas 
ome to mind when trying to design a good lower-bound fun
tion.Trivially, one 
ould use the number of stones not on a goal; or, with a little more so-phisti
ation, one 
ould 
ompute the sum of the distan
es of ea
h stone to its respe
tive
losest goal. Unfortunately, neither of these two heuristi
s is a

urate.Ea
h goal 
an a

ept only one stone, so instead of using the goal 
losest to ea
hstone, we 
an try to �nd a mat
hing of stones to goals. Sin
e we are looking for alower bound (i.e. an admissible heuristi
) we need to �nd a minimum 
ost mat
hingof stones to goals, where the 
ost is the number of pushes required to get a stone fromits 
urrent position to a spe
i�
 goal.This lower-bound heuristi
 is expensive to 
ompute (O(n3)), whi
h is yet anotherdistin
tion from simpler domains (for example the Manhattan distan
e used in thesliding-tile puzzles). Despite the expense of 
omputing this lower bound, it is still ofrather poor quality. None of the 
omplex intera
tions of stones that 
an in
rease so-lution lengths dramati
ally are taken into a

ount. The resulting di�eren
es betweenh and h� 
an be large, 
ausing IDA* to fail sin
e its eÆ
ien
y depends on reasonablysmall errors. We will dis
uss this lower-bound estimator and possible enhan
ementsfor Sokoban in more detail in Se
tion 4.3.3.2.4 Con
lusionsSokoban is a diÆ
ult sear
h appli
ation for many reasons:1. the bran
hing fa
tor is large and variable (potentially over 100),2. the solution may be deep in the sear
h tree (some problems require over 500moves to solve optimally),3. solutions are inherently sequential, subgoals are often interrelated and thus
annot be solved independently,4. it has a 
omplex lower-bound estimator, and1We 
hose to solve problems minimizing stone pushes. Solving for man moves instead of stonepushes would require a di�erent lower-bound estimator than we are 
urrently using. In our opinion,it would be harder to �nd and most likely of poorer quality.45



5. the sear
h spa
e is a dire
ted graph that 
ontains states with no solution.However, humans 
an su

essfully solve Sokoban problems. They apply higher-level reasoning, pattern mat
hing, dete
t ex
eptions and spe
ial 
ases, learn fromprevious examples, 
ombine partial solutions, and are able to �nd the exa
t reasonfor why a parti
ular strategy failed. As a testbed for arti�
ial intelligen
e te
hniques,Sokoban o�ers a signi�
ant 
hallenge to resear
hers, sin
e many of the 
ore problemsof arti�
ial intelligen
e need to be addressed to build a program that rivals the besthuman performan
e in solving Sokoban problems.3.3 Related WorkUnbounded Sokoban has been shown to be NP-hard [DZ95℄ and P-SPACE 
omplete[Cul97℄. Dor and Zwi
k [DZ95℄ show that Sokoban is an instan
e of a motion planningproblem, and 
ompare the game to other motion planning problems in the literature.For example, Sokoban is similar to Wilfong's work with movable obsta
les, wherethe man is allowed to hold on to the obsta
le and move with it, as if they were oneobje
t [Wil88℄. Sokoban 
an be 
ompared to the problem of having a robot in awarehouse move a number of spe
i�ed goods from their 
urrent lo
ation to their �naldestination, subje
t to the topology of the warehouse and any obsta
les in the way.When viewed in this 
ontext, Sokoban is an ex
ellent example of using a game as anexperimental test-bed for mainstream resear
h in arti�
ial intelligen
e.There are a number of other known Sokoban solvers in existen
e. It is interestingto see the di�erent approa
hes people have taken.3.3.1 Mark JamesIn 1993, Mark James wrote his Master's thesis at the University of Calgary on theautomati
 
reation of ma
ro moves [Jam93℄. He used Sokoban to show the limitationsof his suggested methods whi
h worked well in other domains (see Se
tion 2.3.4). HisSokoban program was able to solve problem #1 using over 2 hours of CPU time. Noother problems where solved.3.3.2 Andrew MyersAndrew Myers' program appears to be an interesting approa
h, and it has solved nineproblems. Myers [Mye97℄ writes that his:. . . program uses a breadth-�rst A* sear
h, with a simple heuristi
 to sele
tthe next state to examine. A 
ompa
t transposition table stores the states.When the solver runs out of memory, it dis
ards some states below the10th per
entile in moves made. This feature allows the program to handlelevels [problems℄ like level 51. The solver tries to minimize both movesand pushes. It does not support ma
ro moves.46



The heuristi
 estimates both the number of stone pushes and the numberof man movements needed to 
omplete the puzzle. The number of pushesis estimated more qui
kly but less a

urately, taking advantage of theusual 
lustering of the goal spa
es in one area of the board. The estimatehas two parts: the number of moves and pushes needed to push a ballto the nearest goal square, and the number of pushes needed to push aball to ea
h goal square from the nearest non-goal square. In addition,the estimator 
ompensates for the ball that is optimal for the man topush next. The estimate is summed qui
kly, using approximately 700K ofpre
omputed tables. The estimate does not 
onsider linear 
on
i
ts, whi
hwould probably help. The heuristi
 is not monotoni
; a 
onservative,monotoni
 estimate is used to dis
ard suboptimal states.Deadlo
ks are automati
ally identi�ed for 3x3 regions, and also for 
ertaingoal lo
ations that 
an never be �lled. A goal lo
ation 
an only be �lledif in one of the four dire
tions, the two immediately adja
ent squares 
anbe made empty. If an immovable ball is pla
ed in either square, the stateis deadlo
ked. An optional deadlo
k table allows easy spe
i�
ation of
omplex deadlo
k 
onditions by hand. However, the program does notattempt to automati
ally �ll the deadlo
k table.3.3.3 Stefan EdelkampStefan Edelkamp, working on his PhD at the University of Freiburg in Germany,has developed a program that 
an solve 13 problems of our test suite [Ede98℄. Hisprogram attempts to solve for minimal number of stone pushes and uses a sophisti-
ated de
omposition algorithm to reason about the presen
e of stati
 deadlo
ks withminimal lookahead. An elaborate data stru
ture is used to store and mat
h minimaldeadlo
k patterns.3.3.4 Meiji UniversityAt Meiji University, Japan, A. Ueno, K. Nakayama and T. Hikita developed a strongSokoban solver based on A*, but using non-admissible heuristi
s [UNH97, Hik99℄.The program uses a heuristi
ally driven deadlo
k sear
h; no 
on
i
ts of potentialsolutions are exploited. The solutions found are neither move- nor push-optimal.The program 
an solve 25 of the 90 problems.3.3.5 Sokoban LaboratorySokoban Laboratory is a program developed in Japan to fa
ilitate the 
onstru
tionof Sokoban problems. It also 
ontains a solver, whi
h solves 55 problems of the testsuite, using a heuristi
ally driven best-�rst sear
h. Their solutions are non-optimal,for either pushes or moves. The program is based in part on the Sokoban solverdeveloped at Meiji University. It appears to be a team e�ort of several people, either47




ontributing dire
tly, or making 
ode of their solvers available: K. Takahashi, A. Ueno,K. Nakayama, T. Hikita, Y. Murase, Y. Oki as well as deepgreen.3.3.6 DeepgreenThe best overall program we have heard about so far is by an author who 
alls himselfor herself deepgreen. The program 
an solve 62 of the 90 problems [dee99℄. No detailsare known about this program at the moment. However, deepgreen is in 
ommuni-
ation with the authors of the other strong Japanese programs and we assume theprogram builds on previous e�orts of the strong Japanese Sokoban 
ommunity.The 
ollaborative approa
h to solving Sokoban problems make the Japanese e�ortsunique. Ea
h new program 
an build on over 10 years of team e�ort. Sharing sour
e
ode and ideas a

umulates a wealth of knowledge that is unparalleled.
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Chapter 4Standard Single-Agent Sear
hMethodsThis 
hapter investigates the power and limitations of state-of-the-art single-agentsear
h te
hniques. We will 
onsider the 
hoi
e of algorithm and the plethora of sear
henhan
ements available to in
rease sear
h eÆ
ien
y as given in arti�
ial-intelligen
etext books. We implemented those te
hniques in the program Rolling Stone to obtainexperimental results that allow us to evaluate them for the domain of Sokoban.The next se
tion 
ontains a 
lari�
ation of what the problem is that we are tryingto solve. Ea
h of the following se
tions is then devoted to single-agent sear
h and itsenhan
ements as dis
ussed in Chapter 2. Starting with the 
hoi
e of algorithm andmoving on to the lower-bound fun
tion, transposition table, move ordering, dead-lo
k tables and ma
ro moves, this 
hapter dis
usses and explains how the standardte
hniques from the text books 
an be applied to the domain of Sokoban and, moreimportantly, what their strengths and limitations are.To evaluate these methods, one 
entral experiment is used throughout this (as wellas the following) 
hapter(s). The program is given a �xed amount of sear
h e�ortper problem { 20 million nodes. The program tries to solve ea
h of the 90 problemswithin the sear
h 
onstraints. With ea
h enhan
ement dis
ussed and added to theprogram, more of the 90 problems 
an be solved. This \evolutionary" approa
h toperforman
e evaluation has its pitfalls. Therefore, a se
tion is in
luded that estimatesthe value of ea
h of the enhan
ements in a di�erent way.The 
on
lusion of this 
hapter is that even though text books stress the importan
eof 
hoosing the 
orre
t algorithm, this is usually a trivial task. In 
ontrast, �nding,implementing and tuning the right 
ombination of sear
h enhan
ements is far morediÆ
ult and important for performan
e. Furthermore, even though standard sear
henhan
ements 
an give some impressive sear
h tree redu
tions, they are far from beingsuÆ
ient to solve even moderately diÆ
ult problems in the domain of Sokoban.
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4.1 Problem De�nitionAs dis
ussed before, there are several possible ways to solve Sokoban problems. Thedi�eren
e lies in what one tries to optimize: man moves, stone pushes or a (weighted)
ombination of both. For real-world domains, the optimization would try to minimize
ost. That 
ost is usually dependent on the a
tions performed: an airplane's operating
ost, the time to load or unload a tru
k { any number of 
osts 
an be imagined. Sin
eSokoban is a game, real 
osts do not exist and we have the 
hoi
e of what 
osts weasso
iate with ea
h a
tion.Rolling Stone is designed to �nd solutions that optimize the number of stonepushes; the number of man moves is not 
onsidered. Expressed in terms of 
ost, weasso
iate a 
ost of 1 with a stone push and a 
ost of 0 with a man move. This 
hoi
ewas deliberate, be
ause we felt that a good lower-bound estimator for man moves washarder to design and implement than for stone pushes.When 
omparing human solutions to those found by Rolling Stone, this be
omesimmediately obvious: the number of man moves is usually higher. Those solutions
ontain sequen
es of pushes that 
an be optimized for man moves by simply rearrang-ing the stone pushes. One 
ould add a post-pro
essing phase that takes a solutionand tries to reorganize the stone pushes to redu
e the number of man moves. Thispost-pro
essor 
ould be 
ompared to a s
heduler of tasks provided by the planner(Rolling Stone) minimizing the resour
e \man moves".Our initial attempts to solve Sokoban optimally 
ould solve only a few small prob-lems. Relaxing the optimality 
riterion allows us to use more aggressive approa
hesthat enable us to solve more problems. The tradeo� is between solving a few problemsoptimally and solving many more problems nearly optimally. We believe strongly thatoptimality is of little pra
ti
al value if it means that only a small per
entage of theposed problems 
an be solved. For humans, the satisfa
tion 
omes from �nding anysolution to a Sokoban problem; few are interested in or 
apable of �nding optimalsolutions.4.2 Sear
h AlgorithmWhen 
hoosing the algorithm to solve problems from the Sokoban domain, we 
onsidersome of the 
ru
ial sear
h-spa
e properties:� there are few goal nodes, and they are lo
ated deeply in the tree,� heuristi
 information, in the form of a lower-bound heuristi
, is available and� the sear
h spa
e is large.These properties di
tate an informed sear
h that �nds sparsely distributed goals ina huge sear
h spa
e: IDA*. As dis
ussed in Se
tion 2.2.3, the 
hoi
e of algorithm israther trivial. 50
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hing Example4.3 Lower Bound Heuristi
To design a lower-bound heuristi
 for Sokoban that estimates the number of stonepushes required to get all the stones to the goals, we 
ould ignore the distan
e togoals and the stone-man intera
tions. These simpli�
ations result in a lower-boundestimator that 
ounts the number of stones that are not on goals. Let's 
all thislower-bound fun
tion Count. If we still ignore stone-man intera
tions, but take dis-tan
es into a

ount, we get a 
omputationally inexpensive lower bound summingthe distan
es of all the stones to their respe
tive 
losest goal. Let's 
all this fun
tionClosest. Of 
ourse, these extreme simpli�
ations are unlikely to lead to a high-qualitylower-bound estimator. Allowing more of the 
onstraints of the problem to be takeninto a

ount results in a better lower-bound estimator, albeit at a possibly higher
omputational 
ost.4.3.1 Minimum Cost Mat
hingThe fundamental observation leading to the lower-bound heuristi
 used in RollingStone is the following: Only one stone 
an go to any one goal. For ea
h stone, thereis a minimum number of pushes required to maneuver that stone to a parti
ulargoal. This distan
e (or 
ost) assumes no adverse intera
tions with other stones in themaze, basi
ally pretending the maze is empty. The problem is to �nd the assignmentof stones to goals that minimizes the sum of these distan
es.Sin
e there are as many stones as there are goals, and every stone has to beassigned to a goal, we are trying to �nd a minimum 
ost (distan
e) perfe
t mat
hingon a 
omplete bipartite graph. Edges between stones and goals are weighted by thedistan
e between them, and assigned in�nity if the stone 
annot rea
h a goal. Wewill 
all this heuristi
 Minmat
hing for short.Figure 4.1 shows an example of the lower-bound 
al
ulation. The table liststhe distan
es from the three stones to ea
h of the three goals in the maze. Thebold entries represent a minimum 
ost mat
hing. It is important to note here thatthe Minmat
hing solves one important problem. Even though the stone on C
 andthe stone on Id both have goals 
lose by, they have to be pushed to a goal furtheraway. While the fun
tions Count and Closest would return 3 and 5 respe
tively,51



Figure 4.2: Minmat
hing Dete
ts Deadlo
kMinmat
hing returns 14! This larger lower bound allows the sear
h to eliminate largeparts of the sear
h spa
e.4.3.2 Deadlo
k Dete
tionFigure 4.2 shows an example where the Minmat
hing algorithm dete
ts a deadlo
k.None of the stones 
an rea
h the goal on F
, the goal on Db is over-
ommitted.This example shows how powerful this lower bound is, 
ompared to the more naiveapproa
hes.4.3.3 Underlying AlgorithmsMinimum 
ost perfe
t mat
hing for a bipartite graph 
an be solved using minimum
ost augmentation [Kuh55℄. Given a graph with n nodes and m edges, the 
ostof 
omputing the minimal 
ost mat
hing is O(n �m � log(2+m=n)n). Sin
e we have a
omplete bipartite graph, m = n2=4 and the 
omplexity is O(n3� log(2+n=4)n). Clearlythis is an expensive 
omputation, espe
ially if it has to be performed for every nodein the sear
h.However, there are several optimizations that 
an redu
e the overall 
ost. First,when we �nd a mat
hing that redu
es the minimum 
ost by the 
ost of the move,we know we 
an not do better and we 
an abort immediately. Se
ond, during thesear
h we only need to update the mat
hing, be
ause ea
h push results in only onestone 
hanging its distan
es to the goals. This requires �nding a negative-
ost 
y
le[Kle67℄ involving the stone pushed. Finally, we are looking for a perfe
t mat
hing,whi
h 
onsiderably redu
es the number of su
h 
y
les to 
he
k.Even with these optimizations, the 
ost of maintaining the lower bound dominatesthe exe
ution time of our program.4.3.4 Entran
e ImprovementHow 
an we be more eÆ
ient in 
omputing the Minmat
hing? Consider Figure 4.3:Both stones need to go through the entran
e square Ce to enter the goal area. When-ever two stones (S1; S2) must go through one square (let's 
all that square E) to get totheir goals (G1; G2), the assignment of stones to goals does not matter, sin
e the sumof the distan
es is a 
onstant (distan
e(S;G) denotes the distan
e from the square Sto the square G): 52



Figure 4.3: Both Stones Are For
ed to Pass Through Ce
distan
e(S1; G1) + distan
e(S2; G2) = (distan
e(S1; E) + distan
e(E;G1))+(distan
e(S2; E) + distan
e(E;G2))= (distan
e(S1; E) + distan
e(E;G2))+(distan
e(S2; E) + distan
e(E;G1))= (distan
e(S1; G2) + distan
e(S2; G1))Most of the problems that we are interested in solving follow similar prin
iples.They have goal areas with single entran
es. This observation 
an lead to signi�
antspeedups when worked into �nding negative-
ost 
y
les. However, even after thisimprovement, our lower-bound estimator is still more expensive to 
ompute thanmost of the lower-bound fun
tions used in the single-agent sear
h literature (su
h asthe Manhattan distan
e used for sliding-tile puzzles). Note that the entran
e tri
konly improves the eÆ
ien
y of the 
omputation, but does not improve the quality ofthe lower-bound estimate.4.3.5 Position of the ManSimply using the distan
e of the stone to the goals ignores an important issue: Theposition of the man with respe
t to the stone to be pushed.What is the distan
e of a stone to a parti
ular goal? One 
ould assume the manis able to travel from anywhere in the maze to anywhere else. However, the maze,even with only one stone in it, restri
ts the man's movements. If a stone's path leadsthrough an arti
ulation point1 in the maze, the man's movement is restri
ted by thatone stone.Consider the maze in Figure 4.4. Even though the stone is only three squaresaway from the goal, the man is on the wrong side of the stone to be able to push thestone with three pushes to the goal. To reposition itself to the left side of the stone,the man needs to push the stone two pushes away from the goal, swing behind it, andthen push it to the goal. The 
apability to dete
t this and improve the lower boundis 
alled the ba
kout 
on
i
t.1Arti
ulation points (or squares) are squares that divide the maze into at least two disjoint parts.53



Figure 4.4: Distan
e Depends on the Position of the Man

Figure 4.5: The Stone Needs to Be Ba
ked Out

Figure 4.6: Ba
kout Con
i
t Improves Lower Bound for Problem #4
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Figure 4.7: Example of Linear Con
i
tsFigure 4.5 shows how this idea 
arries over to stones that are not on arti
ulationsquares yet, but that are for
ed to move through them. Problem #4 in Figure 4.6is an ex
ellent example of the e�e
tiveness of this lower-bound enhan
ement. Fourstones have to be ba
ked out of their 
urrent room to reposition the man behindthem: Ge, Gg, Dh and El. For ea
h of these stones the lower bound is o� by 6. Thelower bound is in
reased by 24, from 331 to 355, resulting in a large redu
tion insear
h-tree size.As already dis
ussed in Se
tion 2.2.2, this improvement is possible be
ause furtherproblem 
onstraints are used in the lower-bound 
al
ulation. Whereas previously,the man was allowed to ignore the pla
ement of the stones, with the ba
kout-
on
i
tenhan
ement the man 
annot simply jump over stones anymore. That results inlarger and more realisti
 distan
es that stones have to travel between squares andtherefore in an in
reased lower-bound estimate.4.3.6 Linear Con
i
tsThe linear 
on
i
ts enhan
ement is used to improve upon the Manhattan-distan
elower bound in the sliding-tile puzzles. There, if two neighboring tiles are in ea
hother's way (their paths dire
tly 
on
i
t), an evasive maneuver of at least one of thetiles is ne
essary to allow the other to pass. This allows for an in
rease of the lowerbound by two.Consider Figure 4.7: The minimummat
hing lower-bound estimator would returna value of 10. That assumes that both stones 
an use an optimal path from their
urrent lo
ation to the goal they are targeted to. But 
an they? No. Similar to thelinear 
on
i
ts in the sliding-tile puzzles, one stone has to move o� its optimal path toallow the se
ond stone to pass or to allow the man a

ess, depending on whi
h stonegets pushed aside. Either the stone on D
 has to move down one square to allow theman to push the stone on E
 or, alternatively, the stone on E
 has to be pushed downto allow the stone on D
 to pass. In either 
ase, two extra pushes are required.2 Thatmeans the minimum 
ost mat
hing is o� by at least two in this 
ase. Whenever twostones are on these two squares, we 
an in
rease the Minmat
hing lower bound bytwo without violating admissibility. We 
all this in
rease a penalty of two.2However, if we would take man moves into a

ount, we would have to break the linear 
on
i
tsu
h that we minimize man moves as well. In that 
ase, pushing D
-Dd to break the 
on
i
t takesthe fewest man moves with an equal number of stone pushes. Sin
e we simpli�ed our obje
tive toonly minimize stone pushes, we 
an ignore that issue in the program.55



Figure 4.8: Compli
ations With Linear Con
i
tsAll this is very well, but... there are two problems that we want to draw thereader's attention to that spoil the beauty3 of the idea of linear 
on
i
ts and, unfor-tunately, will 
ome up in a later 
hapter again.First, 
onsider the left maze in Figure 4.8. There are two linear 
on
i
ts of the kindwe have seen in Figure 4.7. Identifying two linear 
on
i
ts does not automati
allypermit us to in
rease the lower bound by 4. By pushing the stone on square D
down, only one non-optimal push is ne
essary to push all stones to goals. However,if the middle stone was blo
ked, say by a wall on square Dd, this maneuver wouldbe impossible and both end stones in the 
hain of linear 
on
i
ts would have to bepushed. The penalty of 4 would be justi�ed.The se
ond problem is shown in the right maze of Figure 4.8. Note the additionalentran
e. None of the linear-
on
i
t reasoning holds anymore, be
ause the stonemoving down to allow the others to pass 
an now move towards its goal using thenew entran
e. It is therefore important to know if a stone is for
ed to use one dire
tionfrom a square to rea
h all goals in the maze. To make matters even more 
ompli
atedhere, on
e a stone is pushed towards the lower entran
e it 
an be the only one movingthere without being penalized. Only one stone 
an enter through the lower entran
ebe
ause there is only one goal to be �lled that is rea
hable from it. That means westill have to break the linear 
on
i
t with the middle stone, otherwise one non-optimalpush is required. But we digress...44.3.7 Dynami
 UpdatesThe distan
es used for the Minmat
hing are pre
omputed before the sear
h starts.They represent the number of stone pushes required to push a stone from any squarein the maze to any other square. These distan
es are optimisti
 distan
es in thatthey assume no interferen
e with other stones. The only restri
tions are the walls inthe maze.3If the reader senses a little sar
asm here, she is right. It has been a re
urring theme while workingin the domain of Sokoban to �nd neat and beautiful ideas that looked so inno
ently promising {on the surfa
e. After intense programming and debugging e�orts (be
ause the results where notfavorable or seemed otherwise wrong) ex
eptions or spe
ial 
ases where found that had to be dealtwith.4If the reader feels slightly lost in all this dis
ussion, that is understandable. Even after severalyears of a
tive resear
h we are still not able to say that we fully appre
iate the depth and subtletythat Sokoban provides us with. We 
ould not resist the temptation to introdu
e the reader to someof these wonderfully intri
ate features here! 56



Figure 4.9: Example for Dynami
 Distan
e Updates
Figure 4.10: Limitations of the Lower Bound EstimatorWhen a stone is pushed into a 
orner, it be
omes �xed. If that 
orner square isnot a goal, the stone will never be able to rea
h a goal square and the position is adeadlo
k. The lower bound will dete
t this deadlo
k be
ause of the in�nite distan
efrom the 
orner square to all goal squares.However, if the 
orner square is a goal, the position is not ne
essarily a deadlo
k.Fixed stones on goal squares 
an be treated as walls. They potentially 
hange dis-tan
es, be
ause walls are obsta
les. Consider Figure 4.9. In the left maze, the stoneon Ed 
an be pushed up. The distan
e from square Ed to square Eb is 2. However,in the right maze, sin
e the stone on square Ee is �xed, the distan
e from Ed to Ebis no longer 2; it is 6.Rolling Stone therefore re
al
ulates distan
es whenever stones are pushed onto a�xed goal square. Note also that after a stone is �xed, other squares beside it 
anpotentially be
ome �xed.4.3.8 LimitationsAs the example of the linear 
on
i
ts shows, dynami
 intera
tions of groups of stones(and possibly the man) are not re
e
ted in the lower-bound estimator. While lin-ear 
on
i
ts usually result in penalties of two, larger penalties resulting from otherstone intera
tions are possible. This is dramati
ally illustrated with the deadlo
kin Figure 4.10: The position of the stones and the man 
reate a deadlo
k that thelower-bound estimator 
annot dete
t. The sear
h 
ould potentially explore a largetree exhaustively just to prove that there is no solution to this problem. It would doso without understanding why no solution exists.
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# MM +BO +LC ALL UB Di�51 118 118 118 118 118 055 118 120 118 120 120 078 134 136 134 136 136 053 186 186 186 186 186 083 190 190 194 194 194 048 200 200 200 200 200 080 219 225 225 231 231 04 331 355 331 355 355 01 95 95 95 95 97 22 119 129 119 129 131 23 128 128 132 132 134 258 189 197 189 197 199 26 104 104 106 106 110 45 135 137 137 139 143 460 148 148 148 148 152 470 329 329 329 329 333 463 425 425 427 427 431 473 433 437 433 437 441 484 147 149 147 149 155 681 167 167 167 167 173 610 494 506 496 506 512 638 73 73 73 73 81 87 80 80 80 80 88 882 131 131 135 135 143 879 164 164 166 166 174 865 181 199 185 203 211 812 206 206 206 206 214 857 215 215 217 217 225 89 215 227 217 229 237 814 231 231 231 231 239 862 235 237 235 237 245 872 284 284 288 288 296 877 360 360 360 360 368 854 177 177 177 177 187 1056 191 193 191 193 203 1076 192 192 194 194 204 1047 197 197 199 199 209 108 220 220 220 220 230 1027 351 351 353 353 363 1086 122 122 122 122 134 1244 167 167 167 167 179 1217 121 201 121 201 213 1259 218 218 218 218 230 1287 221 221 221 221 233 1243 132 132 132 132 146 14

# MM +BO +LC ALL UB Di�34 152 152 154 154 168 1471 290 290 294 294 308 1440 310 310 310 310 324 1435 362 362 364 364 378 1436 501 501 507 507 521 1441 201 219 203 221 237 1645 274 282 276 284 300 1619 278 282 280 286 302 1622 306 306 308 308 324 1620 302 444 304 446 462 1618 90 106 90 106 124 1821 123 127 127 131 149 1813 220 220 220 220 238 1831 228 228 232 232 250 1864 331 367 331 367 385 1825 326 364 330 368 386 1890 436 442 436 442 460 1849 96 104 96 104 124 2042 208 208 208 208 228 2061 241 241 243 243 263 2028 284 284 286 286 308 2268 317 319 319 321 343 2239 650 650 652 652 674 2246 219 223 219 223 247 2467 367 375 369 377 401 2423 286 424 286 424 448 2432 111 111 113 113 139 2616 160 160 162 162 188 2685 303 303 303 303 329 2689 345 349 349 353 379 2624 442 516 442 518 544 2615 94 94 96 96 124 2833 140 150 140 150 180 3026 149 163 149 163 195 3211 197 201 201 207 241 3475 261 261 263 263 297 3429 124 122 124 122 164 4274 158 172 158 172 214 4237 220 242 220 242 290 4888 306 334 308 336 390 5452 365 365 367 367 423 5630 357 357 359 359 465 10666 185 185 187 187 325 13869 207 217 209 219 443 22450 96 96 96 100 370 270Table 4.1: Lower Bounds
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4.3.9 ResultsTable 4.1 shows the e�e
tiveness of our lower-bound estimate. The table shows thelower bound a
hieved by minimum 
ost mat
hing (MM), in
lusion of the ba
koutenhan
ement (+BO), in
lusion of the linear 
on
i
t enhan
ement (+LC), and the
ombination of all three features (ALL). The upper bound (UB) is obtained fromthe global Sokoban s
ore �le. Sin
e this �le represents the best that human playershave been able to a
hieve, it is an upper bound on the solution length. The table issorted a

ording to the last 
olumn (Di�), whi
h shows the di�eren
e between thelower bound with all the enhan
ements (ALL) and the upper bound (UB). Clearly,for some problems (notably problem #50) there is a huge gap. Note that the realgap might be smaller, as it is likely that some of the hard problems have been non-optimally solved by human players. Furthermore, if the di�eren
e is 0, the optimalsolution lenght is known.Using the IDA* framework and this sophisti
ated lower-bound fun
tion, the sear
h
annot �nd even one solution to any of the 90 problems with a limit of 20 millionsear
h nodes. Even in
reasing our e�ort limit 50 fold to 1 billion nodes did not yielda single solution.Judging the numbers of Table 4.1, one should keep in mind that the eÆ
ien
yof the sear
h depends on the overall quality of the lower-bound estimator for theentire sear
h tree, not just the root node as shown in the table. This is one of thereasons why we 
annot solve any of the problems, even though for some problems thelower bound of the root node mat
hes the upper bound given by the human solution.Usually this would represent the ideal 
ase in whi
h the sear
h should ex
el and easily�nd the solution. However, even though our lower-bound estimator seems to deliverreasonable results for the root nodes of the problems, the average error throughoutthe sear
h tree is higher and leads to large and ineÆ
iently sear
hed trees. Examplesare deadlo
ks that are 
reated by the sear
h, but not dete
ted by the lower bound.The sear
h, led by the poor lower-bound estimator, will explore large parts of thesear
h spa
e where no solution 
an be found.4.4 Transposition Table4.4.1 ImplementationTransposition tables are a standard tool to a

omplish two di�erent tasks: to avoid
y
les and dupli
ating work by dete
ting nodes previously visited. Our implementa-tion uses unique 64 bit hash keys that are used to 
reate an index into a large hashtable. The hash table used for the results reported here has 218 entries. It is organizedas a two-level table.5 The repla
ement s
heme keeps the entry sear
hed deepest inthe �rst level and stores the most re
ent entry in the se
ond level of the table.The hash keys in
orporate only the exa
t stone positions. To mat
h an entry, thekeys must be identi
al. Sin
e the position of the man is of importan
e, a se
ond test5See [Bre98℄ for a des
ription and evaluation of two-level transposition tables.59
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Figure 4.11: Adding Transposition Tables (Linear and Log S
ale)is performed. The man squares of both positions must be 
onne
ted by a legal manpath. This simpli�
ation is possible be
ause we only optimize stone pushes. If weinsisted on identi
al man positions, we would get fewer su

essful mat
hes from thetransposition table.The value of an entry in the transposition table is 
omposed of two things: themat
hing frequen
y and the amount of work saved when mat
hed (the size of the treethat is 
ut o�). The two-level strategy re
e
ts both. An entry that was sear
heddeeply is most likely going to save a lot of work if mat
hed again. More re
ent entrieshave a mu
h better 
han
e to be mat
hed again. By keeping both kinds of entries, thetransposition table is used more e�e
tively than using a single repla
ement s
heme ina one-level transposition table.4.4.2 ResultsAdding transposition tables to IDA* allows the sear
h to solve 5 problems in ourtest suite, when given a limit of 20 million nodes. 20 million nodes is roughly two tofour hours CPU time on 
urrent fast ma
hines. Figure 4.11 shows the e�ort neededto solve those problems ordered by sear
h-tree size on a linear and a logarithmi
s
ale. The verti
al axis shows the number of nodes sear
hed to solve the problems.The horizontal axis shows the number of problems solved. We will use this kind ofgraph throughout the thesis and refer to them as e�ort graphs. The keys of the e�ortgraphs refer to di�erent versions of Rolling Stone. In Figure 4.11, \R0" refers to IDA*plus Minmat
hing lower bound in
luding enhan
ements. \R1" is a version that addstransposition tables to \R0".A se
ond experiment was performed to evaluate the power of mat
hing equivalentman positions instead of exa
t man positions. Using exa
t man positions, the numberof su

essful hits dropped below 10% and with the same e�ort limit of 20 millionnodes, only problem #1 
ould be solved. The node numbers for problem #1 in
reasefrom 41,640 to 297,498, roughly 5-fold. Problem #78 was solved with 66,309 nodesbefore. It 
annot be solved anymore when mat
hing exa
t stone positions. Thenumber of nodes in
reases by at least 2 orders of magnitude.60
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Figure 4.12: The E�e
t of Move Ordering (Averaged Over 1% and 5% Depth)4.5 Move OrderingWe have experimented with ordering the moves at interior nodes of the sear
h. One
ould argue that our inability to solve problem #51 is 
aused by bad move ordering.For this problem, we have the 
orre
t lower bound { it is just a matter of �nding theright sequen
e of moves.4.5.1 ImplementationWe are using a move ordering s
heme that we 
all inertia. Looking at the solutionfor problem #1 (Figure 3.1 on page 35), one 
an observe long runs where the samestone is repeatedly pushed. Hen
e, moves are ordered to preserve the inertia of theprevious move in the following way:1. Inertia moves are 
onsidered �rst.2. Then all the moves are tried that de
rease the lower bound (optimal moves),sorted by distan
e of the stone pushed to the goal it is targeted to, with 
losestones �rst.3. Then all the \non-optimal" moves are tried, sorted like the optimal moves.Sin
e the exa
t distan
e to the goals 
an be arbitrary (see Se
tion 4.3.4 \Entran
eImprovement"), the a
tual distan
e used for the sorting is the distan
e to the entran
e,ex
ept if the stone is already inside the goal area.4.5.2 ResultsFigure 4.12 shows the e�e
t of move ordering.6 The verti
al axis shows the numberof moves. The horizontal axis shows the depth of the tree in per
ent of the solution6The data was 
ompiled from all the positions on solution paths for all the solutions known tothe best version of Rolling Stone used in this thesis.61



0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

1 2 3 4 5

no
de

s 
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

1

10

100

1000

10000

100000

1e+06

1e+07

1 2 3 4 5

no
de

s 
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

Figure 4.13: Adding Move Ordering (Linear and Log S
ale)length. The left and right graphs show the same data. The left graph 
lusters thedata points for ea
h 1% of tree depth, the right graph averages 5% of the data points.The upper 
urve indi
ates the average number of moves 
onsidered by the programplotted over the depth of the tree.7 The e�e
tive bran
hing fa
tor is 
hanging withthe depth of the tree. In the beginning, the problem is 
onstrained be
ause most ofthe stones are still outside the goal area. As stones are being pushed to goal squares,more room be
omes available for the man and other stones to maneuver, hen
e thein
reasing bran
hing fa
tor. Eventually, after more stones are pushed to the goalsquares where they are �xed, the number of moves de
reases, approa
hing 1.The middle 
urve shows where the solution move is lo
ated in the move list afterthe move generation and before the move ordering. Not surprisingly, solution movesare on average in the middle of the move list. The third and lowest 
urve shows thatafter move ordering solution moves are 
loser to the front of the move list. The earlierthe solution moves are 
onsidered, the more eÆ
ient the sear
h is. Spe
i�
ally, thelast iteration will be smaller. Move ordering be
omes more a

urate with de
reasingdistan
e to the goal. In fa
t, after about 20% into the depth of the tree, the moveordering is 
lose to perfe
t. In the beginning, with many 
ompli
ations in the maze,seemingly good moves might a
tually lead to deadlo
ks. Many of the problems inour test suite are designed in su
h a way that an initial \knot" has to be solved by\adding spa
e". This 
an most often only be a
hieved with non-optimal moves. Afterthe knot is untangled, a \mop-up phase" is entered during whi
h stones are simplypushed to the goals. This is where our heuristi
 ex
els.Figure 4.13 shows an additional 
urve in the e�ort graph. It shows the e�e
t ofadding move ordering to the lower bound and the transposition tables (R2). Sur-prisingly, one problem 
annot be solved anymore and two others need more nodes tobe solved. This result is not favorable for move ordering. However, we will see laterthat after other features are added, move ordering is a valuable 
ontribution. Ourmove ordering heuristi
 leads to \
ompression". Stones 
lose to the goals are pushed7Some of the legal moves are dis
arded immediately be
ause they lead to trivially provabledeadlo
ks. These moves are not in
luded in the graph. See Se
tion 4.6 for more details!62




loser and 
loser together, even though pushes away from the goals are ne
essary�rst. Compression makes deadlo
ks more likely. With additional enhan
ements thatwe will add later, these deadlo
ks be
ome less likely and the advantages of the moveordering 
an work to its full potential.4.6 Deadlo
k TablesMany trivial deadlo
ks o

ur in the sear
h. Initially, we hand-
oded tests for someof the simple and 
ommon deadlo
k patterns into the move generation routine. Thisqui
kly proved to be of limited value, sin
e it missed many frequently o

urringpatterns, and the 
ost of 
omputing the deadlo
k test grew as ea
h test was added.Instead, we opted for a more \brute-for
e" approa
h.Pattern databases are su

essfully used to improve lower bounds in the sliding-tilepuzzles [CS98, CS96℄ and Rubik's Cube [Kor97℄. We implemented a spe
ial 
ase ofpattern databases for Sokoban. In an o�-line 
omputation, all deadlo
k patterns ina 5x4 square were found and stored in a database whi
h 
an be queried during thesear
h. If a move is 
onsidered for generation, the pattern of stones, walls and emptysquares that is about to be 
reated is looked up in the deadlo
k table. If the patternis a deadlo
k, the move is not inserted into the move list.4.6.1 Constru
tionAn o�-line sear
h was used to enumerate all possible 
ombinations of walls, stonesand empty squares for a �xed-size region. For ea
h 
ombination of squares andtheir 
ontents, a sear
h was performed to determine whether or not a deadlo
k waspresent. This information was stored in the deadlo
k tables. The deadlo
k tablesare implemented as de
ision trees. Interior nodes represent subpatterns, with links tothree su

essors. These su

essors represent the parent's subpattern plus one moresquare's 
ontent spe
i�ed as either empty, wall or stone. Ea
h level in the de
isiontree 
ontains di�erent subpatterns of the same shape. The leaf nodes in the treerepresent the status of a pattern: deadlo
k or alive. For implementation details seeAppendix C.1.For our experiments, we built two di�erently shaped deadlo
k tables for regionsof roughly 5x4 squares (
ontaining approximately 22 million entries). The two tablesdi�er in the order the squares in the maze are queried. With two di�erent waysto 
reate patterns, more potential deadlo
ks 
an be found, sin
e 
on
i
ts with goalsquares 
an sometimes be avoided.4.6.2 Veri�
ation and CompressionEa
h of our deadlo
k tables was veri�ed by a separate run with a di�erent programto ensure 
orre
tness.Sin
e the information in the tree is en
oded in its stru
ture and leaf node val-ues, identi
al subtrees 
an be 
ollapsed into one. Compression ratios of almost 5:163



Figure 4.14: Example Coverage of the Deadlo
k Tablesare a
hieved using this subtree 
ollapse. This type of 
ompression does not 
reateruntime overhead during the sear
h, sin
e the lookup is still on a non-
ompressedstru
ture. With this more 
ompa
t data stru
ture, 
a
he 
oheren
e may even beimproved be
ause less memory is used.4.6.3 Usage of the Deadlo
k TablesWhen a push Xx-Yy is 
onsidered for generation, the destination square Yy is usedas a base square in the deadlo
k table and the dire
tion of the stone push is used torotate the region, su
h that it is oriented 
orre
tly. If the push Fh-Fg is made in themaze of Figure 4.14, then a deadlo
k table 
ould 
over the 5x4 region bounded by thesquares Hh, Hd, Ed and Eh. Note that the table 
an be used to 
over other regions aswell. To maximize the usage of the tables, re
e
tions of asymmetri
 patterns alongthe dire
tion the stone was pushed are 
onsidered as well.4.6.4 Limitations and Open ProblemsA 5x4 region may sound like a signi�
ant portion of the 20x20 playing area. However,many deadlo
ks en
ountered in the test suite extend well beyond the area 
overed byour tables. Unfortunately, it is not pra
ti
al to build larger tables.Most of the e�e
tiveness of the deadlo
k table is lost if a deadlo
k-table pattern
overs a portion of the board 
ontaining a goal node. On
e a stone is on a goalsquare, it never needs to move again. Hen
e, the normal 
onditions for deadlo
k donot apply.Furthermore, for a deadlo
k to be in the table, all the 
onditions for the deadlo
kmust be present within the region 
overed by the deadlo
k table. In the exampleof the push Fh-Fg in the maze of Figure 4.14 this is not given; 
onditions (su
has 
onne
tivity and rea
hability for stones and man) extend beyond the area of thedeadlo
k table. That is by far the most limiting fa
tor of pre
omputed tables thatare restri
ted to a 
ertain area.For the game of Go, Cazenave suggests [Caz99℄ using external 
onditions for pat-terns to improve their e�e
tiveness dramati
ally. It remains to be investigated whi
h64
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Figure 4.15: E�e
t of Deadlo
k Tables (Averaged Over 1% and 5% Depth)
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Figure 4.16: Adding Deadlo
k Tables (Linear and Log S
ale)
onditions 
an express the properties of Sokoban mazes suÆ
iently well to generalizedeadlo
k patterns.4.6.5 ResultsFigure 4.15 shows the number of moves in the move list over the depth of the tree.Positions on paths to solutions were 
hosen to avoid pathologi
al 
ases. The top 
urveshows how many legal moves those positions have, averaged over all test positions at
ertain depths in the tree (1% and 5% 
lusters as before). The se
ond 
urve showshow many legal moves exist that are not dire
tly pushing stones onto dead squares.Note that this simple test redu
es the e�e
tive bran
hing fa
tor by about 20%. Thethird 
urve shows how many moves are a
tually 
onsidered after s
reening moves withthe deadlo
k tables. The savings are similar to the simple dead-square 
he
king. Onaverage, we 
an save about two moves per node that the sear
h does not need to
onsider. That is equivalent to de
reasing the bran
hing fa
tor by 2. These 
urvesalso show that the average number of moves varies 
onsiderably with the depth ofthe tree.In Figure 4.16, we add another entry to the e�ort graph to indi
ate the e�e
t of65



Figure 4.17: A One-Way Tunneladding deadlo
k tables to the program (R3). Now, we 
an solve 5 problems again,regaining the one lost with move ordering, redu
ing the sear
h-tree size by orders ofmagnitude. It is rather illuminating to see that su
h an impressive redu
tion in thebran
hing fa
tor does not allow us to solve more problems.4.7 Ma
ro MovesMa
ros are a potentially powerful tool to redu
e sear
h spa
es by 
ombining severala
tions into one super-a
tion { a ma
ro. The bene�ts 
an be dramati
. To a
hievemaximal savings with ma
ro moves, they 
annot simply be added to the move list. Inthat 
ase, all iterations but the last would in
rease in node 
ount sin
e the bran
hingfa
tor is in
reased. Adding a ma
ro move redu
es the sear
h tree only if at least oneother atomi
 (non-ma
ro) move is deleted from the move list. This way the e�e
tivebran
hing fa
tor is essentially the same (or less if more than one move is deleted),but the depth of the tree is redu
ed. Here we are dis
ussing the spe
i�
 ma
ros usedin our implementation.4.7.1 Tunnel Ma
rosA tunnel is the part of a maze where the maneuverability of the man is restri
tedto a width of one. Figure 4.17 shows one su
h 
onstru
t: The squares E
 to I
 arepart of a tunnel. Sin
e there 
an only be one stone in a tunnel without 
reating animmediate deadlo
k, tunnels 
annot be used to store more than one stone.One-Way Tunnel Ma
rosIf a tunnel is 
omposed of arti
ulation squares, as in Figure 4.17, we 
all the tunnel aone-way tunnel. If a stone is pushed into a one-way tunnel, it is for
ed to move all theway through to the other side. There is no reason why one would delay those moves;the man 
annot get to the other side of the tunnel sin
e the stone in the tunnel 
utsthe man o�.When the move generator 
reates a move into the tunnel, in our example the pushD
-E
, this push is substituted with the ma
ro D
-K
. Note that the end square isnot just J
, but K
 { pushing the stone through and out away from the entran
e ofthe tunnel. Of 
ourse, the push J
-I
 is equally substituted with the ma
ro J
-C
.66



Figure 4.18: Two-Way TunnelsBefore substituting a move with a tunnel ma
ro, we have to 
he
k if the tunnelis empty, otherwise the tunnel-ma
ro move is illegal. If this test fails, not only is thesubstitution not exe
uted, but the initial move is deleted from the move list, be
auseit would 
reate a deadlo
k and should not be 
onsidered by the sear
h. Thus, thetunnel-ma
ro substitution is also preventing some deadlo
ks.Two-Way Tunnel Ma
rosOne-way tunnels 
annot be used as \storage" for stones. On
e the stone is inside,it has to be pushed all the way. What if the man 
an 
ome ba
k from the otherside and push the stone out again? That means the tunnel 
annot be a one-waytunnel; the end points of the tunnel must be 
onne
ted by at least one more path(the tunnel squares are not arti
ulation points). Figure 4.18 shows two su
h tunnels.The following dis
ussion uses the upper tunnel be
ause the lower one is 
omposed ofdead squares.The upper two-way tunnel in Figure 4.18 
onsists of 5 squares: E
,F
,G
,H
, andI
. Sin
e a two-way tunnel 
ould be used to park a stone (pushing it in, making othermoves in other areas of the maze and later 
oming ba
k to push it out), we haveto allow for at least one stop of the stone inside the tunnel. Sin
e we are interestedin solutions with the fewest stone pushes, parking the stone at the entran
e it waspushed in is the most sensible strategy if, for example, we just want to push the stoneout of the way. Therefore, the push D
-E
 into the tunnel is not 
hanged, be
ause itis valid if we want to park the stone. However, if we want to 
ontinue pushing thestone through the tunnel, the only purpose 
ould be to push it all the way out theother side. Thus, the push E
-F
 is substituted with E
-J
. Note that this time wehave to stop dire
tly outside the tunnel, sin
e the man 
ould go around a di�erentpath to 
hange the stone's dire
tion right after it leaves the tunnel.The substitution of moves with tunnel ma
ros does not a�e
t any other move thatwas generated. However, sin
e another stone might be parked in the two-way tunnelalready, before adding a ma
ro, we have to verify the validity of the ma
ro move. Ifit is not valid, we not only 
an
el the substitution, but also the move itself (it leadsto deadlo
k) { thereby 
utting down on the e�e
tive bran
hing fa
tor.
67
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Figure 4.19: Adding Tunnel Ma
ros (Linear and Log S
ale)ResultsIn Figure 4.19 the e�e
t of tunnel ma
ros is visible: 6 problems 
an now be solved(R4), one more than in the previous version. The savings for previously solved prob-lems are not as large as for the addition of deadlo
k tables.4.7.2 Goal Ma
rosPre
omputationMany of the Sokoban problems have the goal squares 
rowded together in rooms.These goal areas are a

essible through a few squares whi
h we 
all entran
es. One
an de
ompose the problem of solving a maze into� how to get all the stones to the entran
es, and� how to pa
k them into the goal areas.Most of the time these two parts 
an be solved independently, thus redu
ing thesear
h spa
e enormously. Problem #1 is a good example. As soon as a stone rea
hesthe goal area at the right side of the maze, the stone should be pushed dire
tly to its�nal destination.We a
hieve this in prin
iple by1. de�ning the goal area and marking its entran
es,2. pre
omputing the order in whi
h goal squares are �lled without introdu
ingdeadlo
k in the goal area and3. 
reating a stru
ture to hold that information to be retrieved during the a
tual(IDA*) sear
h.The details of the implementation used in Rolling Stone 
an be found in Ap-pendix C. 68
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Figure 4.21: Parking in a Goal AreaMove SubstitutionDuring the sear
h, if a move is generated that pushes a stone into the entran
e ofa goal area, that move is substituted with the goal-ma
ro move. Depending on thepre
omputation, this 
ould be one or many goal ma
ros. All other moves are deletedfrom the move list; only the goal-ma
ro moves are 
onsidered. If we 
an put a stone\away", nothing else should matter at the moment. That is di�erent from the tunnelma
ros, where no other move was a�e
ted.By 
utting alternative pushes, the e�e
t of goal ma
ros is even more dramati
 thanthe e�e
t of tunnel ma
ros. Figure 4.20 shows the di�eren
e in tree-size redu
tion.While tunnel ma
ros yield large savings on their own, if we 
an introdu
e a goalma
ro, the savings are larger.Limitations and Open ProblemsThe goal ma
ros in their 
urrent implementation have limitations. One underlyingassumption is that no stone will leave the goal area on
e inside. Problems like #50
annot be solved without pushing stones through the goal area. A se
ond, evenstri
ter assumption is that on
e a stone is inside the goal area, it will never moveagain. This does not allow for parking inside goal areas. Sometimes it is ne
essary69



to park a stone in a key position inside the goal area until later in the solution whenit 
an �nally be pushed to its �nal goal square. Figure 4.21 shows one su
h problem(assume F
 is the entran
e square). Before any other stone 
an be pushed onto agoal square, a stone has to be parked at Gb. The stone on Gb 
an be pushed to itsgoal square only after the square Id 
ontains a stone. These intera
tions violate theassumption that a stone will never move again after being pushed into the goal areaand onto a goal square.The problem of goal-ma
ro generation in Figure 4.21 is handled 
orre
tly in ourimplementation. The goal-ma
ro generation fails and goal ma
ros are disabled. Thatallows the sear
h to solve the problem, however without the bene�ts of goal ma
ros.Note that we 
ould not solve the goal-ma
ro generation for this problem withthe 
urrent algorithms, even with a di�erent goal area that was smaller, say only
ontaining goal squares. In that 
ase the �rst stone would have to leave the goal areaafter entering it, violating the assumption of a stone never leaving the goal area afterit enters.Another limitation, unrelated to the problem just des
ribed, is that a goal area
ontaining several man entran
es is often a traÆ
 area for the man; 
ertain parts ofthe maze need to stay 
onne
ted to allow the man to push stones in a 
ertain wayoutside the goal area. Even though we 
an solve the problem of pa
king stones insidethe goal area, they might obstru
t the man from other areas of the maze. Problem#38 is an example of su
h a 
ase.However, the toughest problem is when stones have to travel through the goalarea to enter again later from a di�erent entran
e. Problem #50 is one su
h problem.Sin
e only a limited number of stones 
an be entered through the lower entran
e,stones have to be pushed through the goal area to the other side, parked in the lowerright part of the maze until we 
an �nally push them ba
k into the goal area.These open problems show that the goal ma
ro 
reation is still far from beingsolved satisfa
torily. Intera
tions between the goal area and the outside parts of themaze make it diÆ
ult to 
reate good goal ma
ros. However, their positive impa
t inthe problems where they work is so large that any high performan
e Sokoban programneeds to implement them in one form or another.ResultsFigure 4.22 shows the dramati
 e�e
ts of goal ma
ros (R5). Instead of solving 6problems, we 
an now solve 17! The savings for individual problems are again severalorders of magnitude. For example, the sear
h nodes for problem #55 drop from over20 million down to a mere 333 { almost 5 orders of magnitude! On average, thesear
hes are a fa
tor of 20 smaller with the goal ma
ros. These are lower bounds,sin
e unsu

essful sear
hes are stopped at 20 million nodes.4.7.3 Goal CutsWe are 
utting all alternative moves when we substitute goal ma
ros. The reasonbeing that if we 
an push a stone to its �nal destination, it will not a�e
t other moves70
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Figure 4.22: Adding Goal Ma
ros (Linear and Log S
ale)
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Figure 4.23: Adding Goal Cuts (Linear and Log S
ale)and we 
an ignore them. Could we not apply the same reasoning to the move thatpushed the stone to the square from whi
h it will be \ma
ro"-pushed to the goalsquare? Goal 
uts do exa
tly that re
ursively further up the tree: if a stone is pushedto a goal with a goal ma
ro at the end without interleaving other stone pushes, allalternatives to pushing that stone are deleted from the move list.Currently, we have implemented a s
heme that will 
ut moves only after a stonepush towards its ma
ro move was explored. The sear
h ba
ks up the 
ut information,instead of stati
ally trying to dedu
e that su
h a move exists in a 
ertain position.This 
ould potentially lead to missed opportunities for additional 
uts if other movesare explored before the one that leads to the goal 
ut. Sin
e the move ordering willsort moves that are 
lose to goals towards the front of the move list, lead-o� movesto goal ma
ros are likely 
onsidered early in the move list.ResultsFigure 4.23 shows savings of around one to two orders of magnitude in sear
h-treesize for the version using goal 
uts (R6). Now, 24 problems 
an be solved with asear
h node limit of 20 million. Problem #65 was not solved without goal 
uts. Now71



it is solved with just over 600 nodes { the sear
h tree is over 4 orders of magnitudesmaller. On average, the sear
h trees are at least a fa
tor of 6 smaller.4.7.4 Corre
tness, Completeness and OptimalityTunnel ma
ros preserve 
orre
tness, 
ompleteness and optimality of the original IDA*algorithm. A solution with goal ma
ros is still 
orre
t, but might not be optimal. Forall the reasons dis
ussed in 4.7.2, extra moves might have been ne
essary to �nd asolution. For the same reasons, 
ompleteness is not guaranteed.4.8 Experimental ResultsTable 4.2 shows the numbers for the e�ort graphs that where presented throughoutthis 
hapter. There are a few entries worth pointing out. Enabling all sear
h en-han
ements allows problem #1 to be solved with fewer nodes than the length of thesolution. Ma
ro moves and good move ordering allow this eÆ
ient sear
h. For exam-ple problem #4, enabling goal ma
ros allows the sear
h to solve it with just under600 nodes. Previously, it was not possible to �nd a solution with 20 million nodes.That is an eÆ
ien
y gain of at least 6 orders of magnitude.Ea
h sear
h enhan
ement is able to potentially save orders of magnitude in sear
h-tree size. However, some sear
h enhan
ements yield overlapping savings. That meansthat if two features 
an ea
h save 50 per
ent of the sear
h tree, together they mayredu
e the sear
h tree by less than 75 per
ent. Savings of individual sear
h enhan
e-ments are rarely additive.Comparing sear
h enhan
ements the way we did throughout this 
hapter maybe misleading. If a sear
h enhan
ement is introdu
ed late, when others are alreadypresent, it is harder to save on top of an already trimmed down tree. Therefore,
omparing the impa
t of sear
h enhan
ements would be unfair to the ones introdu
edat a later point. To ex
lude this e�e
t, we ran an experiment where we turned o� onefeature at a time. All the other sear
h enhan
ements were enabled. The results willtell us how unique the savings are that a 
ertain sear
h enhan
ement 
an a
hieve.Figure 4.24 shows that goal ma
ros are indeed the most valuable sear
h enhan
e-ment that we have for Sokoban; without goal ma
ros only 6 problems 
an be solved.That is a loss of 18 problems! Note that if we turn o� goal ma
ros, goal 
uts arealso disabled. The next most important sear
h enhan
ement is the transpositiontable. Turning it o� allows us to solve only 9 problems. With either of these twofeatures missing alone, the sear
h eÆ
ien
y goes down dramati
ally and other sear
henhan
ements 
annot substitute for the loss.The version with goal 
uts disabled solves 7 problems less, and the average tree sizeis about 6 times larger. Turning o� move ordering redu
es the number of problemssolved to 20, losing 4. The trees grow an average of 4 times and all the problemsneed more nodes to solve. This shows that despite the �ndings in Se
tion 4.5.2 moveordering is a valuable enhan
ement. These savings 
ome only from redu
ing the lastiteration. Surprisingly, turning tunnel ma
ros o� is not a great loss { we 
an still solve72
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Figure 4.24: Turning One Sear
h Enhan
ement O� at a Time22 problems, 2 less than the full version. The trees are about twi
e the size withouttunnel ma
ros. Turning o� deadlo
k tables loses one problem and most problems arebetween 2 and 50 times more expensive to solve. Table 4.3 shows all the numbers forthis experiment.4.9 Summary and Con
lusionsSokoban is a hard problem; even �xed-size Sokoban shows exponential behavior. Ea
hadditional problem be
omes exponentially harder for the sear
h to solve. To solve oneor two more problems with the same amount of e�ort (sear
h nodes), large portions ofthe sear
h tree have to be pruned. Redu
ing the sear
h tree by 50 per
ent is usuallynot enough to solve more problems; one to two orders of magnitude are needed tomake signi�
ant progress.In many sear
h domains, an in
rease in sear
h eÆ
ien
y by 25% might be aninteresting result. In Sokoban, even performan
e improvements of 50% are irrelevant.The resear
h in single-agent sear
h has so far fo
used on \simple" domains. Sokobanshows that more powerful sear
h te
hniques are needed.The basi
 text-book approa
h of IDA*, even equipped with a good lower-boundestimator, 
annot even solve one problem. Using state-of-the-art te
hniques, su
h astransposition tables, move ordering and deadlo
k tables produ
es a program that 
ansolve 5 problems of the standard 90 problem test suite. Simple tunnel ma
ros 
anin
rease the number of solved problems to 6.To make signi�
ant progress beyond the �rst 6 problems solved, the idea of ma
roshas to be 
arried to its extreme. Goal ma
ros represent the solution to the subproblemof how to arrange the stones in goal areas. The su

ess of goal ma
ros, the immenseredu
tion of the sear
h tree, 
an be attributed to su

essfully splitting the solution toa Sokoban problem into two parts: How to get the stones to the goal-area entran
esand how to push them from there to their �nal goal square. Despite the short-
omings of the 
urrent implementation of goal ma
ros, their impa
t on the program'sperforman
e is the largest of all the sear
h enhan
ements introdu
ed into our program.73



# IDA*+ MM IDA*+ MM + TT IDA*+ MM + TT+ MO IDA*+ MM + TT+ MO + DT IDA*+ MM + TT+ MO + DT+ TM IDA*+ MM + TT+ MO + DT+ TM + GM IDA*+ MM + TT+ MO + DT+ TM + GM+ GC1 > 20,000,000 41,640 319 261 223 53 532 > 20,000,000 > 20,000,000 > 20,000,000 640,680 620,030 2,176 3163 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 29,148 2,4934 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 597 5975 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 1,275,1466 > 20,000,000 10,214,381 12,061,182 10,294,734 10,107,621 4,546 2837 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 126,023 48,2099 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 659,97217 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,672,805 120,747 11,91021 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,643,97138 > 20,000,000 2,311,000 2,500,678 460,089 415,485 33,812 19,08343 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,36949 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 8,895,883 5,189,49451 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 390,690 80,50455 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 333 14462 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,33765 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 60478 > 20,000,000 66,309 2,555 1,408 871 480 46579 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 156,203 5,96480 > 20,000,000 6,500,890 > 20,000,000 > 20,000,000 > 20,000,000 115,574 114,93081 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 853,607 221,69082 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 971,093 99,23683 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 31,096 20,84784 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 354,295>480,000,000 >399,134,220 >414,564,734 >391,397,172 >381,817,035 >151,732,061 24,840,912MM { Minimum Mat
hing, TT { Transposition Table, MO { Move Ordering,DT { Deadlo
k Tables, TM { Tunnel Ma
ros, GM { Goal Ma
ros, GC { Goal Cuts

Table4.2:E�ortGraphData
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# GM (GC) O� TT O� GC O� MO O� TM O� DT O� All On1 223 53 53 291 63 63 5317 10,672,805 > 20,000,000 120,747 85,367 2,979,182 13,796 11,9102 620,030 1,093 2,176 833 337 1,076 31621 > 20,000,000 > 20,000,000 > 20,000,000 8,927,624 > 20,000,000 > 20,000,000 10,643,9713 > 20,000,000 165,274 29,148 12,050 2,493 7,992 2,49338 415,485 > 20,000,000 33,812 19,582 22,559 49,657 19,0834 > 20,000,000 2,369 597 1,791,400 1,025 1,686 59743 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,369 18,216,241 6,084,36949 > 20,000,000 > 20,000,000 8,895,883 > 20,000,000 > 20,000,000 7,482,856 5,189,4945 > 20,000,000 > 20,000,000 > 20,000,000 3,112,231 1,275,146 1,901,783 1,275,14651 > 20,000,000 > 20,000,000 390,690 46,493 89,038 144,393 80,50455 > 20,000,000 166 333 920 144 180 1446 10,107,621 799 4,546 455 286 1,296 28362 > 20,000,000 52,076 > 20,000,000 595,161 7,391 104,691 6,33765 > 20,000,000 2,179 > 20,000,000 > 20,000,000 667 932 6047 > 20,000,000 > 20,000,000 126,023 44,486 63,857 133,389 48,20978 871 38,951 480 594 984 1,011 46579 > 20,000,000 > 20,000,000 156,203 142,828 6,061 9,630 5,96480 > 20,000,000 > 20,000,000 115,574 85,633 228,536 178,001 114,93081 > 20,000,000 > 20,000,000 853,607 127,657 443,344 588,833 221,69082 > 20,000,000 > 20,000,000 971,093 487,011 101,712 5,797,306 99,23683 > 20,000,000 > 20,000,000 31,096 14,694 39,993 39,666 20,84784 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 466,263 397,257 354,2959 > 20,000,000 > 20,000,000 > 20,000,000 3,431,973 1,503,297 5,797,980 659,972>381,817,035 >300,262,960 >151,732,061 > 98,927,283 > 53,316,747 > 60,869,715 24,840,912MM { Minimum Mat
hing, TT { Transposition Table, MO { Move Ordering,DT { Deadlo
k Tables, TM { Tunnel Ma
ros, GM { Goal Ma
ros, GC { Goal Cuts

Table4.3:TurningOneFeatureO�ataTime
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They allow 11 more problems to be solved, for a total of 17. Goal 
uts extend theidea of the goal ma
ro and 
an push the number of solved problems to 24.Even though the redu
tions in sear
h-tree sizes are impressive and result in anin
rease in the number of problems solved from 0 to 24, we should not forget thatthe best version of the program 
an still only solve 24 of the 90 problems. Eventhough this set is 
hallenging for humans, many problems not yet solved should bewell within rea
h of a 
omputer program.We have seen that rather impressive sear
h-tree size redu
tions result in smallin
reases in the number of problems solved. If we want to in
rease the number ofproblems solved signi�
antly, we will have to trim the sear
h trees radi
ally.We 
an identify two main ineÆ
ien
ies in the program:� The lower bound does not 
apture dynami
 intera
tions of stones that blo
kea
h other and/or the man. If we 
ould �nd a way to 
apture this informationand be able to improve the lower bound with it, the sear
h should improvedramati
ally.� The mazes are large and often 
ontain parts that are virtually non-intera
ting.However, the sear
h will 
onsider moves in any of those separate parts in anyorder. Had the program knowledge about whi
h moves are not in
uen
ing the
urrently attempted subgoal, legal, but irrelevant, moves 
ould be ignored. This
ould lead to a redu
tion in the bran
hing fa
tor that 
an potentially removelarge portions of the sear
h tree.We will dis
uss methods that address these points in the next two 
hapters.
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Chapter 5Pattern Sear
h
5.1 Introdu
tionIn the previous 
hapter, we 
on
luded that the standard te
hniques are insuÆ
ient tomake further progress in the domain of Sokoban. Additional sear
h enhan
ements areneeded to enable us to solve signi�
antly more problems from the test set. Sin
e largeportions of the sear
h are wasted sear
hing problem 
on�gurations with deadlo
kspresent, we spe
ulated that the dete
tion of these deadlo
ks 
ould lead to signi�
anteÆ
ien
y gains. The te
hniques suggested in this 
hapter are a dire
t attempt tore
tify this problem.In this 
hapter, we introdu
e a new sear
h enhan
ement that dynami
ally �ndsdeadlo
ks and improves lower bounds. Pattern sear
h is a real-time learning algorithmthat identi�es the minimal 
onditions ne
essary for a deadlo
k, and applies thatknowledge to eliminate provably irrelevant parts of the sear
h tree. By spe
ulativelydevoting a portion of the sear
h e�ort to learning properties about the sear
h spa
e,the program trades o� sear
h-tree size versus a
quired knowledge.In the game of Sokoban, the additional knowledge gained by the pattern sear
hesimproves the program's sear
h eÆ
ien
y. The average growth rate of the tree isroughly a fa
tor of 600 times smaller per IDA* iteration. This results in 48 solvedSokoban problems, and signi�
ant progress towards solving many more.We start by introdu
ing the general 
on
epts by looking at deadlo
k dete
tionand later in this 
hapter show how to generalize these 
on
epts and methods to themore general 
ase of lower-bound improvements.5.2 Basi
 IdeaAfter making a move, establishing the presen
e of a deadlo
k 
an be quite involved.The deadlo
k may 
onsist of as few as one or as many as all the stones in the maze.We will des
ribe how to prove the presen
e of deadlo
k by showing that the 
onditionsneeded to prevent deadlo
k are not present.In general, proving that a subset of stones in a maze (a pattern) of stones 
reatesa deadlo
k requires a sear
h to verify that no possible solution path exists. A pattern77



PatternSear
h( From, To ) f
lear TestMaze;StonePath = fTog;FOR( i = 1; i <= MAX PATTERN SIZE AND NOT EffortLimit(); i ++ ) fIF( stone s on a square in StonePath )add 
losest s to TestMazeELSE IF( stone s on a square in ManPath )add 
losest s to TestMazeELSE BREAK;solution = PIDA*( TestMaze, SolLength, ManPath, StonePath );/* Test for a deadlo
k */IF( solution == NO AND NOT EffortLimit() ) fGeneralizeAndAddPattern( TestMaze, infinity );BREAK;g/* Test for a lower bound in
rease */IF( solution == YES ) flb = LowerBound( TestMaze );IF( SolLength > lb )GeneralizeAndAddPattern( TestMaze, SolLength - lb );ggg Figure 5.1: Pseudo Code for Pattern Sear
hessear
h 
onsists of repeated IDA* sear
hes of patterns with more and more stones.A pattern sear
h may result in the dis
overy of a deadlo
k pattern whi
h 
an beused throughout the sear
h to assign the 
orre
t lower bound of in�nity to any state
ontaining that deadlo
k. For maximal reusability it is of interest to �nd the minimalpattern of stones that 
auses the deadlo
k.Dete
ting deadlo
ks is only a spe
ial 
ase of a more general problem. Stonesare intera
ting in su
h a way that the total number of pushes required to get themto goals is more than the lower-bound fun
tion estimates. Whereas deadlo
ks are
orre
tions of the lower bound to in�nity, the general 
ase is smaller in
reases of thelower bound, so 
alled penalties.5.3 Basi
 AlgorithmIn the following, we will refer to two di�erent mazes:� the original maze, whi
h is the maze with all the stones of the 
urrent IDA*position, and� the test maze whi
h will be used for the pattern sear
hes.78



The pattern sear
h will perform small sear
hes in the test maze with a subset ofstones from the original maze to determine if the last move introdu
ed a deadlo
k.In prin
ipal, the algorithm performs the following 4 steps:1. Start by putting only the last stone moved into the test maze.2. Try to solve the problem.3. If no solution is found a deadlo
k is dete
ted, exit.4. If a solution is found add a stone that is on a square that is needed for thesolution.5. Goto 2.More spe
i�
ally, a pattern sear
h iterates on the number of stones in the testmaze. If we make a move A-B, we might introdu
e a deadlo
k. If this deadlo
k wasnot present before the move, then the moved stone, now on square B, must be part ofthe deadlo
k pattern. This is the initial stone in
luded in the test maze and PIDA*1is 
alled to solve it. PIDA* either returns with failure (no solution, hen
e deadlo
k),or it �nds a solution. In the latter 
ase, we are interested in the set of squares that areused by the stone and the man during the solution. We 
all these sets of squares theStonePath and the ManPath, respe
tively. These sets of squares are pre
onditionsfor the solution to work. The ManPath and the StonePath are used to determinewhi
h stone from the original maze to in
lude next in the test maze. Stones in theoriginal maze that are on one of the squares in ManPath or StonePath 
on
i
t withthe test-maze solution. The stone in StonePath 
losest to square B (the square thestone was moved to in the original maze) is added next to the test maze. If su
h astone does not exist, the stone that is on ManPath 
losest2 to square A is used. If nosu
h square exists, the pattern sear
h returns without �nding a deadlo
k.After in
luding the next stone, PIDA* is 
alled again. It returns with a solutionand the two 
on
i
t sets. If no deadlo
k was found, then the 
on
i
t sets are usedagain to add another stone to the test maze. The pattern sear
h terminates in eitherof three 
ases:� the e�ort limit is rea
hed (usually a predetermined number of nodes),� a deadlo
k was dete
ted (all frontier nodes have a heuristi
 value of in�nity orhave no moves), or� no more stones 
on
i
t with the solution found.See Figure 5.1 for the pseudo 
ode des
ribing the pattern sear
h.1PIDA* is a spe
ial version of IDA*. See Appendix C.3 for details.2Closest is always with respe
t to the distan
e of either the stone or the man to the 
on
i
tingstone. These distan
e measures are possibly di�erent due to the more restri
ted movements of thestones. 79



Figure 5.2: Deadlo
k Example

Figure 5.3: Sequen
e of Test Mazes as Passed to PIDA* (a, b, 
, and d)5.4 ExampleFigure 5.2 shows a simple position, before and after the move Gd-Fd. The questionis whether or not this move introdu
es a deadlo
k. Figure 5.3 shows how the testmaze is built. Sin
e the last move ended up on square Fd, the test maze is initializedwith a single stone on Fd (Figure 5.3a). A PIDA* sear
h �nds a 5-push solution,and returns a ManPath (Gd-Ge-Fe-Fd-Gd-G
-F
-E
-D
-C
) and a StonePath (Fd-F
-E
-D
-C
-B
). Sin
e a solution was found, we 
ontinue the pattern sear
h.The original maze has a stone on one of the squares (E
) that the stone movedover. Now this stone is in
luded in the test maze (Figure 5.3b). PIDA* will solve thetest maze with the two stones and again return a ManPath (Gd-G
-F
-E
-D
-Dd-Cd-C
-D
-E
-F
-G
-Gd-Ge-Fe-Fd-Gd-G
-F
-E
-D
-C
) and a StonePath (E
-D
-C
-CbFd-F
-E
-D
-C
-B
). This time, there are no stones in 
on
i
t with the StonePath.However, there is a 
on
i
t with the ManPath on square Ge. Therefore, the stone onGe is added to the test maze (Figure 5.3
) and another sear
h is started. A solutionwill be found, requiring a fourth stone to be added (Figure 5.3d).The fourth 
all to PIDA* will return no solution and announ
e a deadlo
k withthis pattern of four stones. Identifying the 
riti
al stones has been driven by whetheror not they 
on
i
t with a potential solution. The irrelevant parts of the maze (su
has the stone on H
) are ignored. 80



Figure 5.4: Penalty Example5.5 Minimizing PatternsThe fewer stones in a deadlo
k pattern, the more likely it will mat
h an arbitraryposition and be used to eliminate futile bran
hes of the sear
h. A minimal deadlo
kpattern is a deadlo
k pattern from whi
h no stone 
an be removed without makingthe remaining pattern solvable. The attentive reader will have noti
ed that onlythree stones are needed to guarantee the deadlo
k in Figure 5.3; the stone on E
is unne
essary. Before saving the deadlo
k pattern, our program will attempt tominimize the number of stones in it.The deadlo
k minimization routine takes an N-stone pattern and 
onsiders ea
h ofthe possible (N-1)-stone subpatterns. Ea
h of the (N-1)-stone subpatterns is sear
hedto verify whether removing the other stone preserves the deadlo
k. If the deadlo
kstill exists, the removed stone was not part of a minimal deadlo
k set and is removedfrom the deadlo
k pattern.In general, there might be several di�erent minimal deadlo
k sets. We exper-imented with di�erent ways of minimizing deadlo
k sets, but 
on
luded that thegreedy and straightforward removal of stones is the most 
ost-e�e
tive way. Oftenthe 
ost of minimization is greater than the 
ost of �nding the deadlo
k pattern itself.5.6 Deadlo
ks and PenaltiesThe presen
e of a deadlo
k pattern in a position means that the lower bound in
reasesto in�nity. Can we �nd patterns that allow us to in
rease the lower bound by anamount less than in�nity?Assume there are three stones in the test maze and PIDA* starts its �rst iterationbut fails to �nd a solution. Hen
e PIDA* proved that this pattern 
annot be solvedwith the number of moves that the heuristi
 lower bound indi
ated. In other words,the lower bound is wrong.A pattern sear
h will fail to �nd a deadlo
k after the push Hd-Gd in Figure 5.4.However, this pattern sear
h will dis
over that it requires 2 iterations (4 moves) moreto solve this problem. Hen
e the lower bound is o� by 4. The pattern just dis
overed
an be minimized and used throughout the IDA* sear
h to improve the lower-bound
al
ulations.
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5.7 Spe
ializing Pattern Sear
hesOur program Rolling Stone uses three spe
ialized pattern sear
hes. Spe
ializationis a means of improving the eÆ
ien
y of pattern sear
hes, even though they mightmiss a few patterns. By de
reasing the 
ost of the individual pattern sear
h, morepattern sear
hes 
an be exe
uted. All three pattern sear
hes are designed to �nddi�erent types of deadlo
ks and/or penalties. Whereas deadlo
k sear
hes are gearedtowards �nding deadlo
ks involving many stones, penalty sear
hes are designed to�nd penalties with fewer stones. Area sear
hes are aimed at 
heaply �nding deadlo
ks
aused by ina

essible areas. We believe that our attempts at spe
ialization are onlya start. Further progress is 
ertainly possible. For more details see Appendix C.3.Deadlo
k Sear
h: The deadlo
k sear
h follows the generi
 outline of a patternsear
h as des
ribed above. However, a deadlo
k PIDA* sear
h is allowed totake a few short
uts. For instan
e, the de�nition of a goal node is more liberal.A position where the man 
an rea
h all squares in the maze (the stones do notblo
k parts of the maze) is 
onsidered unlikely to 
ontain a deadlo
k. Theseshort
uts redu
e the 
ost of the deadlo
k sear
hes and allow them to in
ludemore stones. However, deadlo
k sear
hes are less likely to �nd in
reases in lowerbounds.Penalty Sear
h: After a deadlo
k sear
h fails to produ
e a 
uto� (either by prov-ing deadlo
k or �nding a large enough penalty), a penalty sear
h is exe
uted.Penalty sear
hes are not allowed to take short
uts. Therefore, they have a
han
e to �nd penalty patterns that the deadlo
k sear
h missed. Penaltysear
hes are more expensive (no short
uts) and usually in
lude less stones withthe same e�ort limit.Area Sear
h: If even the penalty sear
h fails to dis
over a large enough penalty to
ause a 
uto�, a third and �nal pattern sear
h is exe
uted. Instead of using thesolution 
on
i
ts to �nd the next stone to in
lude, area sear
hes use heuristi
sto determine the stone(s) most likely to be involved in a penalty pattern. Theytry to prove that an area ina

essible to the man and adja
ent to the last stonemoved is en
losed by a deadlo
k pattern. To that end, prior to 
alling thePIDA* sear
h, all the stones are in
luded that are surrounding the area that isina

essible to the man. The area PIDA* sear
hes are as liberal as the deadlo
kPIDA* sear
hes. If the sear
h 
annot �nd a large enough penalty to 
ause a
uto�, more stones are in
luded that surround other ina

essible areas, thistime not dire
tly beside the man.5.8 Parameters and Control Fun
tionPattern sear
hes 
an be 
ostly. There are three main fa
tors involved in their 
ost:the frequen
y of the pattern sear
hes, the bound on the size of a pattern sear
h (thee�ort limit), and the bound on the deadlo
k-pattern size (number of stones allowed).82



Figure 5.5: Example for Control Fun
tionFrequen
y of Pattern Sear
hes: We 
annot a�ord to do a pattern sear
h at ev-ery node in the IDA* sear
h. We use some non-trivial heuristi
s (the 
ontrolfun
tion) to de
ide when to invest in a pattern sear
h. A pattern sear
h is exe-
uted if any of the three front and two side squares of the stone pushed 
ontainseither a stone or area the man 
annot rea
h. The dire
tions are with respe
t tothe orientation of the last move. Otherwise it is unlikely we have introdu
ed apenalty or deadlo
k.Figure 5.5 shows an example. Assume the move Cd-C
 was the last, then noneof the squares ahead (Bb, Cb, and Db), nor the side squares are o

upied bystones or are ina

essible to the man. The move Cd-C
 is unlikely to haveintrodu
ed a deadlo
k. Now, assume Cd-Dd was the last move (instead of Cd-C
). Ed, the square ahead of the stone moved to square Dd, is not a

essibleto the man. Furthermore, there is a stone on De, just to the side of the stonemoved onto square Dd. Either of these two 
onditions is suÆ
ient to trigger apattern sear
h.The transposition table stores whether or not a pattern sear
h was performedto avoid multiple pattern sear
hes at the same node.Size of the Pattern Sear
h: Pattern sear
hes are restri
ted to a maximum e�ortof 1000 nodes. If this limit is rea
hed, the sear
h is aborted. However, whenevera pattern sear
h is su

essful in �nding a penalty, it is allowed to 
ontinuesear
hing for another 1000 nodes.1000 nodes per pattern sear
h seemed to a
hieve most of the bene�ts for astill reasonable overhead. In
reasing the e�ort limit did de
rease the numberof IDA* nodes, but the additional overhead outweighs the bene�ts. Smallerpattern sear
hes 
annot �nd large enough penalties.3Pattern Size: Pattern sear
hes are stopped on
e they have in
luded all but two4stones from the original maze. This is an arti�
ial limitation, but we have3However, the number 1000 is still 
hosen quite arbitrarily. We will see this kind of \magi
"number many times. They are the result of edu
ated guesses and sometimes tuned by experiments.However, the tuning depends on many other variable sear
h parameters and the test suite used.Truly optimizing these \magi
" numbers is at least 
omputationally prohibitively expensive, if notimpossible. We will get ba
k to the issue of tuning in a little more depth in Se
tion 8.6.4This is another one of these magi
 numbers.83



not fully explored the tradeo�s of �nding larger deadlo
k patterns versus thee�ort required to �nd them. Be
ause large patterns are also less likely to mat
hagain later in the sear
h, the bene�ts of large patterns are small. Furthermore,the sear
hes be
ome exponentially more expensive the more stones are present.Therefore, it seemed prudent to limit the pattern size.Controlling these three parameters is vital for the su

ess of the pattern sear
hes.Too many and too expensive pattern sear
hes 
an qui
kly 
reate a large overhead,easily o�setting the savings a
hieved with the pattern knowledge.5.9 Storage and Mat
hingTo in
orporate the deadlo
k and penalty patterns into the regular IDA* sear
h, weneed to save the patterns found and use them to mat
h positions in the sear
h. Thepattern mat
hing is 
ompli
ated by the fa
t that one needs to mat
h not only thestones, but also the man position. With ea
h pattern of stones, the squares whi
hthe man in the test maze 
annot rea
h (non-rea
hable squares) are stored. To mat
ha pattern, the 
urrent position must have stones in the same pla
es as the patternand the man must not be on any one of the non-rea
hable squares stored with thepattern.As seen with the linear 
on
i
ts, patterns 
an overlap. To ensure admissibility,ea
h stone 
an only be used on
e for a pattern that is in
luded in the total penalty.Therefore, we have to optimize whi
h of the overlapping patterns to in
lude to maxi-mize the total penalty. First, all penalty patterns are 
olle
ted that are overlapping.Then, for ea
h of these sets of 
on
i
ting patterns a sear
h is used to �nd the subsetof patterns that maximizes the penalty that 
an be a
hieved.Consider Figure 5.6. Four penalty patterns are mat
hed for the position shown atthe top. The penalties for the patterns from left to right (a to d) are: 2, 2, 8, and 4.What is the maximal penalty that 
an admissibly be given to that position? Sin
e allpatterns overlap with pattern 
, none 
an be in
luded if pattern 
 is. However, thepatterns a, b, and d 
ould not all be in
luded at the same time either, be
ause thepatterns a and b overlap as well. In
luding pattern d and either one of a or b 
ouldonly lead to a penalty of 6. Therefore, only using pattern 
 results in the largestadmissible penalty: 8.The penalties of non-overlapping patterns are simply added. We are using ase
ond improvement in Rolling Stone to speed up the pattern mat
hing whi
h we
all lazy maximization. The sear
h passes a parameter to the mat
hing algorithmthat indi
ates the minimum (or target) penalty needed to 
ause a 
uto�. Whenthe mat
hing algorithm has produ
ed at least the target penalty, it 
an prematurelyreturn, thereby saving further mat
hing e�ort.Figure 5.7 shows maze #30 with a stone 
on�guration that arises during thesear
h. Two penalty patterns are su

essfully mat
hed, resulting in a lower-bound of38 (14+24). 84



Figure 5.6: Maximizing the Total Penalty (a to d)5.10 Cuto�s and Ba
k-JumpingMat
hing a deadlo
k pattern always 
auses a 
uto�. Mat
hing a penalty patternmay allow an in
rease in the lower bound. A 
uto� happens only when the mat
hedpenalty patterns in
rease the lower bound suÆ
iently (above the 
urrent threshold).However, these dire
t 
uto�s are only part of the bene�ts of the patterns. Thepattern sear
hes might un
over a pattern that wasn't 
reated by the last move. Inthat 
ase, when the last move is unmade, the pattern is still present. In fa
t, thelower bound of a state 
an 
hange during the sear
h of a subtree. Therefore, whenthe sear
h returns from a re
ursive 
all, the sear
h has to 
he
k if the lower boundis now suÆ
ient to 
ause a 
uto�. In that respe
t, su
h a pattern leads to a kindof dependen
y-dire
ted ba
ktra
king, as known from 
onstraint-satisfa
tion problems[SS77, Gas79℄. As long as the pattern exists in the maze, the sear
h 
ontinues toba
kup. When the move that 
reated that pattern is unmade, the asso
iated penaltydisappears and the sear
h pro
eeds normally.5.11 S
an Sear
hThe a

ura
y of the evaluation at the root node determines how many iterations areneeded to �nd a solution. The larger the gap between the lower bound of the rootnode and the 
orre
t solution length, the more iterations have to be sear
hed.Rolling Stone runs one penalty sear
h for ea
h of the stones in the initial position to�nd preexisting penalty patterns { the s
an sear
h. Finding su
h preexisting patterns85



Figure 5.7: Maze #30 With a Penalty of 38 (24+14)
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in
reases the lower bound of the root node and redu
es the total number of iterationsof the IDA* sear
h.However, in
reasing the lower bound at the root node will only help to save theearly, small iterations, not the latter, large iterations. Sin
e these early iterationshelp explore and �nd patterns, 
utting early iterations might be detrimental to theoverall performan
e of the program. Furthermore, exe
uting s
an sear
hes 
omeswith a signi�
ant overhead, usually over 20,000 nodes and as mu
h as 58,000 nodes.Espe
ially for sear
hes that are small, this overhead 
an be signi�
ant.5.12 Utility ConsiderationsControlling the number of pattern sear
hes and their individual 
osts is only partof the 
ost of the pattern knowledge. Whenever a lower bound is 
al
ulated, allthe patterns in the database have to be tested to �nd whi
h ones mat
h. This 
anqui
kly lead to Minton's utility problem [Min88℄: The 
osts of mat
hing patternsslows the program down to the point where the bene�ts in node savings are o�set bythe additional 
ost of pattern mat
hing. To redu
e this 
ost, a limit 
an be imposedon the total number of patterns. But, whi
h of the patterns should be kept and whi
hshould be deleted?We 
hose to limit the number of patterns to 8005. When this pattern limit isrea
hed, we remove the worst pattern before inserting a new one. \Worst" is de�nedas least re
ently used. To avoid deleting patterns before they have had time to showtheir worth, patterns are given a gra
e period of 50,0006 nodes from the time theyare 
reated during whi
h they are not removed. Also, on
e a pattern was used morethan 8007 times, it will never be removed. Thus, the pattern limit of 800 is a softlimit, it is possible that more patterns are stored.With this limit in pla
e, on average about half of the patterns are eliminated.The removal heuristi
 seems to work well, be
ause patterns that are removed wouldrarely be mat
hed. One problem is an ex
eption: #19. Without the pattern limit,Rolling Stone 
an solve problem #19 with 17 million nodes. With the pattern limitin pla
e, the number of nodes needed in
reases beyond 20 million. Be
ause of the\softness" of the pattern limit, further de
reasing the pattern limit results only insmall further de
rease in the number of patterns stored. Note that in many problemsthe pattern limit is never rea
hed. In other problems, this limit is ex
eeded ex
es-sively and massive run time savings are possible when large amounts of patterns aredeleted. Problem #22 is su
h an example. Without a pattern limit, 13,458 patternsare 
olle
ted. With the soft pattern limit of 800, only 1,742 patterns are stored,signi�
antly redu
ing the 
ost of pattern mat
hing.5Yet Another Magi
 Number (YAMN).6YAMN.7YAMN.
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Figure 5.8: No Penalty5.13 Related WorkThe idea of storing minimal patterns is similar to Ginsberg's Partition Sear
h [Gin96℄,where the entries of a hash table are generalized to hold information about sets ofproblem states. In Rolling Stone a pattern 
ontains the information about the lower-bound in
rease of the set of problem states in whi
h this pattern is present.The notion of bit (stone) patterns 
an be 
ompared to the Method of Analogies[AVAD75℄. Pattern sear
hes are a 
on
i
t-driven top-down proof of 
orre
tness, whilethe Method of Analogies is a bottom-up heuristi
 approximation.5.14 Limitations and Open ProblemsThere are 
ompli
ations when reasoning about penalties as we have seen in Se
-tion 4.3.6. Pattern sear
hes assume that a stone will go to its 
losest goal. If theoptimal path to that goal 
annot be used be
ause it is obstru
ted, a di�erent, poten-tially longer path has to be taken. A penalty is the result.But what if the Minmat
hing lower bound has already targeted the stone towardsa goal further away? Consider Figure 5.8. Even though we have a stone 
on�gurationthat might look like a linear 
on
i
t, it is not. One of the stones has to be pushed tothe goal further away. This knowledge is impli
it in the lower bound. But be
ausethe pattern sear
h assumes that ea
h stone will go towards the 
losest goal, it will�nd a penalty of 2 in this position. Even though we have so far treated the penaltiesresulting from pattern sear
hes as admissible, there are rare 
ases in whi
h they arenot.This problem arises from the dis
repan
y between the pattern sear
h's assumptionand the reality of where the Minmat
hing is targeting the stones to. Unfortunately,there is no general way of solving this problem, without 
onditioning the penalties.These 
onditions would have to a

ount for the assumptions of the pattern sear
hand ea
h pattern mat
hing would have to verify that the 
urrent Minmat
hing is notviolating these assumptions (e.g. whi
h goals a stone 
an/
annot move to.) It is anopen problem how to en
ode these 
onditions eÆ
iently. In the version of RollingStone des
ribed here, this problem is 
ompletely ignored, resulting in the o

asionalwrong penalty (and possibly non-optimal solution).An observation that we have not been able to exploit is the hidden pattern. Assumethat at a node all su

essors are sear
hed without �nding a solution. That means88
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Figure 5.9: Enabling One Pattern Sear
h (Linear and Log S
ale)the sear
h has just proven that there is no solution for the 
urrent threshold in thissubtree. However, the lower bound did not 
ause a 
uto� when we started sear
hingthis subtree. At this point, we know that our lower bound is o�. A penalty patternremains undete
ted in the 
urrent position. The sear
h has no knowledge about whyit failed. Ba
k-jumping is impossible. Just exe
uting a pattern sear
h to �nd thehidden pattern has two draw-ba
ks:� Presumably we did a pattern sear
h when we 
reated this node, starting withthe stone last pushed. With whi
h stone should we start now?� If we �nd a solution before we revisit this node, then this spe
ulative sear
he�ort would be wasted.It seems obvious that the knowledge about the existen
e of a hidden pattern shouldbe used, but we don't know how to do so eÆ
iently.A fundamental limitation of the 
urrent implementation of the penalty patternsand penalty sear
hes is that stones on goals 
annot be part of a pattern. The numberand kind of penalty anomalies in
reases dramati
ally when stones on goals are allowedin patterns. This limits the patterns in the kinds of penalties that they 
an express.We experimented with stones that where �xed on goals, but found that the dynami
distan
es 
apture most of the bene�ts already.5.15 Experimental ResultsRolling Stone 
an solve 24 Sokoban problems without pattern sear
hes. Table 5.1 andFigure 5.9 show the e�e
t of adding ea
h of the pattern sear
hes alone: area sear
h(AR), deadlo
k sear
h (DL) and penalty sear
h (PN). Penalty sear
hes outperformthe rest of the sear
hes 
learly, solving 48 problems, that is an in
rease of 24! Areasear
hes solve 6 problems less, a total of 42. Deadlo
k sear
hes, the initial idea, 
ansolve only 6 more problems than a version without any pattern sear
hes: 30. Notethe entries for problem #54. While the program enhan
ed with the area sear
h 
an89



# -AR -DL -PN +AR -DL -PN -AR +DL -PN -AR -DL +PNIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA*1 53 50 728 53 633 53 5732 316 85 4,640 82 5,077 82 4,3473 2,493 166 4,711 119 11,872 107 13,5304 597 187 45,652 187 47,480 187 49,5625 1,275,146 57,723 429,175 2,484 135,636 488 50,7116 283 160 4,110 85 3,954 160 3,9827 48,209 3,998 21,752 3,504 102,281 1,376 21,6458 > 20,000,000 23,729 273,954 > 106,657 > 20,000,000 426 408,7089 659,972 8,460 117,093 3,098 355,472 841 126,35310 > 20,000,000 > 4,589,251 > 20,000,000 > 63,766 > 20,000,000 2,419 1,429,19811 > 20,000,000 > 2,186,237 > 20,000,000 > 310,567 > 20,000,000 44,357 7,818,16412 > 20,000,000 3,613,901 9,394,754 > 565,536 > 20,000,000 300,828 5,852,85417 11,910 7,470 35,424 3,830 17,332 7,838 27,06319 > 20,000,000 > 2,308,996 > 20,000,000 > 133,139 > 20,000,000 61,500 12,365,85121 10,643,971 15,306 168,209 202,317 10,206,666 1,906 145,40925 > 20,000,000 > 2,282,812 > 20,000,000 > 130,791 > 20,000,000 1,396 373,55233 > 20,000,000 > 10,349,835 > 20,000,000 > 195,637 > 20,000,000 5,520 639,63534 > 20,000,000 73,999 697,988 150,281 18,350,039 511 267,40138 19,083 10,166 41,411 11,971 111,629 9,031 53,34143 6,084,369 45,373 421,089 > 385,422 > 20,000,000 17,825 935,19645 > 20,000,000 > 5,363,550 > 20,000,000 > 116,217 > 20,000,000 1,439 467,80949 5,189,494 228,985 851,493 600,506 5,550,628 195,260 357,65151 80,504 145 5,720 2,194 38,390 137 8,53153 > 20,000,000 159 21,334 9,921 597,100 159 24,00454 > 20,000,000 114,481 336,415 > 2,509,932 > 20,000,000 > 3,896,911 > 20,000,00055 144 104 2,072 136 3,803 97 2,39356 > 20,000,000 15,233 99,878 123,173 2,147,733 376 51,99657 > 20,000,000 75,612 339,663 84,591 4,897,724 265 114,40758 > 20,000,000 3,386 85,637 > 154,522 > 20,000,000 723 195,76759 > 20,000,000 1,106,457 2,730,849 > 244,323 > 20,000,000 1,223 499,46660 > 20,000,000 1,111,060 1,584,426 216,622 1,395,471 205 20,37261 > 20,000,000 > 10,696,415 > 20,000,000 > 330,504 > 20,000,000 325 110,86262 6,337 1,996 42,355 18,268 2,519,713 167 56,02463 > 20,000,000 8,836 139,172 > 156,097 > 20,000,000 437 150,21164 > 20,000,000 193,037 2,610,202 > 81,434 > 20,000,000 379 234,40065 604 221 17,899 228 18,343 196 18,74767 > 20,000,000 773,199 7,828,791 > 197,121 > 20,000,000 54,963 654,59468 > 20,000,000 26,908 521,170 > 392,557 > 20,000,000 1,119 229,05570 > 20,000,000 217,772 1,530,250 > 235,488 > 20,000,000 415 118,59572 > 20,000,000 348 26,524 898 257,112 134 39,03873 > 20,000,000 424 23,896 6,389 567,742 205 58,45976 > 20,000,000 1,098,753 4,037,793 > 95,223 > 20,000,000 191,703 4,521,47378 465 64 2,680 75 2,513 64 2,38779 5,964 149 9,032 143 11,715 131 12,66080 114,930 830 30,684 123 19,419 155 24,06381 221,690 25,943 74,914 9,095 536,209 21,505 147,73782 99,236 2,126 59,223 15,362 1,266,520 86 34,69883 20,847 262 5,055 164 8,155 166 9,45184 354,295 142 4,816 227 23,768 95 8,325>524,840,912 > 47,644,501 >174,682,633 > 7,871,059 >429,210,129 > 4,825,891 > 58,760,250Table 5.1: Enabling One Pattern Sear
h
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Figure 5.10: E�ort Graph In
luding Pattern Sear
h (Linear and Log S
ale)solve problem #54, the program with the penalty sear
hes 
annot. Area sear
hes andpenalty sear
hes are �nding di�erent kinds of penalties.Figure 5.10 shows the e�ort graph, now in
luding the version of Rolling Stone usingall pattern sear
hes. Turning all the pattern sear
hes on, we 
an solve 48 problems,24 more than the previous best version! The last 
olumn of Table 5.2 shows the exa
tnumbers.Sin
e penalty sear
hes alone 
an solve 48 problems, why is it bene�
ial to in
ludedeadlo
k and area sear
hes? First, small redu
tions in sear
h e�ort are a
hieved. Moreimportantly however, by allowing di�erent kinds of pattern sear
hes to be exe
uted,we have some insuran
e against missing some types of patterns that 
ould prevent usfrom �nding solutions to new, unseen problems. As 
an be seen in Table 5.2, di�erent
ombinations of pattern sear
hes solve di�erent problems.Ex
ept for the small sear
hes (<20,000 nodes), the 
ost of performing the addi-tional PIDA* sear
hes is o�set by the redu
tion in the IDA* sear
h nodes. Problem#53 is an example. The savings for the IDA* tree are dramati
. Previously, with20,000,000 nodes the sear
h was unable to solve this problem. Now the sear
h su
-
eeds with only 159 IDA* nodes and a total of 22,310 nodes (21,081 of those ares
an-sear
h nodes). Clearly, the pattern sear
hes dominate the sear
h 
ost, but theknowledge un
overed allows us to solve the problem where we failed previously. Inthis example, Rolling Stone sear
hes fewer IDA* nodes than the length of the solution!The sear
h ba
ktra
ks a mere 13 times for a solution of 186 pushes.Table 5.2 and Figure 5.11 show the version of Rolling Stone that uses all patternsear
hes and what happens when one of the pattern sear
hes is disabled at a time. Thesmallest loss 
omes from disabling area sear
h; 48 problems are still solved. Disablingpenalty sear
hes loses a total of 11 problems. Turning o� the deadlo
k sear
h losesone problem, but gains one, problem #19!Problem #19 is an interesting 
ase. Adding penalty sear
hes alone allows RollingStone to solve the problem with over 12 million nodes. Further enabling area sear
hesin
reases the number of nodes needed to 
lose to 16 million. When all the patternsear
hes are enabled, the problem 
annot be solved anymore; the overhead be
omestoo high. 91



# -AR +DL +PN +AR -DL +PN +AR +DL -PN +AR +DL +PNIDA* IDA*+PIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA*1 53 826 50 864 50 934 50 1,0422 82 6,122 82 5,790 82 6,468 82 7,5323 94 13,846 107 13,472 110 10,347 94 13,4454 187 49,324 187 49,386 187 48,527 187 50,3695 436 60,141 478 50,071 2,031 138,172 436 59,2496 85 4,691 160 5,120 85 4,603 85 5,1197 1,704 26,633 1,376 23,612 2,814 67,350 1,704 28,5618 408 550,814 328 279,027 10,890 2,141,491 317 339,2559 810 184,307 745 125,123 1,658 210,090 704 168,41210 2,127 2,002,162 1,926 999,098 > 80,071 > 20,000,000 1,909 1,480,11511 14,704 4,429,873 21,985 4,778,984 > 366,200 > 20,000,000 14,048 4,691,92912 162,263 4,233,053 300,669 6,136,043 > 720,970 > 20,000,000 162,129 4,373,80217 3,077 25,702 6,767 44,135 3,045 29,532 2,473 30,11119 > 63,223 > 20,000,000 75,007 15,793,144 > 96,292 > 20,000,000 > 59,433 > 20,000,00021 1,889 190,935 1,904 125,511 32,571 2,655,175 1,853 154,59325 1,351 568,490 1,346 417,736 > 126,416 > 20,000,000 1,239 553,90033 5,009 838,878 5,319 649,862 > 298,642 > 20,000,000 5,035 866,08534 582 401,802 591 299,695 52,733 5,556,437 542 298,67438 7,576 72,264 9,031 75,401 3,363 38,608 2,539 51,27643 16,566 1,417,432 6,758 558,133 17,389 1,205,589 5,308 690,42645 1,086 439,895 1,799 492,574 > 123,327 > 20,000,000 1,685 508,12449 371,153 1,246,597 > 7,229,739 > 20,000,000 403,401 2,459,295 375,293 1,670,23651 137 9,618 137 7,760 145 10,839 137 8,82553 159 24,008 159 22,306 159 22,310 159 22,31054 106,663 788,320 > 2,459,627 > 20,000,000 111,832 981,285 106,663 910,53255 97 2,651 97 2,735 104 3,074 97 2,99356 452 62,281 381 49,590 8,495 209,164 353 57,78557 256 122,994 265 112,900 51,777 1,860,321 256 121,38458 716 315,546 433 170,709 2,382 383,630 426 268,71359 1,198 668,701 812 240,794 > 391,840 > 20,000,000 795 348,21460 205 28,124 223 29,016 2,547 127,104 223 41,31061 290 93,241 325 111,873 > 562,852 > 20,000,000 314 106,20662 167 60,329 211 64,446 1,865 230,463 211 70,47863 437 198,790 567 192,649 123,280 12,431,967 567 259,53764 370 302,697 387 238,103 > 92,640 > 20,000,000 378 300,68465 196 19,885 196 20,433 221 20,486 196 21,44267 52,987 905,298 18,571 620,139 > 205,793 > 20,000,000 18,107 601,17868 1,721 336,291 2,297 359,463 21,054 2,682,015 2,278 541,08070 413 148,995 412 104,721 556 96,670 412 125,45472 134 46,411 134 38,519 348 50,085 134 44,90873 201 87,068 205 58,308 363 84,811 201 87,01976 192,230 6,726,931 334,655 5,046,214 > 300,026 > 20,000,000 185,633 6,236,65678 64 3,219 64 3,646 64 3,702 64 4,45179 125 14,464 131 14,065 141 13,567 125 15,83380 100 19,640 155 22,986 102 13,849 100 16,11481 21,501 221,154 21,505 161,099 25,269 467,708 21,501 234,23582 86 38,450 86 33,506 1,980 183,123 86 33,44583 91 7,867 97 7,879 91 5,759 91 7,29484 94 5,578 95 5,944 137 21,304 94 5,960> 1,035,555 > 48,022,338 > 10,508,581 > 78,662,584 > 4,248,390 >274,475,854 > 976,746 > 46,536,295Table 5.2: Disabling One Pattern Sear
h
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Figure 5.11: Disabling One Pattern Sear
h (Linear and Log S
ale)Analysis of the data shows that the average growth rate of the sear
h tree fromiteration to iteration in an IDA* sear
h de
reased by a fa
tor of over 600. Althoughthis represents a signi�
ant redu
tion in sear
h e�ort, it demonstrates how resistantthe problem is to sear
h. De
reasing the growth rate of the sear
h-tree size generallyin
reases the number of iterations that the main IDA* sear
h 
an perform in the sametime.Pattern sear
hes are a gamble: we invest sear
h e�ort (PIDA* nodes) expe
tingto �nd useful knowledge. Problem #78 is one example of where the gamble does notpay o�. Even though the tree size (IDA*) is redu
ed about 50 fold, in
luding thePIDA* nodes triples the total number of nodes sear
hed.Node numbers and su

ess rates vary for the di�erent pattern sear
hes. An un-produ
tive pattern sear
h 
osts between roughly 50 and 600 nodes. A produ
tivepattern sear
h typi
ally 
osts between 600 and 3,200 nodes. While penalty sear
hesare expensive, they are su

essful about 10% of the time. On the other hand, areasear
hes are 
heap, but their su

ess rate is only about 1%. Although this soundslow, the results show the value of the dis
overed knowledge.The results reported here are not the best numbers that 
an be a
hieved. InTable 5.2, the PIDA* nodes dominate the 
ost of the sear
h for some problems.Some additional heuristi
s for de
iding when to exe
ute pattern sear
hes 
ould resultin further improvements in the sear
h eÆ
ien
y. There are numerous parameters inthe sear
h, ea
h of whi
h 
an be tuned for maximal performan
e. For example:� the e�ort limit in number of nodes,� the pattern-size limit,� the e�ort limit after �nding a pattern,� the 
ontrol fun
tion, and� whi
h of the multiple 
on
i
ting stones to in
lude next.93



Figure 5.12: Example of C of In�nityBuilding the pattern sear
hes was easy. All the e�ort was spent in tuning the param-eters for best performan
e.5.16 Theoreti
al ConsiderationsThe question arises as to whether or not pattern sear
hes 
an be used in domainsother than Sokoban. What fundamental properties of the domain and its heuristi
sare needed for pattern sear
hes to be appli
able and to produ
e admissible lowerbounds?5.16.1 State Des
ription PropertiesFirst, we will examine the domain properties. Let us assume that a state in a domain
an be des
ribed by a set of des
riptors S = f
1; :::; 
ng. These 
i 
ould relate toobje
ts and their properties, su
h as lo
ation or value. For the domain of Sokobanone 
ould imagine a 
i to des
ribe the lo
ation of a stone. A subset Sk � S is a statewith fewer or the same number of su
h des
riptors than S, for the Sokoban example,stones. A state des
ription is redu
ible, if the solution for any state Sk is at most aslong as the solution for any S: jsol(Sk)j � jsol(S)j: (5.1)The term jsol(S)j stands for the length of an optimal solution for S. It is non-negative(jsol(;)j = 0).A state des
ription is 
alled splitable, if for any two disjoint subsets S1 and S2 ofS (S1; S2 � S and S1 \ S2 = ;) the following holds:jsol(S)j = jsol(S1)j+ jsol(S2)j+ jsol(S � (S1 [ S2))j+ C (5.2)This means that the solution of S is at least as long as both subsolutions added.The third term a

ounts for additional steps that might be needed for 
onditions 
ithat are neither in S1 nor S2. The term C stands for subsolution intera
tions. Thesesubsolution intera
tions 
an only in
rease the solution length of S (C � 0).The example Sokoban-state des
ription is redu
ible, be
ause whenever a stone (oreven a wall) is removed, the solution is not getting more 
ompli
ated, but potentially94



simpler. This state des
ription is also splitable. In Sokoban, the term C 
an be
omeas large as in�nity. Consider Figure 5.12 as an example. The two linear 
on
i
ts,shown in the left (S1) and middle maze (S2), 
ombine to form a deadlo
k when addedin the right maze (S). The third term in Equation 5.2 (jsol(S � (S1 [ S2))j) is 0,be
ause S � (S1 [ S2) = ;. Adding the solution to the subproblems S1 and S2 leadsto an in�nitely smaller sum than the a
tual solution length of the right maze.5.16.2 Heuristi
 PropertiesNow, let us 
onsider the properties of the admissible heuristi
 h used for the appli
a-tion domain. A heuristi
 is redu
ible, if the following holds:h(Sk) � h(S); (5.3)given that Sk � S. A heuristi
 is splitable, if the following holds:h(S) = h(S1) + h(S2) + h(S � (S1 [ S2)); (5.4)given that S1; S2 � S and S1 \ S2 = ;.The Minmat
hing heuristi
 in Sokoban is redu
ible but not splitable, be
auseMinmat
hing does take stone-goal intera
tions into a

ount. This is one reason whythe pattern sear
hes use the simpler heuristi
 Closest. The lower bound is the sum ofthe distan
es of ea
h stone to their respe
tive 
losest goals. This heuristi
 is redu
ibleand splitable.5.16.3 PenaltiesThe pattern sear
h 
an start with solving any Sk � S and adding new 
onditions
i will only monotoni
ally in
rease the solution lengths, as de�ned in Equation 5.1.A penalty pattern Sk is dis
overed, when there is a di�eren
e between jsol(Sk)j andh(Sk). Sin
e h is admissible, the following must be true:jsol(Sk)j � h(Sk) � 0: (5.5)We will de�ne the penalty of Sk aspen(Sk) = jsol(Sk)j � h(Sk): (5.6)The sum h(Sk) + pen(Sk) is therefore by de�nition admissible.What happens with multiple penalty patterns that mat
h in one state? Whenthese patterns overlap, only one 
an be used, as previous 
onsiderations in Se
-tion 4.3.6 with the multiple linear 
on
i
ts have shown. What about non-overlappingpatterns? Would the sum of the lower-bound fun
tion and all their penalties still beadmissible?Let S1 and S2 be two non-overlapping subproblems of S, with the usual 
onditionsS1; S2 � S and S1\S2 = ;. For h(S)+pen(S1)+pen(S2) to be admissible (jsol(S)j �h(S) + pen(S1) + pen(S2)), the following must hold:pen(S) � pen(S1) + pen(S2): (5.7)95



Using Equations 5.1 to 5.6 this is easy to show.pen(S) = jsol(S)j � h(S)= jsol(S1)j+ jsol(S2)j+ jsol(S � (S1 [ S2))j+ C�(h(S1) + h(S2) + h(S � (S1 [ S2)))= jsol(S1)j � h(S1) + jsol(S2)j � h(S2)+jsol(S � (S1 [ S2))j � h(S � (S1 [ S2))+C= pen(S1) + pen(S2) + pen(S � (S1 [ S2)) + C| {z }�0� pen(S1) + pen(S2) (5.8)Thus, given the properties outlined above for the domain and the heuristi
, the penal-ties of non-overlapping patterns 
an be added and the resulting heuristi
 remainsadmissible.5.16.4 Con
lusionsWe were able to show the suÆ
ient properties of the state des
ription and the lowerbound that ensure the theoreti
al appli
ability of pattern sear
hes. If the state de-s
riptions and the heuristi
 lower bound for a domain have both the properties ofredu
ibility and splitability, pattern sear
hes are possible. Starting with small prob-lems (patterns), pattern sear
hes 
an iteratively in
rease the pattern size until apenalty pattern is dete
ted. For Sokoban, we used the 
on
i
t heuristi
 to determinethe next 
i (stone) to in
lude, but any other heuristi
 
ould be used. It was also shownthat the penalties of non-overlapping patterns 
an be added to the lower bound of aposition without losing admissibility. However, in pra
ti
e it might not be wise to usepattern sear
hes. Their use 
omes with a 
onsiderable overhead and the 
ost-bene�tratio will determine if pattern sear
hes are bene�
ial.We previously dis
ussed a few in
onsisten
ies between the pattern knowledge andthe admissibility of the resulting evaluation in Sokoban. Now, we have the theoreti
altools to see where these issues arise from. The pattern sear
hes have to use a di�erentheuristi
 than the main IDA* sear
h. Therefore, the admissibility of a pattern doesnot ne
essarily 
arry over from the pattern sear
h into the main IDA* sear
h. Sokobanproves to be diÆ
ult, again.What about other domains? How 
ommon are the properties of redu
ibility andsplitability? The sliding-tile puzzles and Rubik's Cube have these properties. TheManhattan distan
e used as a lower-bound fun
tion for the sliding-tile puzzles isredu
ible and splitable as well. We will see in the next se
tion, how the ideas developedfor Sokoban 
an easily be transferred into the di�erent domain of the 15-puzzle.
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5.17 Pattern Sear
hes in the 15-PuzzleThe 15-puzzle is redu
ible. Removing tiles introdu
es more blanks and they allowthe problem to be solved faster. It is also splitable. Traditionally, the Manhattandistan
e is used as a lower bound. The Manhattan distan
e has both properties:redu
ibility and splitability. Therefore, the sliding-tile puzzles are perfe
t 
andidatesfor pattern sear
hes from a theoreti
al point of view.Pra
ti
ally, however, there are a number of drawba
ks to this domain when tryingto improve run time with pattern sear
hes.� Pattern sear
hes ex
el at �nding lo
al 
on
i
ts by ignoring irrelevant parts of theproblem. Be
ause of the limited physi
al dimensions of the 15-puzzle, almosteverything is lo
al. Thus, one of the main advantages of the pattern sear
h isdiminished 
onsiderably.� The sliding-tile puzzle programs have very little overhead per node. Move gener-ation and lower-bound fun
tions redu
e to table lookups of small 
onstant time.On today's fast PCs (Pentium III 450MHz) they easily sear
h up to 8 millionnodes per se
ond. Adding any kind of overhead will slow down the program
onsiderably, and that slowdown is hard to o�set with node savings. Patternsear
hes will 
reate 
onsiderable overhead, be
ause they have to be exe
utedand the patterns have to be mat
hed.� There are enhan
ements to the lower bound, su
h as the linear 
on
i
ts [HMY92℄,that 
an eÆ
iently improve the Manhattan distan
e.� While in Sokoban a move 
ould in
rease the distan
e to the goal by an arbitraryamount, in the sliding-tile puzzles, ea
h move 
an in
rease the distan
e to thegoal by at most 2, be
ause every move is reversible. Therefore, the penaltiesthat 
an be found will be smaller for the 15-puzzle and thus the bene�ts (thelikelihood of 
uto�s) will be less.Despite these obsta
les, a signi�
ant redu
tion in node 
ount 
ould show thefeasibility of pattern sear
hes beyond the domain of Sokoban.5.17.1 ImplementationWe started with Korf's original implementation of a 15-puzzle solver [Kor85a℄.8 It
ontains nothing but the Manhattan distan
e as lower bound, IDA* as the sear
h al-gorithm and an enhan
ement to prevent 
y
les of length 2. There are no transpositiontables, linear 
on
i
ts, ma
ro moves and pattern databases.Pattern Sear
hesOur implementation of the pattern sear
h starts with a designated tile that is assumedto be part of a penalty pattern. The pattern sear
h tries to solve the problem with8We used Korf's original sour
e 
ode to implement our ideas.97



the single tile; everything else is assumed to be blanks. The sear
h returns a solutionand a 
on
i
t set 
onsisting of all the squares the tile moved over. The next tilein
luded is the one in the 
on
i
t set whi
h is 
losest to the �rst tile, and so forth.Closest in our implementation is a modi�ed Manhattan distan
e. Every tile in thesame row or 
olumn has the normal Manhattan distan
e. All other tiles are assignedthe Manhattan distan
e plus 2. This ensures that all tiles in the same 
olumns orrows are in
luded �rst, in order to fa
ilitate the dete
tion of linear 
on
i
ts.Patterns are restri
ted to 4 tiles, and ea
h pattern sear
h is given a limit of 50nodes. If a pattern is found, the sear
h 
ontinues, but the limit is in
reased to 250.Pattern sear
hes are only exe
uted to a sear
h-tree depth of about half the IDA*threshold (i.e. are restri
ted to the top of the tree).At the beginning of an IDA* sear
h, the equivalent of a S
an Sear
h is performed.For ea
h tile a pattern sear
h is 
alled. During the IDA* sear
h, a pattern sear
h isexe
uted if the tile that was moved is not part of a pattern that was in
luded in thepenalty for the 
urrent position. This redu
es the number of unprodu
tive patternsear
hes, even at the risk of missing a small per
entage of the patterns.Pattern Storage and Mat
hingTo speed things up, ea
h pattern is stored in a number of dynami
 arrays. Thereare 16 � 16 su
h arrays, one for ea
h tile-square 
ombination. Ea
h of these arrays
ontains all the patterns that have a spe
i�
 tile on a spe
i�
 square in the puzzle grid.Thus, a linear 
on
i
t with two tiles would be stored twi
e, on
e for ea
h tile-square
ombination in the pattern.To redu
e the run-time overhead, we use a greedy approa
h when trying to deter-mine the penalty of a position. For ea
h tile in the puzzle we try to �nd the maximalpenalty available for this tile using a minimal number of tiles. We 
ommit to usingthis penalty. The tiles used by 
ommitted penalties are marked and ex
luded fromfurther mat
hes to ensure only non-overlapping patterns are used. This routine is notguaranteed to �nd the maximal penalty, but was a 
ompromise to obtain most of thebene�ts of the patterns with the least amount of overhead.5.17.2 Experimental ResultsThe parameters given above were tuned only a little, but improvements are 
ertainlypossible. We use the 100 problems from Korf's original test suite [Kor85a℄.Figure 5.13 shows node numbers 
orresponding to Korf's original 
ode (upperline), the 
orresponding node numbers for the pattern-sear
h version (dots), and thesame numbers sorted by in
reasing size (shown as the lower line). Savings of about66% are possible with our 
urrent implementation. The nodes sear
hed split aboutequally among the top-level nodes and pattern-sear
h nodes.
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Figure 5.13: Pattern Sear
hes in the 15-Puzzle (Linear and Log S
ale)
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Reusing PatternsIn Sokoban, the patterns found in one problem are not generally usable in anotherproblem, be
ause the layout of the maze and the lo
ation of the goals 
hange. Sin
ethe 15-puzzle does not 
hange its layout or the goal state, patterns found on
e arereusable for future problems. A test was run that retains the patterns from problemto problem. An additional 10% savings are possible, redu
ing the number of nodesrequired to roughly 24%. Figure 5.14 shows the results. Tables 5.3 and 5.4 
ontainsthe numbers for both experiments.Run TimeEven though we 
ould show wins with respe
t to node numbers, the overall run timein
reases. The overhead of mat
hing the patterns is not o�set by the node savings.The savings are lower be
ause the penalties that 
an be found are smaller than inSokoban, be
ause all moves are reversible. Thus, the likelihood of them being ableto 
ause a 
uto� is smaller as well. The mat
hing in
reases the time spent per nodeabout 35-fold. That is not surprising, sin
e the original 
ode has an extremely lowoverhead.5.17.3 Con
lusionsThe sliding-tile puzzles are quite di�erent when 
ompared to the Sokoban domain.However, they have similar properties that allow pattern sear
hes to work. Eventhough the pattern sear
hes result in signi�
ant node savings, the mat
hing overheadis larger, be
ause the 15-puzzle is a low-overhead domain, with an eÆ
ient and e�e
-tive lower-bound fun
tion, reversible moves and high lo
ality. The 
ost-bene�t ratiois not in favor of pattern sear
hes for the 15-puzzle.The lower-bound improvement of linear 
on
i
ts 
an redu
e the node numbersmu
h more, but that knowledge is stati
 and is hand 
oded. Pattern sear
hes 
andete
t mu
h more general 
on
i
ts of tiles and are not restri
ted by our understandingof the domain. The main obje
tive of this se
tion, to show that pattern sear
hes havepotential beyond the domain of Sokoban, was realized.5.18 Con
lusionsThe property of deadlo
ks in a sear
h spa
e adds 
onsiderable 
omplexity to thesear
h. Deadlo
k tables are bene�
ial for lo
al deadlo
k dete
tion, but inadequate tohandle non-trivial situations. Pattern sear
hes 
an dete
t global deadlo
k s
enariosand are able to improve the lower bound 
onsiderably, resulting in a substantialimprovement in sear
h eÆ
ien
y.Patterns give the sear
h knowledge about how the stones and the man intera
t.This additional knowledge allows the sear
h to avoid parts of the sear
h spa
e thathave no solutions and/or only solutions that are longer than the 
urrent threshold.100



# Plain IDA* Plus Pattern Sear
hes Plus Pattern Sear
hes with Reuse of PatternsIDA*+PIDA* IDA* PIDA* IDA*+PIDA* IDA* PIDA*1 540,859 239,547 142,508 97,039 239,547 142,508 97,0392 546,343 276,468 198,862 77,606 267,188 193,074 74,1143 877,822 289,709 201,934 87,775 256,627 182,675 73,9524 927,211 463,991 283,028 180,963 399,477 253,956 145,5215 1,002,926 437,631 274,859 162,772 347,658 229,040 118,6186 1,280,494 794,419 430,652 363,767 674,873 372,343 302,5307 1,337,339 949,669 543,679 405,990 753,357 437,515 315,8428 1,411,293 750,560 480,549 270,011 524,327 347,662 176,6659 1,599,908 718,377 430,931 287,446 534,140 340,121 194,01910 1,650,695 898,062 500,979 397,083 705,983 407,199 298,78411 1,897,727 894,044 578,177 315,867 700,093 471,535 228,55812 1,905,022 696,823 412,605 284,218 496,921 296,423 200,49813 2,196,592 959,296 654,233 305,063 671,943 489,194 182,74914 2,304,425 900,628 562,093 338,535 599,977 400,609 199,36815 2,351,810 823,599 512,078 311,521 556,369 379,907 176,46216 2,725,455 1,566,132 855,726 710,406 1,200,524 664,060 536,46417 3,222,275 1,976,483 1,188,101 788,382 1,511,135 935,646 575,48918 5,934,441 2,611,918 1,734,902 877,016 1,993,995 1,362,206 631,78919 6,158,732 2,454,218 1,666,046 788,172 1,593,941 1,142,821 451,12020 7,096,849 1,387,873 843,966 543,907 900,469 579,749 320,72021 7,115,966 3,535,755 1,963,898 1,571,857 2,798,760 1,557,218 1,241,54222 7,171,136 2,282,133 1,485,085 797,048 1,633,121 1,088,971 544,15023 8,841,526 4,945,501 2,670,870 2,274,631 4,338,745 2,376,398 1,962,34724 8,885,971 1,855,272 1,093,178 762,094 1,179,823 733,615 446,20825 9,982,568 3,576,460 2,262,624 1,313,836 2,406,177 1,565,450 840,72726 10,907,149 4,965,290 3,073,845 1,891,445 3,689,342 2,341,576 1,347,76627 11,020,324 6,196,510 3,496,018 2,700,492 4,692,929 2,702,278 1,990,65128 11,861,704 3,136,569 1,915,277 1,221,292 2,082,440 1,287,875 794,56529 12,808,563 2,587,918 1,532,363 1,055,555 1,587,803 958,001 629,80230 12,955,403 6,900,357 3,904,078 2,996,279 5,689,404 3,244,098 2,445,30631 15,300,441 6,393,789 3,547,776 2,846,013 5,302,386 2,984,188 2,318,19832 15,971,318 3,811,782 2,242,701 1,569,081 2,805,897 1,621,794 1,184,10333 17,954,869 7,914,991 4,198,511 3,716,480 6,326,621 3,375,560 2,951,06134 17,984,050 3,973,317 2,133,762 1,839,555 2,978,373 1,606,509 1,371,86435 18,918,268 8,437,534 4,807,670 3,629,864 6,255,292 3,679,995 2,575,29736 18,997,680 3,756,295 2,417,514 1,338,781 2,380,043 1,602,348 777,69537 19,355,805 6,671,833 3,570,891 3,100,942 4,590,206 2,501,976 2,088,23038 20,671,551 5,313,551 2,954,753 2,358,798 3,859,176 2,248,633 1,610,54339 22,119,319 4,100,671 2,554,452 1,546,219 2,486,509 1,640,228 846,28140 23,540,412 13,843,415 7,789,833 6,053,582 11,430,164 6,424,676 5,005,48841 23,711,066 11,348,938 6,333,195 5,015,743 9,004,498 5,067,043 3,937,45542 24,492,851 6,775,014 4,358,482 2,416,532 4,987,035 3,223,251 1,763,78443 26,622,862 12,666,910 6,667,429 5,999,481 7,827,761 4,443,516 3,384,24544 32,201,659 9,579,153 5,226,829 4,352,324 6,865,400 3,866,877 2,998,52345 39,118,936 8,677,734 5,182,695 3,495,039 5,759,803 3,499,410 2,260,39346 41,124,766 15,859,652 9,256,714 6,602,938 10,856,777 6,696,506 4,160,27147 42,693,208 18,962,035 10,458,390 8,503,645 15,720,595 8,760,179 6,960,41648 42,772,588 8,786,352 4,544,081 4,242,271 6,769,114 3,553,502 3,215,61249 47,506,055 14,785,232 8,744,593 6,040,639 10,364,124 6,382,613 3,981,51150 51,501,543 25,153,931 13,156,713 11,997,218 20,651,664 10,892,728 9,758,936Table 5.3: Experimental Results for the 15 Puzzle (I)101



# Plain IDA* Plus Pattern Sear
hes Plus Pattern Sear
hes with Reuse of PatternsIDA*+PIDA* IDA* PIDA* IDA*+PIDA* IDA* PIDA*51 59,802,601 12,074,808 7,129,909 4,944,899 7,198,419 4,642,938 2,555,48152 62,643,178 18,193,320 10,275,974 7,917,346 14,344,342 8,275,975 6,068,36753 63,036,421 20,635,688 12,069,795 8,565,893 14,248,474 8,790,770 5,457,70454 63,276,187 25,257,298 13,569,322 11,687,976 21,132,597 11,433,740 9,698,85755 64,367,798 12,986,228 7,853,068 5,133,160 9,633,860 6,022,843 3,611,01756 64,926,493 14,115,956 7,803,041 6,312,915 10,480,885 5,924,554 4,556,33157 65,533,431 5,740,186 3,704,815 2,035,371 3,885,367 2,573,896 1,311,47158 67,880,055 35,223,825 17,184,643 18,039,182 30,288,769 14,792,560 15,496,20959 83,477,693 30,115,905 18,253,002 11,862,903 23,599,128 14,608,924 8,990,20460 95,733,124 13,243,348 6,998,780 6,244,568 9,588,006 5,208,168 4,379,83861 100,734,843 34,617,503 17,763,516 16,853,987 29,281,463 14,983,111 14,298,35262 106,074,302 26,373,781 15,994,142 10,379,639 18,261,302 11,288,695 6,972,60763 109,562,358 25,511,033 14,047,076 11,463,957 19,080,166 10,744,264 8,335,90264 117,076,110 41,217,374 20,879,485 20,337,889 31,983,878 16,701,461 15,282,41765 126,638,416 62,396,258 31,005,988 31,390,270 53,339,225 26,754,479 26,584,74666 132,945,855 68,225,185 34,463,403 33,761,782 57,658,610 29,456,218 28,202,39267 150,346,071 63,446,995 34,816,085 28,630,910 52,569,497 29,576,740 22,992,75768 151,042,570 46,491,721 24,539,442 21,952,279 37,919,076 20,271,548 17,647,52869 166,571,020 77,540,544 40,375,099 37,165,445 66,931,919 34,669,581 32,262,33870 183,526,882 69,997,313 34,168,994 35,828,319 63,421,285 31,048,124 32,373,16171 198,758,702 87,766,281 42,008,873 45,757,408 76,176,289 36,961,403 39,214,88672 220,374,384 53,558,763 27,602,309 25,956,454 46,973,422 24,213,232 22,760,19073 226,668,644 89,537,891 45,389,557 44,148,334 75,627,138 39,075,879 36,551,25974 252,783,877 62,831,732 33,492,626 29,339,106 56,096,209 30,155,218 25,940,99175 257,064,809 86,979,437 45,004,537 41,974,900 77,236,295 40,110,310 37,125,98576 260,054,151 104,589,901 53,261,229 51,328,672 93,056,576 47,351,110 45,705,46677 276,361,932 81,643,020 42,051,951 39,591,069 63,776,719 32,769,750 31,006,96978 280,078,790 87,685,598 43,861,039 43,824,559 66,929,943 34,529,085 32,400,85879 306,123,420 49,255,148 27,457,411 21,797,737 39,012,336 22,198,724 16,813,61280 377,141,880 79,935,949 38,767,275 41,168,674 65,789,788 32,312,648 33,477,14081 387,138,093 129,453,081 66,898,520 62,554,561 107,124,954 54,052,442 53,072,51282 465,225,697 208,661,165 101,646,975 107,014,190 174,073,215 85,885,772 88,187,44383 480,637,866 134,867,828 73,184,295 61,683,533 108,870,176 59,592,195 49,277,98184 543,598,066 214,335,023 111,301,616 103,033,407 187,555,926 97,691,048 89,864,87885 565,994,202 287,160,880 137,981,294 149,179,586 261,971,051 125,619,342 136,351,70986 602,886,857 192,918,480 94,363,487 98,554,993 174,974,578 85,013,556 89,961,02287 607,399,559 221,127,539 133,786,893 87,340,646 189,874,898 115,809,263 74,065,63588 661,041,935 286,235,800 139,080,450 147,155,350 255,709,707 125,105,040 130,604,66789 750,745,754 204,800,942 105,361,957 99,438,985 178,697,814 92,261,405 86,436,40990 995,472,711 121,031,679 60,948,602 60,083,077 99,164,337 51,023,344 48,140,99391 1,031,641,139 123,558,336 67,093,299 56,465,037 101,684,685 55,108,784 46,575,90192 1,101,072,540 200,479,934 101,685,292 98,794,642 147,986,726 76,928,139 71,058,58793 1,199,487,995 351,686,002 175,182,845 176,503,157 316,488,886 159,031,174 157,457,71294 1,207,520,463 327,199,700 170,091,890 157,107,810 286,948,657 149,565,191 137,383,46695 1,369,596,777 212,473,752 120,284,300 92,189,452 178,676,839 103,461,995 75,214,84496 1,809,933,697 484,738,238 253,644,380 231,093,858 439,595,890 231,180,827 208,415,06397 1,957,191,377 712,647,322 349,499,366 363,147,956 661,802,397 325,793,021 336,009,37698 3,337,690,330 1,269,110,078 586,394,155 682,715,923 1,059,849,206 491,356,136 568,493,07099 5,506,801,122 1,034,169,009 480,236,703 553,932,306 928,186,443 434,107,129 494,079,314100 6,320,047,979 1,633,097,516 774,048,263 859,049,253 1,516,183,963 721,815,799 794,368,16436,302,807,931 10,093,823,634 5,020,547,096 5,073,276,538 8,803,189,857 4,399,402,805 4,403,787,052Table 5.4: Experimental Results for the 15 Puzzle (II)102



This knowledge 
omes at a pri
e: exe
uting the spe
ulative pattern sear
hes.However, the overhead of pattern sear
hes is well worth the e�ort in the domain ofSokoban. The knowledge gained allows dramati
 improvements in eÆ
ien
y and leadsto twi
e the number of problems solved. Given 20 million nodes of sear
h e�ort, ourprogram 
an now solve 48 problems of the 90 problem test suite.Pattern sear
hes 
an be used in other domains, if redu
able and splitable statedes
riptions and heuristi
s 
an be found. The 15-puzzle is su
h a domain. However,to be of pra
ti
al bene�ts, the savings of the pattern sear
hes must outweight their
onsiderable overhead. While this is true for Sokoban, the 15-puzzle did not bene�tfrom pattern sear
hes in our implementation.
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Chapter 6Relevan
e Cuts
6.1 Introdu
tion and MotivationIt is 
ommonly a
knowledged that a human's ability to su

essfully navigate throughlarge sear
h spa
es is due to their meta-level reasoning [Gin93b℄. The relevan
e ofdi�erent a
tions when 
omposing a plan is an important notion in that pro
ess. Ea
hnext a
tion is viewed as one logi
ally following in a series of steps to a

omplish a(sub-)goal. An a
tion judged as irrelevant is not 
onsidered.When sear
hing small sear
h spa
es, the 
omputer's speed at base-level reasoning
an e�e
tively over
ome the la
k of meta-level reasoning by simply enumerating largeportions of the sear
h spa
e. However, it is easy to identify a problem that is simplefor a human to solve (using reasoning) but is exponentially large for a 
omputer tosolve using standard sear
h algorithms. The pigeonhole problem is an example: �tN +1 stones into N pigeonholes. We need to enhan
e sear
h algorithms to be able toreason at the meta-level if they are to su

essfully ta
kle these larger sear
h tasks. Inthe world of 
omputer games (two-player sear
h), a number of meta-level reasoningalgorithmi
 enhan
ements are well known, su
h as null-move sear
hes [GC90℄ andfutility 
uto�s [S
h86℄. For single-agent sear
h, ma
ro moves [Kor85b℄ are an example.In this 
hapter, we introdu
e relevan
e 
uts, a meta-level reasoning enhan
ementfor single-agent sear
h. The sear
h is restri
ted in the way it 
hooses its next a
tion.Only a
tions that are related to previous a
tions 
an be performed, with a limitednumber of ex
eptions being allowed. The exa
t de�nition of relevan
e is appli
ationdependent.Consider an artist drawing a pi
ture of a wildlife s
ene. One way of drawingthe pi
ture is to draw the bear, then the lake, then the mountains, and �nally thevegetation. An alternate way is to draw a small part of the bear, then draw apart of the mountains, draw a single plant, work on the bear again, another plant,maybe a bit of lake, et
. The former 
orresponds to how a human would draw thepi
ture: 
on
entrate on an identi�able 
omponent and work on it until a desired levelof 
ompleteness has been a
hieved. The latter 
orresponds to a typi
al 
omputermethod: the order in whi
h the lines are drawn does not matter, as long as the �nalresult is a
hieved. 104



Unfortunately, most sear
h algorithms do not follow the human example. At ea
hnode in the sear
h, the algorithm will 
onsider all legal moves regardless of theirrelevan
e to the pre
eding play. For example, in 
hess, 
onsider a passed \a" pawnand a passed \h" pawn. The human will analyze the sequen
e of moves to, say, pushthe \a" pawn forward to queen. The 
omputer will 
onsider dubious (but legal) linessu
h as push the \a" pawn one square, push the \h" pawn one square, push the \a"pawn one square, et
. Clearly, 
onsidering alternatives like this is not 
ost-e�e
tive.What is missing in the above examples is a notion of relevan
e. In the 
hessexample, having pushed the \a" pawn and then de
ided to push the \h" pawn, itseems silly to now return to 
onsidering the \a" pawn. If it really was ne
essary topush the \a" pawn a se
ond time, why weren't both \a" pawn moves 
onsidered beforeswit
hing to the \h" pawn? Usually this swit
hing ba
k and forth (or \ping-ponging")does not make sense but, of 
ourse, ex
eptions 
an be 
onstru
ted.In other well-studied single-agent sear
h domains, su
h as the N-puzzle and Ru-bik's Cube, the notion of relevan
e is not important. In both of these problems, thegeographi
 spa
e of moves is limited, i.e. all legal moves in one position are \
lose"(or lo
al) to ea
h other. For two-player games, the e�e
t of a move may be global ins
ope and therefore moves almost always in
uen
e ea
h other (this is most prominentin Othello, and less so in 
hess). In 
ontrast, a move in the game of Go is almostalways lo
al. In non-trivial, real-world problems, the geographi
 spa
e might be large,allowing for moves with lo
al and non-lo
al impli
ations.This 
hapter introdu
es relevan
e 
uts and demonstrates their e�e
tiveness inSokoban. For Sokoban, we use a new in
uen
e metri
 that re
e
ts the stru
ture ofthe maze. A move is 
onsidered relevant only if the previous m moves in
uen
e it.The sear
h is only allowed to make relevant moves with respe
t to previous movesand only a limited number of ex
eptions are permitted. With these restri
tions inpla
e, the sear
h is for
ed to spend its e�ort lo
ally, sin
e random jumps within thesear
h spa
e are dis
ouraged. In the meta-reasoning sense, for
ing the program to
onsider lo
al moves is making it adopt a pseudo-plan; an ex
eption 
orresponds toa de
ision to 
hange plans.The sear
h-tree size, and thus the sear
h e�ort expended in solving a problem,depends on the depth of the sear
h tree and the e�e
tive bran
hing fa
tor. Relevan
e
uts aim at redu
ing the e�e
tive bran
hing fa
tor. For Rolling Stone, relevan
e
uts result in a large redu
tion of the sear
h spa
e. On the standard set of 90 testproblems, relevan
e 
uts allow Rolling Stone to in
rease the number of problems it
an solve from 48 to 50. Given that the problems in
rease exponentially in diÆ
ulty,this relatively small in
rease in the number of problems solved represents a signi�
antin
rease in sear
h eÆ
ien
y.6.2 Relevan
e CutsAnalyzing the trees built by an IDA* sear
h qui
kly reveals that the sear
h algorithm
onsiders move sequen
es that no human would ever 
onsider. Even 
ompletely un-related moves are tested in every legal 
ombination|all in an e�ort to prove that105



Figure 6.1: The Number of Alternatives Changes the In
uen
e
Figure 6.2: The Lo
ation of the Goals Mattersthere is no solution for the 
urrent threshold. How 
an a program mimi
 an \un-derstanding" of relevan
e? We suggest that a reasonable approximation of relevan
eis in
uen
e. If two moves do not in
uen
e ea
h other, then it is unlikely that theyare relevant to ea
h other. If a program had a good \sense" of in
uen
e, it 
ouldassume that in a given position all previous moves belong to a (unknown) plan ofwhi
h a 
ontinuation 
an only be a move that is relevant|in our approximation, isin
uen
ing whatever was played previously.6.2.1 In
uen
eAn in
uen
e metri
 
an be a
hieved in di�erent, domain-spe
i�
 ways. The followingshows one implementation for Sokoban. Even though the spe
i�
s aren't ne
essarilyappli
able to other domains, the basi
 philosophy of the approa
h is.We approximate the in
uen
e of two moves on ea
h other by the in
uen
e betweenthe move's from squares. The in
uen
e between two squares is determined using thenotion of a \most in
uential path" between the squares. This 
an be thought of as aleast-
ost path, ex
ept that in
uen
e is used as the 
ost metri
.When judging how two squares in a Sokoban maze in
uen
e ea
h other, using theEu
lidean distan
e is not adequate. Taking the stru
ture of the maze into a

ountwould lead to a simple geographi
 distan
e whi
h is not proportional to in
uen
eeither. For example, 
onsider two squares 
onne
ted by a tunnel; the squares areequally in
uen
ing ea
h other, no matter how long the tunnel is. Elongating thetunnel without 
hanging the general topology of the problem would 
hange the geo-graphi
 distan
e, but not the in
uen
e.The following is a list of properties we would like the in
uen
e measure to re
e
t:Alternatives: The more alternatives exist on a path between two squares, the lessthe squares in
uen
e ea
h other. That is, squares in the middle of a room wherestones 
an go in all 4 dire
tions should de
rease in
uen
e more than squares106



Figure 6.3: Tunnels and In
uen
ein a tunnel, where no alternatives exist. See Figure 6.1 for an example. Thesquares A and B in
uen
e one another less than the squares C and D. Thereare more possible ways to get from A to B than from C to D. Squares C and Dare more restri
ted be
ause they are situated on a wall.Goal-Skew: For a given square sq, any squares on the optimal path from sq to a goalshould have stronger in
uen
e than squares o� the optimal path. For example,square B in Figure 6.2 is in
uen
ed by C more than it is by A. The lo
ation ofthe goals is important.Conne
tion: Two neighboring squares 
onne
ted su
h that a stone 
an move be-tween them should in
uen
e ea
h other more than two squares 
onne
ted su
hthat only the man 
an move between them. In Figure 6.1, square A in
uen
esC less than C in
uen
es A, be
ause stones 
an only move towards C, and nottowards A.Tunnel: In a tunnel, in
uen
e remains the same: It does not matter how long thetunnel is (one 
ould, for example, 
ollapse a tunnel into one square). Figure 6.3shows su
h an example: two problem mazes that are identi
al, ex
ept for thelength of the tunnel. In
uen
e values should not 
hange be
ause of the lengthof the tunnel.Our implementation of relevan
e 
uts uses small o�-line sear
hes to stati
allypre
ompute a (20� 20)� (20� 20) table (Influen
eTable) 
ontaining the in
uen
evalues for ea
h square of the maze to every other square in the maze. Between everypair of squares, a breadth-�rst sear
h is used to �nd the path(s) with the largestin
uen
e. The algorithm is similar to a shortest-path �nding algorithm, ex
ept thatwe are using in
uen
e here and not geographi
 distan
e. The smaller the in
uen
enumber, the more two squares in
uen
e ea
h other. See Appendix C.4 for details.Note that in
uen
e is not ne
essarily symmetri
.Influen
eTable[a; b℄ 6= Influen
eTable[b; a℄A square 
lose to a goal in
uen
es squares further away more than it is in
uen
edby them. Furthermore, Influen
eTable[a; a℄ is not ne
essarily 0. A square in themiddle of a room will be less in
uen
ed by ea
h of its many neighbors than a squarein a tunnel. To re
e
t that, squares in the middle of a room re
eive a larger bias thanmore restri
ted squares. 107



Our approa
h is quite simple and 
an undoubtedly be improved. For example,in
uen
e is stati
ally 
omputed. A dynami
 measure, one that takes the 
urrentpositions of the stones into a

ount, would 
ertainly be more e�e
tive.6.2.2 Relevan
e Cut RulesGiven the above in
uen
e measure, we 
an now pro
eed to explain how to use thatinformation to 
ut down on the number of moves 
onsidered in ea
h position. To dothis, we need to de�ne distant moves. Given two moves, m1 and m2, move m2 is saidto be distant with respe
t to move m1 if the from squares of the moves (m1:fromand m2:from) do not in
uen
e ea
h other. More pre
isely, two moves in
uen
e ea
hother if In
uen
eTable[m1:from;m2:from℄ <= infthresholdwhere infthreshold is a tunable threshold.Relevan
e 
uts eliminate some moves that are distant from the previous movesplayed (i.e. do not in
uen
e), and therefore are 
onsidered not relevant to the sear
h.There are two ways that a move 
an be 
ut o�:1. If within the last m moves more than k distant moves were made. This 
ut willdis
ourage arbitrary swit
hes between non-related areas of the maze.2. A move that is distant with respe
t to the previous move, but not distant toa move in the past m moves. This will not allow swit
hes ba
k into an areapreviously worked on and abandoned just brie
y.In our experiments, we set k to 1. This way, the �rst 
ut 
riterion will entail these
ond.To re
e
t di�eren
es in mazes, the parameters infthreshold and m are set atthe beginning of the sear
h, taking the average values in the Influen
eTable intoa

ount. By varying infthreshold and m in the de�nition of relevan
e, the 
uttingin the sear
h tree 
an be made more or less aggressive. The desired aggressiveness isappli
ation dependent, and should be 
hosen relative to the quality of the relevan
emetri
 used.6.2.3 ExampleFigure 6.4 shows an example where humans immediately identify that solving thisproblem involves 
onsidering two separate subproblems. The solution to the left andright sides of the problem are 
ompletely independent of ea
h other. An optimalsolution needs 82 pushes; Rolling Stone's lower bound estimator returns a value of70. Standard IDA* will need 7 iterations to �nd a solution (our lower-bound estimatorpreserves the odd/even parity of the solution length, meaning it iterates by 2 at atime). IDA* will try every possible (legal) move 
ombination, intermixing moves fromboth sides of the problem. This way, IDA* proves for ea
h of the �rst 6 iterations108



Figure 6.4: Example Maze With Lo
ality(i = 0::5) that the problem 
annot be solved with 70 + 2 � i moves, regardless of theorder of the 
onsidered moves. Clearly, this is unne
essary and ineÆ
ient. Solvingone of the subproblems requires only 4 iterations, sin
e the lower bound is o� byonly 6. Considering this position as two separate problems will result in an enormousredu
tion in the sear
h 
omplexity.Our implementation 
onsiders all moves on the left side as distant from those onthe right, and vi
e versa. This way only a limited number of swit
hes is 
onsideredduring the sear
h. Our parameter settings allow for only one non-lo
al move per9-move sequen
e. For this 
ontrived problem, relevan
e 
uts de
rease the number ofnodes sear
hed from 32,803 nodes to 24,748 nodes while still returning an optimal so-lution (the pattern sear
hes were turned o� for simpli
ity). The savings (25%) appearrelatively small be
ause the transposition table 
at
hes repeated positions (many ofwhi
h may be the result of irrelevant moves) and eliminates them from the sear
h.Although the relevan
e 
uts provide a wel
ome redu
tion in the sear
h e�ort required,it is only a small step towards a
hieving all the possible savings. For example, ea
hof the subproblems 
an be solved by itself in only 329 nodes! The di�eren
e between329 � 2 and 32,803 illustrates why IDA* in its 
urrent form is inadequate for solv-ing large, non-trivial real-world problems. Clearly, more sophisti
ated methods areneeded.6.2.4 Dis
ussionFurther re�nement of the parameters used are 
ertainly possible and ne
essary if thefull potential of relevan
e 
uts is to be a
hieved. Some ideas with regards to this issuewill be dis
ussed in Se
tion 6.5.The overhead of the relevan
e 
uts is negligible, at least for our 
urrent imple-mentation. The in
uen
e of two moves 
an be established by a simple table lookup.This is in stark 
ontrast to the pattern sear
hes, where the overhead dominates the
ost of the sear
h for most problems.
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6.3 A Closer Look at Relevan
e CutsThe goal of using relevan
e 
uts is to redu
e the sear
h-tree size. This is a
hievedby eliminating legal moves from the sear
h, thereby redu
ing the e�e
tive bran
hingfa
tor of the tree. As with many other (unsafe) forward pruning te
hniques, this
ould potentially remove solutions or postpone their dis
overy. Therefore, aggressivepruning 
an in
rease the sear
h e�ort by requiring additional sear
h to �nd a non-pruned solution. A solution 
ould be found in the same IDA* iteration, or 
ouldresult in an additional iteration being started. A good heuristi
 for relevan
e is thekey to �nding the right balan
e between tree redu
tion and the risk of eliminatingsolutions.6.3.1 Relevan
e Cuts in TheoryTo better understand the impli
ations of relevan
e 
uts, we will now try to applyKorf's theoreti
al model [Kor97℄ to our algorithm.1 Se
tion 6.4.2 dis
usses how wellthe model predi
ts the pra
ti
al performan
e of our algorithm.The number of nodes 
onsidered in a standard IDA* sear
h is given by the fol-lowing formula, whi
h is a generalization of Korf's model.n � d�1Xi=h(root) bi�e| {z }
omplete iterations+ bd�e1 + sd| {z }last (partial) iteration (6.1)wheren is the total number of nodes;d is the length of optimal solutions;h(root) is the heuristi
 value of the root node (<= d);b is the e�e
tive bran
hing fa
tor;e is the average heuristi
 value of the interior nodes in the tree; andsd is the number of solutions with (optimal) length d.In this formula, the variable-depth sear
h tree is approximated as a �xed-depthtree. With no lower-bound information (h(position) = 0), the sear
h tree would beof size O(bd). An average lower bound of e redu
es this exponent to d� e.The �rst part of the formula represents the sum of the sizes of all the iterationsthat have no solution in them. The se
ond part is the size of the last iteration. It1Korf and Reid re�ne this model in [KR98℄. The irregularity of the sear
h spa
e (irreversiblemoves and sear
h enhan
ements su
h as transposition tables) and heuristi
 fun
tion (
aused by thenumerous lower-bound enhan
ements) for Sokoban and Rolling Stonerender this model less suitablethan the one in [Kor97℄. 110



assumes that the solutions are uniformly distributed throughout the leaf nodes. Thus,if there is only one unique solution path, that solution will be found, on average, halfway through the sear
h of the last (d) iteration.Relevan
e 
uts modify the equation in two ways. First, the iterations withoutsolutions are redu
ed in size. This is a
hieved by eliminating moves from 
onsider-ation, in e�e
t redu
ing the bran
hing fa
tor. Se
ond, there is the possibility thatadditional sear
h will be needed if the �rst solution happens to be eliminated by arelevan
e 
ut. Thus, on iterations >= d the savings from the redu
ed bran
hingfa
tor 
an be (partially) o�set by having to do extra work. If all solutions at depth dhappen to be 
ut o�, then at least one more iteration is required (and possibly more).Equation 6.1 is modi�ed to re
e
t both ways that relevan
e 
uts a�e
t the sear
h:n � d�1Xi=h(root)(b� r(x))i�e| {z }
omplete iterations + d+a(x)�1Xi=d (b� r(x))i�e| {z }additional full iterations + (b� r(x))d+a(x)�e1 + (1� p(x)) � sd+a(x)| {z }last (partial) iteration (6.2)� d+a(x)�1Xi=h(root)(b� r(x))i�e| {z }
omplete iterations + (b� r(x))d+a(x)�e1 + (1� p(x)) � sd+a(x)| {z }last (partial) iteration (6.3)wherex is the aggressiveness of the 
uts (in our relevan
e metri
, this 
orresponds to 
hang-ing m or infthreshold);r(x) is the average bran
hing-fa
tor redu
tion as a fun
tion of the aggressiveness;p(x) is the probability that a solution is 
ut from the sear
h tree, assuming theseprobabilities are independent. This probability also depends on the aggressive-ness x of the relevan
e 
uts;a(x) is the expe
ted number of additional iterations. This number depends on theaggressiveness x of the 
uts, and the probability that these 
uts will eliminateall solutions in an iteration; andsd+a(x) is the number of solutions at level d+ a(x).The e�e
tiveness of relevan
e 
uts in redu
ing the sear
h-tree size depends solelyon the aggressiveness of the 
uts, whi
h 
ontrols the bran
hing-fa
tor redu
tion andthe penalty in
urred for missing a solution. In
reasing the aggressiveness of the 
utswill de
rease the number of nodes sear
hed in the 
omplete iterations (iterations < d),but will in
rease the risk of solutions being 
ut o�. When solutions are 
ut o�, not only
an the last iteration potentially grow, but we might a
tually introdu
e new iterationswhen all the solutions 
ontained in an iteration are pruned. Hen
e, relevan
e 
uts
an introdu
e non-optimal solutions, or postpone the dis
overy of solutions beyondthe resour
e limits. 111



The performan
e tuning e�ort must therefore be dire
ted towards �nding the rightbalan
e between savings (redu
ed sear
h-tree size) and 
ost (the overhead of havingto sear
h further than should be needed).6.3.2 Randomizing Relevan
e CutsIn a deterministi
 environment, where relevan
e 
uts follow the exa
t same rulesfor the same situation, the sear
h will always 
ut o� solutions that depend on amaneuver mistakenly 
onsidered \irrelevant". Given that relevan
e 
uts will makemistakes (albeit, hopefully, at a very low rate), some me
hanism must be introdu
edto avoid worst-
ase s
enarios, su
h as eliminating all solutions.A solution is to introdu
e randomness into the relevan
e 
ut de
ision. If a bran
his to be pruned by a relevan
e 
ut, a random number 
an be generated to de
idewhether or not to go ahead with the 
ut. The randomness re
e
ts our 
on�den
ein the relevan
e 
uts. For example, the random de
ision 
an be used to approve100% of all possible relevan
e 
uts (
orresponding to the s
heme outlined thus far,
on�dent that not all solutions will be eliminated), down to 0% (whi
h implies no
on�den
e|relevan
e 
uts will never be used). Somewhere between these two ex-tremes is a per
entage of 
uts that balan
es the redu
tions in the sear
h-tree sizewith the overhead of postponing when a solution is found.6.4 Experimental ResultsOur previous best version of Rolling Stone (R6) was 
apable of solving 48 of thetest problems within the tree-size limit of 20 million nodes. With the addition ofrelevan
e 
uts (no random 
utting), the number of problems solved has in
reased to50. Table 6.1 shows a 
omparison of Rolling Stone with and without relevan
e 
utsfor ea
h of the 50 solved problems.2The tree size for ea
h program version given in Table 6.1 is again broken intotwo numbers: IDA* nodes and total nodes, in
luding pattern-sear
h nodes. Thethird 
olumn gives the number of IDA* iterations that the program took to solvethe problem. Note that problems #9, #11, #12, #21, #25, #34 and #38 are nowsolved non-optimally, taking at least one iteration longer than the program withoutrelevan
e 
uts. This 
on�rms the unsafe nature of the 
uts. However, sin
e noneof the problems solved before is lost and 2 more are solved within the 20,000,000node limit, the gamble paid o�. The size of the sear
h spa
e di
tates radi
al pruningmeasures if we want to have any 
han
e of solving some of the tougher problems.Table 6.1 shows that relevan
e 
uts improve sear
h eÆ
ien
y by at least a fa
torof 2 in IDA* nodes. The savings in terms of total nodes are less with about 25%.Clearly, the numbers are dominated by a few problems, su
h as #19 and #40.2The numbers reported in [JS98a, JS99b℄ di�er slightly from the ones presented here. Sin
e thesepubli
ations, Rolling Stone was signi�
antly improved, spe
i�
ally the pattern sear
hes, allowing fora mu
h more eÆ
ient sear
h. The resulting smaller sear
hes allowed less room for improvement.112



# without relevan
e 
uts with relevan
e 
utsIDA* nodes total nodes iterations IDA* nodes total nodes iterations1 50 1,042 2 50 1,042 22 82 7,532 1 80 7,530 13 94 13,445 1 87 12,902 14 187 50,369 1 187 50,369 15 436 59,249 2 202 43,298 26 85 5,119 1 84 5,118 17 1,704 28,561 2 1,392 28,460 28 317 339,255 3 291 311,609 39 704 168,412 2 1,884 435,388 510 1,909 1,480,115 1 1,810 1,713,429 111 14,048 4,691,929 10 5,679 2,994,297 1112 162,129 4,373,802 3 4,912 559,184 817 2,473 30,111 7 2,038 29,116 719 59,433 > 20,000,000 9 16,606 7,269,595 921 1,853 154,593 6 1,177 179,734 725 1,239 553,900 6 21,536 5,784,086 733 5,035 866,085 3 2,765 586,684 334 542 298,674 2 11,431 1,981,993 338 2,539 51,276 5 7,011 154,969 640 41,131 > 20,000,000 6 23,274 17,004,253 743 5,308 690,426 7 1,729 421,483 745 1,685 508,124 2 339 181,566 249 375,293 1,670,236 9 53,113 327,643 951 137 8,825 1 256 21,491 153 159 22,310 1 157 22,308 154 106,663 910,532 2 163,757 2,031,577 255 97 2,993 1 97 2,993 156 353 57,785 3 377 61,189 357 256 121,384 2 234 114,416 258 426 268,713 2 211 130,474 259 795 348,214 4 1,420 775,753 460 223 41,310 1 160 27,386 161 314 106,206 5 309 105,411 562 211 70,478 3 195 101,934 363 567 259,537 1 703 312,546 164 378 300,684 4 405 332,402 465 196 21,442 2 196 21,442 267 18,107 601,178 6 12,669 512,488 668 2,278 541,080 6 1,953 538,509 670 412 125,454 3 431 140,765 372 134 44,908 2 134 44,908 273 201 87,019 1 214 94,568 176 185,633 6,236,656 4 74,315 3,775,394 478 64 4,451 1 64 4,913 179 125 15,833 2 122 15,527 280 100 16,114 1 165 26,943 181 21,501 234,235 1 2,662 42,445 182 86 33,445 2 86 33,445 283 91 7,294 1 80 5,631 184 94 5,960 1 106 7,938 11,017,877 > 66,536,295 419,155 49,388,544Table 6.1: Experimental Data113
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Figure 6.5: The E�e
t of Relevan
e CutsComparing node numbers of individual sear
hes is diÆ
ult be
ause of many volatilefa
tors in the sear
h. For example, a relevan
e 
ut might eliminate a bran
h from thesear
h justi�ably. However, by doing so a pattern sear
h might now not be done that
ould have un
overed valuable information that might have been useful for redu
ingthe sear
h in other parts of the tree. Problem #80 is one su
h example: despite therelevan
e 
uts the node 
ount goes up from 100 to 165; an important dis
overy wasnot made and the rest of the sear
h in
reases. However, the overall trend is in favorof the relevan
e 
uts. An ex
ellent example is problem #49: the total nodes are 
utby roughly a fa
tor of 5.In Figure 6.5, the amount of e�ort to solve a problem, with and without relevan
e
uts, is plotted. The numbers from Table 6.1 are used, sorted by the number of nodessear
hed by the version without relevan
e 
uts. The �gure shows that the exponentialgrowth in diÆ
ulty with ea
h additional problem solved is being dampened by rele-van
e 
uts, allowing for more problems being solved with the same sear
h 
onstraints.For the 25 to 30 \easiest" problems, there is very little di�eren
e in e�ort required; therelevan
e 
uts do not save signi�
ant portions of small sear
h trees. As the sear
hesbe
ome larger, the su

ess of relevan
e 
uts gets more pronoun
ed. However, thereare two problems where relevan
e 
uts result in a large in
rease in node numbers:#25 and #34. Their numbers in
rease roughly 10 and 6 fold, respe
tively.Figure 6.6 shows the e�ort graph, now in
luding the relevan
e 
uts. Only the lastproblems show that relevan
e 
uts are bene�
ial.6.4.1 Randomizing Relevan
e CutsThe numbers presented so far deal with a version of Rolling Stone that exe
utes 100%of the relevan
e 
uts. A version of Rolling Stone was instrumented to simulate thee�e
ts of di�erent degrees of randomization, varying from 0% (all relevan
e 
uts areignored) to 100% (all relevan
e 
uts are used). Thus, the level of, for example, 80%
orresponds to randomly a

epting 80% of the 
uts, while reje
ting 20% of them.Figure 6.7 illustrates the relevan
e 
uts' potential for savings in the sear
h tree.The graph presents for various degrees of randomness (from 0% to 100% in 10%114
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Figure 6.6: E�ort Graph In
luding Relevan
e Cuts (Linear and Log S
ale)
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Figure 6.7: Relevan
e Cuts Savingsin
rements) the per
ent of the sear
h tree that 
an be saved by the relevan
e 
uts.For ea
h sear
h, the relative savings are plotted. Only sear
hes where the 0% versionrequired at least 500 nodes and the 100% version found a solution were in
luded. Thesmall sear
h trees (< 500 nodes) were ex
luded from this and subsequent graphs, sin
ethese trees tend to have very few opportunities for savings. For example, problem #1is already a paltry 50 nodes; there is neither need nor room for further improvement.Ea
h of the data points in a 
olumn 
orresponds to one of the 14 problems that passedour �lter. The line represents the average of the savings.The �gure shows that roughly 65% of the sear
h tree 
an be eliminated by rele-van
e 
uts. Further, in our implementation one need only perform 50% of the 
uts toredu
e the sear
h by 60%. Thus, even a small amount of 
utting 
an translate intolarge savings.To put this into perspe
tive, one might suggest that the relevan
e 
uts are just afan
y way of randomly 
utting bran
hes in the sear
h tree. An additional experimentwas performed with random 
utting, in line with the frequen
y of relevan
e 
uts. Theresult was some savings for a small amount of 
utting, but as the frequen
y of 
uttingin
reased, so did the sear
h-tree sizes! By 
utting randomly, more solution paths werebeing eliminated from the sear
h, in
reasing the likelihood of having to sear
h more115
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Figure 6.8: Measuring b and riterations.Equation 6.3 essentially broke the relevan
e-
ut sear
h nodes into two 
omponents.The �rst was the sear
h e�ort required to rea
h the �rst solution. Clearly, relevan
e
uts provably redu
e this portion of the sear
h sin
e some bran
hes are not explored.In fa
t, Figure 6.7 is portraying exa
tly these savings. However, these savings 
an beo�set by the the se
ond 
omponent, the additional e�ort needed to �nd a non-
uto�solution.Of the 50 problems solved, 7 have non-optimal solutions (14%). As stated earlier,solution quality is not a 
on
ern sin
e, given the diÆ
ulty of the problem domain,any solution is wel
ome. Furthermore, for solutions of lengths typi
al in Sokoban(several hundred) adding two or four pushes is a small in
rease. The signi�
an
e ofthese non-optimal solutions is dis
ussed in the next subse
tion.6.4.2 Relevan
e Cuts in Theory RevisitedLet's revisit Equation 6.3. These generi
 formulas 
ontain several assumptions, someof whi
h are expli
itly stated in [Kor97℄, while others are impli
it. In theory, weshould be able to use our experimental data to 
on�rm these equations. Of interestin Equation 6.3 is that the term (b � r)d�e (6.4)dominates the 
al
ulation. We know d (the optimal solution length), and we 
anmeasure b, r and e. Rolling Stone has been instrumented to measure these quantities.Figure 6.8 shows the average b and r for the 48 problems that were solved by bothversions, sorted in order of in
reasing b. These statisti
s were gathered at nodes inthe sear
h that were visited by both programs (one with relevan
e 
uts; the otherwithout). In other words, nodes whi
h were visited only by the non-relevan
e 
utsprogram were not averaged in. As 
an be seen, the redu
tion in bran
hing fa
torvaries dramati
ally, depending on the problem.116
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Figure 6.9: Per
ent of Relevan
e Cuts Eliminating SolutionsMeasuring e, the average heuristi
 value of the interior nodes in the tree, showedlittle di�eren
e with/without relevan
e 
uts.Plugging d, e, b and r into Equation 6.4 produ
ed a large dis
repan
y betweenthe predi
ted tree size and the observed tree size. Sin
e d is 
onstant in both versionsof the program, and e is e�e
tively a 
onstant, the improvements of relevan
e 
utsrests solely on r, the redu
tion in the bran
hing fa
tor. However, in most 
ases theobserved savings are larger than the predi
ted savings.Equation 6.3 has the impli
it assumption that the bran
hing fa
tor is relativelyuniform throughout the tree. Certainly this is true for the sliding-tile puzzle. ButSokoban has di�erent properties. In parti
ular, the bran
hing fa
tor 
an swing wildlyfrom move to move. Also, our data shows that the bran
hing fa
tor tends to besmaller near the root of the tree (too many obsta
les in the puzzle) and, as theproblem simpli�es (jams get 
leared, stones get pushed to their goal squares), thebran
hing fa
tor in
reases until near the end of the game when there are few stonesleft to move and the bran
hing fa
tor de
reases again. In addition, the data showsthat the relevan
e 
uts tend to o

ur early in the sear
h, rather than later. Hen
e, themajority of the savings from relevan
e 
uts 
ome from the smaller bran
hing fa
torb near the root of the tree 
ombined with a larger bran
h redu
tion. Korf's formulaonly 
onsiders averages over the entire tree, whereas any bias towards the root of thetree 
an produ
e larger observed redu
tions.The other 
omponent of Equation 6.3 is the additional sear
h e�ort required whenrelevan
e 
uts miss the �rst solution. Earlier, it was suggested that the probability ofsear
hing an extra iteration was quite high (14%). This suggests that the relevan
e
uts are being too extreme in their 
utting. Rolling Stone was instrumented to keepsear
hing subtrees that would have been eliminated by a relevan
e 
ut to determine ifa solution path lay in that subtree. Figure 6.9 shows that only about 2-4% of the 
utseliminate a solution. Note that some problems have a relatively high error rate; theseresults 
ome from the problems that have small sear
hes, where the total number of
uts is small and a single error 
an skew the per
entages.A relevan
e 
ut error rate of 4% might seem high. However, 
onsider that these
uts are done throughout the tree, in
luding near the root. Given that a 
ut near the117
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Figure 6.10: Solution Arti
ulation Sequen
eroot of the sear
h will eliminate huge portions of the sear
h spa
e, and few of these
uts eliminate any optimal solution, the 
uts must be doing a good job of identifyingirrelevant portions of the sear
h.Infrequently eliminating solutions may seem important if there are few solutions.In fa
t, our experien
e with Sokoban shows that there are many optimal solutions forevery problem. The number of solution paths grows exponentially with any additionalsear
h beyond the optimal solution length. For example, 
onsider a d-ply optimalsolution. If we now look at solutions of length d + 2,3 then we 
an randomly insertirrelevant moves into the solution path, giving O(d � b) more solution paths.Equation 6.3 assumes that the probability of a solution being 
ut o� is independentof any other solution being 
ut o�. Unfortunately, this is a simplifying assumptionthat does not hold for Sokoban. Sin
e Sokoban problems have been 
omposed to be
hallenging to humans (and, inadvertently, 
omputers as well), most problems in ourtest suite 
ontain spe
i�
 maneuvers that are mandatory for all solutions. In otherwords, every solution to some problems requires a spe
i�
 sequen
e of moves to bemade. We 
all these maneuvers solution arti
ulation sequen
es.A solution arti
ulation sequen
e is illustrated in Figure 6.10. It shows the set ofmove sequen
es that are solutions to the problem of getting from the start state tothe goal state. First, there are many possible sequen
es of moves (possibly even movetranspositions) until a spe
i�
 maneuver is required. Then a �xed sequen
e of movesis required (the solution arti
ulation sequen
e). Having 
ompleted the sequen
e, thenmany di�erent permutations of moves 
an be used to rea
h the goal(s). Note thata problem may have multiple solution arti
ulation sequen
es. As well, there may be3In general, this would be d + 1. However, sin
e Sokoban solutions preserve odd/even parity,solutions in
rease by two pushes at a time. 118




lasses of solutions, with ea
h 
lass having a di�erent set of arti
ulation sequen
es.Relevan
e 
uts use a sequen
e of moves (the past m moves) to de
ide whetherto 
urtail the sear
h or not. If the moves forming the solution arti
ulation sequen
ehappen to meet the 
riterion for a relevan
e 
ut, then it will be falsely 
onsidered\irrelevant". Consequently, many solution paths will be eliminated from the sear
h.One 
an 
onstru
t a s
enario by whi
h all solutions 
ould be removed from the sear
h.Solution arti
ulation sequen
es illustrate that the assumed solution independen
eproperty is, in fa
t, in
orre
t. Coming up with a realisti
 model is diÆ
ult. Thesolutions tend to be distributed in 
lusters. Many 
lusters of solutions are, essentially,the same solution with minor di�eren
es (su
h as move transpositions or, for non-optimal solutions, irrelevant moves added).Although the number of optimal solutions appears high from our experiments,relevan
e 
uts are vulnerable to solution arti
ulation sequen
es. Hen
e, a single 
uthas the potential for eliminating all solutions. Randomization seems to be an e�e
tiveway of handling this problem.6.4.3 SummaryRelevan
e 
uts have been shown experimentally to result in large redu
tions in thee�ort required to solve Sokoban problems. Given the exponentially in
reasing natureof the sear
h trees, solving an extra 2 problems represents a substantial improvement.Although it would be ni
e to have a 
lean analyti
 model for Sokoban sear
hesthat 
ould be used to predi
t sear
h e�ort, this is proving elusive. Although a modelfor single-agent sear
h exists [Kor97℄, it is inadequate to handle the non-uniformity ofSokoban. In the past, numerous analyti
 models for tree-sear
hing algorithms haveappeared in the literature. They are all based on simplifying assumptions that makethe analysis tra
table, but result in a model that mimi
s an arti�
ial reality. Histor-i
ally, these models 
orrelate poorly with empiri
al data from real-world problems.An interesting re
ent example from two-player sear
h 
an be found in [PSPdB96℄.6.5 Con
lusionsRelevan
e 
uts provide a 
rude approximation of human-like problem-solving methodsby for
ing the sear
h to favor lo
al moves over global moves. This simple idea provideslarge redu
tions in the sear
h-tree size at the expense of possibly returning a longersolution. Given the breadth and depth of Sokoban sear
h trees, �nding optimalsolutions is a se
ondary 
onsideration; �nding any solution is 
hallenging enough.We have numerous ideas on how to improve the e�e
tiveness of relevan
e 
uts.Some of them in
lude:� Use di�erent distan
es depending on 
rowding. If many stones are 
rowdingan area, it is likely that the relevant area is larger than it would be with fewerstones blo
king ea
h other. Dynami
 in
uen
e measures should be better thanstati
 approa
hes. 119



� There are several parameters used in the relevan
e 
uts. The settings of thoseare already dependent on properties of the maze. These parameters are 
riti
alfor the performan
e of the 
uts and are also largely responsible for in
reasedsolution lengths. More resear
h on these details is needed to fully exploit thepossibilities relevan
e 
uts are o�ering.� Using the analogy from Se
tion 6.1, one 
ould 
hara
terize Rolling Stone as\painting" lo
ally but not yet painting in an \obje
t oriented" way. If a 
owerand the bear are 
lose, painting both at the same time is very likely. Bettermethods are needed to further understand subgoals, rather than lo
alizing byarea.Although relevan
e 
uts introdu
e non-optimality, this is not an issue. On
ehumans solve a Sokoban problem, they have two 
hoi
es: move on to another problem(they are satis�ed with the result), or try and re-solve the same problem to get a bettersolution. Rolling Stone 
ould try something similar. Having solved the problemon
e, if we want a better solution, we 
an redu
e the probability of introdu
ing non-optimality in the sear
h by de
reasing the aggressiveness of the relevan
e 
uts. Thiswill make the sear
hes larger but, on the other hand, the last iteration does not haveto be sear
hed, sin
e a solution for that threshold was already found.Relevan
e 
uts are yet another way to signi�
antly prune Sokoban sear
h trees.We have no shortage of promising ideas, ea
h of whi
h potentially o�ers another orderof magnitude redu
tion in the sear
h-tree size. Although this sounds impressive, ourexperien
e suggests that ea
h fa
tor of 10 improvement seems to yield no more than2 or 3 additional problems being solved.
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Chapter 7Overestimation
7.1 Introdu
tion and MotivationTo ensure optimality of solutions produ
ed by A*-based algorithms, su
h as IDA*,the heuristi
 has to be admissible. The admissibility 
onstraint limits the 
hoi
e ofknowledge. Even if some knowledge 
orrelates well with the distan
e to the goal,but there is the slightest 
han
e that it overestimates, it 
annot be used. Solutionoptimality would not be guaranteed.This shows that optimality has its pri
e. Instead of �tting the fun
tion h as 
loselyas possible to h�, we are restri
ted to 
reating a lower bound. The error of su
h alower-bound fun
tion is often larger than a fun
tion that is allowed to o

asionallyoverestimate. The larger the error of the lower-bound fun
tion, the less eÆ
ient thesear
h.We have seen in previous 
hapters that an aggressive treatment of the sear
hspa
e is needed to make signi�
ant progress. The examples of the goal ma
ros andrelevan
e 
uts have shown the bene�ts that are a
hievable when the small risk oflosing optimality and 
ompleteness is taken. Therefore, it seems logi
al to questionthe admissibility 
onstraint for the heuristi
 fun
tion. The hope is to a
hieve a 
loser�t of the heuristi
 fun
tion h to the 
orre
t distan
e h�, albeit at the 
ost of non-optimal solutions.7.2 WIDA*To a
hieve a better approximation of h�, one 
an s
ale the admissible heuristi
 bya 
onstant fa
tor. Statisti
al tests measuring the di�eren
e between h and h� 
anprodu
e a 
onstant w that 
an be used. Weighted IDA* (WIDA*) uses the 
ostfun
tion f(s) = g(s) + w � h(s), with w > 1 [Kor93℄.This s
aling has the e�e
t of a depth bonus. The further the sear
h penetratesinto the tree, the more it is en
ouraged. Nodes 
lose to the root will have largerh values and the s
aling will in
ate these values more in absolute terms than thosenodes 
loser to the leaves with smaller h values. Ea
h move that de
reases the h valuewill impli
itly re
eive a small bonus, be
ause the 
ost of the move is not balan
ing121



the de
rease of h; f drops as the sear
h approa
hes leaf nodes. This small de
rease inthe f value with ea
h move deeper into the tree will eventually allow a non-optimalmove to be 
onsidered. This 
an lead to radi
al shifts of where the sear
h e�ort isspent, further towards nodes deeper in the tree. In Sokoban, trees are highly irregularand these shifts 
an lead to large 
hanges in the number of nodes sear
hed per IDA*iteration.WIDA* in
reases h uniformly. The only knowledge impli
itly entailed in thiss
heme is that nodes deeper in the tree are preferred, be
ause they tend to be 
loserto the goal nodes. Be
ause of deadlo
ks and arbitrary penalties that might remainundete
ted in Sokoban, nodes deeper in the tree are not ne
essarily 
loser to goals.The sear
h might end up expanding more e�ort in parts of the tree that 
ontain nosolution.7.3 Pattern OverestimationThe la
k of domain knowledge used in WIDA* leads to poor performan
e whentraversing Sokoban sear
h trees. What knowledge 
ould be used to improve theoverestimation? The obvious 
hoi
e is the dynami
 pattern knowledge. How 
an thisbe used e�e
tively?Sin
e the pattern sear
hes are limited in 
ertain ways to keep them tra
table,the 
orre
t size of the penalties and shape of the patterns might not be known.Therefore, the patterns represent in
omplete knowledge. Furthermore, when patternsare mat
hed, only some of the penalties 
an be used to preserve admissibility (seeSe
tion 5.9 for details). However, ea
h of the patterns that is mat
hed in a positionsuggests that there are 
ompli
ations in the 
urrent position. Not using the penaltyof su
h a pattern is equivalent to ignoring available knowledge.7.3.1 Maximum Partial PenaltiesThe following is the best of our attempts to use the knowledge 
ontained in all thepatterns that mat
h in a position. We 
all this method maximum partial penalties.Instead of maximizing and adding the penalties of patterns, the penalties areattributed to the stones in the maze. The penalty of a pattern that is mat
hedis split equally among all the stones 
ontained in the pattern. For ea
h stone themaximum of these partial penalties is stored. The total penalty of a position is thesum of all the maximum partial penalties for ea
h stone. Thus, every stone involvedin a penalty pattern 
ontributes to the total penalty assigned to a stone 
on�guration.This total penalty is at least as large as the admissible penalty a
hieved by themethods des
ribed in Se
tion 5.9. The following explains why:� Non-overlapping patterns are 
ontributing in the same way as before.� For the admissible penalty, some patterns 
annot be used be
ause they overlapwith others. That means that some stones do not 
ontribute to the penalty,even though they are part of a penalty pattern that was mat
hed. When using122



Figure 7.1: Maximum Partial Penalty Examplepattern penalty partial penaltiesA B C Dleft 2 1.0 1.0 0 0
enter 2 1.0 0 1.0 0right 8 2.66 0 2.66 2.66maximum partial penalty 2.66 1.0 2.66 2.66sum of maximum partial penalties 9.0s
aled by 1.8 16.2rounded for parity 16Table 7.1: Cal
ulation of Maximum Partial Penaltiesmaximum partial penalties, ea
h stone of a mat
hing pattern 
ontributes to thetotal penalty.� The 
ontribution of ea
h stone to the total penalty is at least as large in themaximum partial penalty method as it is for the admissible penalty, be
ausethe maximum of the partial penalties is used.To tune the overestimation further, the penalty is s
aled by a fa
tor s. A �nalrounding step assures that the total penalty is an even number to preserve the parityproperty of the heuristi
.7.3.2 ExampleThe upper maze in Figure 7.1 shows a position with four stones A,B,C, and D. Thelower three mazes show three penalty patterns presumably found by the sear
h. Thepenalties are 2, 2 and 8 for the patterns from left to right. Table 7.1 shows themaximum partial penalty 
al
ulation. For ea
h pattern (1,2, and 3) the stones in123



that pattern share the penalty evenly. Summing the maximum partial penalties gives9.0. When s
aling it by s =1.8, a value of 16.2 results1. Rounding it to the nextfa
tor of two sets the �nal penalty to 16, twi
e the original penalty of 8.The position in Figure 7.1 is a deadlo
k { any in
rease is justi�ed. Other positions,su
h as multiple linear 
on
i
ts as seen in Se
tion 4.3.6, will be in
orre
tly overesti-mated. The s
aling fa
tor s has to be 
arefully tuned to optimize the bene�ts of themaximum partial penalties, balan
ing the advantages and dangers of overestimation.7.3.3 Pruning versus PostponingAdding a limited penalty to the heuristi
 estimation of the distan
e to the goal willonly delay the examination of a node. If no solution 
an be found, the threshold willin
rease until the position's estimated f -value does not 
ause a 
uto� anymore. Theexploration of the node is only postponed. This is in stark 
ontrast to forward pruningwith �xed rules, su
h as deterministi
 relevan
e 
uts, that will prune the same nodein every iteration.Be
ause new patterns are added and useless patterns are dropped, the de
isionsto postpone a node 
hange dynami
ally over the 
ourse of a sear
h as new knowledgeis found or other knowledge is dis
arded.7.4 Experimental Results7.4.1 WIDA*We experimented with di�erent values for w, ranging from 1.025 to 1.25, but theresults suggest an unpredi
table behavior. On the one hand, the sear
h 
an bene�tgreatly, saving orders of magnitude by extending lines that lead to solutions in earlyiterations. On the other hand, large irrelevant parts of the sear
h tree might beexplored that have no solution for the 
urrent threshold. The blind s
aling of h is note�e
tive in Sokoban.Figure 7.2 shows that 
hanging w e�e
ts the sear
h-tree sizes almost randomly.The line indi
ates the sear
h-tree size of the problems solved by a version of RollingStone that does not use overestimation (R8). The problems are ordered a

ording toin
reasing sear
h-tree size. The dots in ea
h 
olumn represent the 
orresponding treesizes for Rolling Stone using WIDA* with di�erent settings of w. Table 7.2 shows theexa
t numbers of total nodes for these versions of Rolling Stone. Even though onemore problem 
an be solved when using w = 1:15, the errati
 behavior of the sear
hmakes it diÆ
ult to justify the use of WIDA*.7.4.2 Pattern OverestimationSeveral di�erent values for the s
aling fa
tor s of the total penalty were tested. Fig-ure 7.3 shows the results for a sele
ted number of these tests. The results for this1See the results se
tion about the origin of the magi
 number 1.8 for s.124
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# w = 1:025 w = 1:050 w = 1:100 w = 1:150 w = 1:200 w = 1:250IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns1 50 1,042 2 50 1,042 2 50 1,042 2 50 1,042 2 52 1,044 2 50 1,042 22 83 7,543 1 83 7,543 1 83 7,543 1 83 7,750 1 83 7,543 1 83 7,543 13 95 14,080 1 88 12,887 1 88 12,887 1 95 14,080 1 95 15,869 1 95 15,869 14 187 50,369 1 187 50,369 1 187 50,369 1 198 60,972 1 198 60,972 1 187 50,369 15 205 43,325 2 209 43,742 2 224 45,909 2 225 45,904 2 247 49,631 2 225 45,939 26 84 5,118 1 106 5,679 1 120 5,647 1 151 6,676 1 150 8,448 2 174 8,901 17 839 25,578 2 1,297 23,527 2 325 18,962 1 134 16,203 1 140 16,263 1 352 19,323 18 268 319,432 3 282 274,534 3 223 237,563 2 236 230,065 2 216 230,593 2 158 141,539 19 1,884 435,449 5 1,897 440,025 5 1,884 435,498 5 1,897 440,025 5 1,369 368,445 4 1,834 429,997 510 1,087 987,188 1 > 18,792 > 20,000,000 1 > 21,066 > 20,000,000 1 > 17,876 > 20,000,000 1 > 21,880 > 20,000,000 1 > 21,050 > 20,000,000 111 8,704 4,436,816 11 5,848 3,104,222 11 16,448 7,271,274 12 10,754 5,406,302 12 10,057 5,315,444 12 12,435 6,463,687 1212 936 354,151 8 1,377 351,783 8 1,068 412,189 9 1,008 378,364 9 1,008 379,934 8 1,083 411,965 817 2,204 31,052 7 1,808 27,202 7 1,845 27,906 7 2,280 32,214 7 1,822 28,577 7 1,794 28,906 719 21,796 9,906,276 9 > 132,815 > 20,000,000 9 119,484 14,041,498 9 14,349 7,241,004 9 20,575 5,522,483 8 15,204 5,365,996 821 784 153,574 6 1,186 180,938 7 1,163 180,532 7 727 149,827 6 572 126,955 6 681 158,387 625 19,511 6,185,785 6 23,143 6,570,080 7 25,678 7,193,315 7 37,364 10,968,201 7 22,729 7,264,953 7 12,445 5,108,715 526 >2,182,655 > 20,000,000 8 > 2,561,324 > 20,000,000 7 3,731 248,845 6 1,260 269,558 6 905 273,594 6 1,008 264,000 633 1,156 353,432 3 1,077 350,680 3 1,360 464,887 3 739 262,206 3 1,340 321,785 3 1,168 366,238 334 10,929 1,426,154 3 891 519,188 2 2,163 313,461 1 948 302,144 2 23,822 1,410,840 1 36,484 2,077,968 138 7,449 156,259 6 3,619 72,532 5 3,296 74,171 5 3,900 75,044 6 5,132 95,851 6 6,718 119,464 640 11,133 8,046,261 6 10,045 7,503,696 5 4,565 3,442,797 4 4,302 3,121,816 4 2,460 2,387,446 3 1,066 819,836 243 1,742 422,391 7 1,742 422,391 7 1,957 452,816 7 1,848 433,746 7 1,539 354,230 7 1,031 250,927 645 380 202,542 2 349 183,349 2 362 185,029 2 381 199,133 2 395 225,558 2 384 210,170 249 51,286 318,704 9 59,827 317,331 8 413,718 2,471,208 9 369,687 2,150,887 8 148,422 1,130,394 8 351,409 2,668,480 851 230 21,400 1 452 20,966 1 146 7,947 1 98 8,119 1 98 8,119 1 98 8,119 153 157 22,308 1 283 25,206 1 > 552,138 > 20,000,000 1 6,558 34,593 1 3,900 49,145 1 8,600 55,589 154 215 40,737 2 854 52,793 2 203,348 2,155,609 1 190 48,644 1 > 1,661,855 > 20,000,000 1 > 1,809,413 > 20,000,000 155 97 2,993 1 105 3,712 1 115 4,239 1 121 4,389 1 123 4,435 1 125 4,639 156 232 56,070 1 220 55,976 1 301 76,642 1 290 64,237 1 288 70,827 1 347 80,166 157 249 120,179 2 248 117,928 2 222 137,332 1 234 126,904 1 238 152,757 1 233 148,843 158 211 130,474 2 276 190,884 2 1,268 229,296 1 213 136,742 1 218 136,761 1 214 153,687 159 1,903 1,077,731 4 425 206,863 2 399 211,000 2 399 211,000 2 1,271 602,470 2 981 435,208 260 158 27,384 1 393 84,848 1 147 19,012 1 241 60,438 1 351 88,837 1 751 172,177 161 304 107,227 5 311 112,473 5 330 115,131 5 337 120,666 5 353 132,410 5 375 135,636 562 225 105,460 3 232 106,869 3 227 106,147 2 208 178,071 2 283 256,023 2 268 248,424 163 548 313,547 1 524 238,083 1 565 306,892 1 671 372,544 1 415 178,149 1 424 193,946 164 319 358,836 4 176 168,047 1 239 200,448 1 314 270,426 1 323 278,368 1 211 231,923 165 136 19,706 1 137 19,830 1 145 21,259 1 156 22,130 1 156 23,204 1 156 23,204 167 473 129,400 5 477 134,723 5 285 99,545 1 323 139,625 1 367 196,735 1 392 209,076 168 1,471 349,388 5 1,162 268,415 5 994 286,392 4 357 247,631 1 303 207,747 1 287 181,097 170 420 149,731 3 456 179,115 3 611 285,603 4 604 288,028 3 546 229,156 3 509 193,981 372 133 45,695 1 140 46,207 1 128 54,712 1 134 51,121 1 759 259,080 1 197 112,411 173 218 106,558 1 226 116,000 1 248 118,004 1 317 128,516 1 317 128,516 1 317 128,516 175 > 36,609 > 20,000,000 8 > 32,282 > 20,000,000 8 > 272,263 > 20,000,000 8 > 69,564 > 20,000,000 7 > 614,488 > 20,000,000 9 441,895 16,042,868 776 43,071 3,660,025 4 20,666 1,600,408 3 760,595 19,264,490 3 702,830 13,111,226 3 > 505,884 > 20,000,000 3 > 343,016 > 20,000,000 177 > 801,181 > 20,000,000 1 924,824 13,368,970 1 362,265 4,141,556 1 57,384 1,021,452 1 204,884 1,835,139 1 1,238,968 8,400,844 178 64 4,916 1 64 4,913 1 64 4,916 1 64 4,916 1 64 4,916 1 64 4,916 179 123 15,518 2 123 15,518 2 105 13,331 1 105 13,331 1 105 13,331 1 107 13,623 180 315 34,638 1 280 48,605 1 288 44,568 1 193 38,801 1 193 38,801 1 193 38,801 181 36,676 409,001 1 143,579 1,166,420 1 2,177 68,565 2 337 43,753 1 192 38,448 1 207 38,460 182 91 35,536 2 94 34,979 2 92 36,825 2 92 36,825 2 115 38,890 2 115 38,178 283 80 5,631 1 108 6,856 1 131 10,387 1 137 9,210 1 127 10,408 1 127 13,598 184 108 7,818 1 110 7,901 1 115 8,018 1 115 8,018 1 115 8,018 1 115 8,018 1>3,251,464 >101,240,428 > 3,957,269 >118,866,248 > 2,781,039 >125,623,214 > 1,313,078 > 88,614,519 > 3,263,539 >110,587,542 > 4,315,823 >112,351,209

Table7.2:WIDA*,Varyingw
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# no overestimation s = 0:2 s = 0:8 s = 1:4 s = 1:8 s = 2:0 s = 2:2IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns1 50 1,042 2 50 1,067 2 50 1,042 2 50 1,042 2 55 1,267 3 55 1,267 3 55 1,267 32 80 7,530 1 82 7,532 2 80 7,530 1 80 7,530 1 80 7,530 1 80 7,530 1 80 7,530 13 87 12,902 1 92 13,168 3 87 12,902 1 94 14,095 1 94 14,095 1 95 15,929 1 95 15,929 14 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 15 202 43,298 2 215 44,715 3 202 42,224 2 153 33,755 1 153 33,755 1 151 38,041 1 211 40,344 26 84 5,118 1 91 5,659 3 84 5,118 1 84 5,503 1 84 5,503 1 84 5,503 1 84 5,503 17 1,392 28,460 2 1,351 29,306 4 967 22,624 2 748 25,931 2 338 14,832 2 132 14,194 3 111 17,040 38 291 311,609 3 300 362,122 5 279 313,066 4 285 351,139 4 315 409,714 5 321 465,538 5 249 252,727 49 1,884 435,388 5 2,032 470,297 8 1,872 429,765 5 1,472 349,224 4 1,591 385,084 4 1,626 395,046 4 1,644 402,507 410 1,810 1,713,429 1 2,685 3,110,294 3 16,970 13,999,701 2 3,919 2,702,015 2 2,920 2,539,524 3 5,535 4,324,956 3 > 37,634 > 20,000,000 411 5,679 2,994,297 11 6,464 3,453,690 19 4,483 2,438,271 12 1,919 1,272,688 10 4,058 2,527,286 12 4,744 2,872,254 13 3,071 1,766,229 1412 4,912 559,184 8 6,330 847,715 9 5,967 670,189 8 26,773 1,637,292 8 951 372,264 8 954 378,407 8 986 396,851 817 2,038 29,116 7 2,115 31,024 7 2,035 29,258 7 2,125 29,600 8 2,158 30,242 9 2,063 26,631 9 2,010 25,531 919 16,606 7,269,595 9 22,146 9,650,935 10 18,147 7,590,151 8 > 143,629 > 20,000,000 8 14,178 6,631,475 10 16,767 7,952,770 11 16,196 7,675,969 1221 1,177 179,734 7 1,254 223,583 11 1,219 191,023 7 606 116,004 5 573 113,042 3 752 132,953 3 556 120,465 323 > 59,498 > 20,000,000 7 > 52,530 > 20,000,000 9 > 65,636 > 20,000,000 8 40,379 11,282,331 11 23,337 6,555,398 12 11,944 2,550,595 11 12,122 2,771,673 1325 21,536 5,784,086 7 28,330 10,556,135 11 20,643 6,479,152 7 435 193,212 5 683 366,035 7 426 195,203 6 1,267 393,192 626 >2,125,116 > 20,000,000 9 >2,010,809 > 20,000,000 13 >2,137,211 > 20,000,000 10 >2,727,425 > 20,000,000 5 380 122,997 7 354 120,553 7 359 130,072 633 2,765 586,684 3 3,658 798,615 11 1,595 452,670 3 576 274,321 1 604 283,926 1 1,083 365,889 1 490 227,156 134 11,431 1,981,993 3 12,148 2,221,831 9 11,401 1,962,631 4 14,771 895,284 4 9,746 749,787 2 7,259 504,465 2 29,854 3,014,988 336 > 23,467 > 20,000,000 5 > 19,856 > 20,000,000 10 > 21,205 > 20,000,000 6 24,934 16,799,961 6 18,338 12,150,606 7 7,173 3,911,640 6 23,032 13,542,898 738 7,011 154,969 6 7,067 156,235 8 7,001 154,959 5 6,556 133,843 2 10,473 160,176 1 11,115 165,784 1 8,865 137,754 140 23,274 17,004,253 7 > 24,473 > 20,000,000 8 22,342 16,318,067 7 11,139 6,692,116 8 16,725 10,086,547 9 20,835 11,944,211 10 26,555 15,352,541 1143 1,729 421,483 7 1,871 474,358 8 1,939 468,265 7 2,571 564,007 7 2,225 535,148 8 2,647 592,528 8 3,252 639,213 945 339 181,566 2 884 406,750 8 830 389,749 3 719 372,366 2 602 404,217 2 450 334,328 1 278 174,861 149 53,113 327,643 9 53,575 371,122 12 53,124 328,829 10 17,267 137,288 7 441,638 3,486,905 9 865,286 6,700,434 9 1,677,679 12,600,342 951 256 21,491 1 230 21,400 1 230 21,400 1 256 21,491 1 256 21,491 1 256 21,491 1 256 21,491 153 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 154 163,757 2,031,577 2 165,732 2,065,955 5 163,886 2,033,377 2 >1,041,418 > 20,000,000 3 269 45,332 3 282 46,343 3 >1,944,336 > 20,000,000 455 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 156 377 61,189 3 709 69,328 7 445 59,326 1 534 42,300 6 911 55,865 7 4,253 136,754 8 8,093 145,689 957 234 114,416 2 1,206 129,778 5 1,067 119,393 2 223 120,485 1 209 128,282 1 211 145,836 1 226 116,911 158 211 130,474 2 443 239,008 2 443 234,188 2 211 130,474 2 231 138,838 3 231 138,838 3 231 138,838 359 1,420 775,753 4 80,206 14,628,874 6 82,403 10,340,916 5 3,638 256,708 5 602 337,905 4 36,157 1,645,577 4 1,462 386,523 460 160 27,386 1 162 24,479 3 150 24,450 1 21,087 122,505 1 18,100 114,642 1 18,100 114,642 1 18,100 114,642 161 309 105,411 5 8 84,242 4 >1,524,270 > 20,000,000 4 387 126,272 8 299 77,555 8 335 122,881 9 308 82,726 962 195 101,934 3 206 105,058 5 172 66,839 3 184 75,002 4 180 69,728 4 183 77,825 5 208 94,658 563 703 312,546 1 765 361,208 3 1,022 354,324 1 520 242,420 1 473 237,196 1 476 263,201 1 942 643,671 164 405 332,402 4 > 860,545 > 20,000,000 11 573 384,994 3 221 173,204 4 193 186,508 1 284 213,755 1 219 311,995 165 196 21,442 2 204 21,535 6 168 20,222 1 145 21,190 1 165 23,004 1 192 24,459 1 156 22,130 167 12,669 512,488 6 12,922 691,462 12 1,727 136,904 5 379 94,003 1 298 104,356 1 298 105,639 1 298 105,639 168 1,953 538,509 6 2,327 399,233 10 1,732 473,317 5 549 239,606 5 324 236,157 1 371 240,815 1 317 232,112 170 431 140,765 3 463 175,073 3 453 155,760 3 428 173,712 4 446 178,657 5 498 211,520 6 498 211,520 672 134 44,908 2 142 45,791 6 136 45,928 2 141 46,012 3 123 45,735 1 123 45,951 1 123 45,951 173 214 94,568 1 219 94,763 2 214 94,568 1 225 103,494 1 225 103,494 1 225 103,494 1 234 107,556 176 74,315 3,775,394 4 361,704 5,681,518 6 644,192 10,062,414 3 23,749 751,299 2 251 183,656 2 1,587 476,069 2 17,332 613,786 277 >1,019,702 > 20,000,000 1 > 973,871 > 20,000,000 4 >1,043,492 > 20,000,000 1 >1,055,068 > 20,000,000 1 >1,108,195 > 20,000,000 1 >1,055,933 > 20,000,000 1 257,001 4,729,912 178 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 179 122 15,527 2 132 16,868 5 125 15,530 3 127 16,086 2 127 13,114 2 124 12,869 2 124 12,869 280 165 26,943 1 173 30,199 3 167 26,945 2 176 26,309 1 176 26,309 1 516 48,571 1 104 21,495 181 2,662 42,445 1 5,020 90,840 3 1,183 113,961 1 269 109,570 1 875 111,033 1 19,152 270,782 1 4,625 140,321 182 86 33,445 2 6 33,423 3 95 35,987 3 114 52,160 3 117 45,014 3 120 45,896 3 117 44,995 383 80 5,631 1 84 5,635 3 80 5,631 1 108 6,856 1 108 6,856 1 108 6,856 1 108 6,856 184 106 7,938 1 177 7,534 3 161 6,882 1 107 6,612 1 108 7,818 1 110 7,929 1 110 7,929 1>3,646,938 >129,388,544 >4,728,569 >178,339,940 >5,864,460 >177,221,025 >5,179,478 >126,928,900 >1,686,065 > 70,566,483 >2,102,561 > 68,625,225 >4,102,768 >108,153,380

Table7.3:PatternOverestimation,Varyings
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R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8
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problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8

R8 + overestimation = R9Figure 7.5: Adding Overestimation to Rolling Stone (Linear and Log S
ale)experiment are more 
on
lusive, good values for s 
an be sele
ted. It appears thatthe value of 1.8 is a good setting for s, allowing three more problems to be solved.Even though setting s to 2.0 
an also solve 53 problems, it is inferior be
ause theaverage number of top-level nodes is almost double that for s = 1:8. See Table 7.3for the node numbers 
orresponding to Figures 7.3 and 7.4.7.4.3 SummaryFigure 7.5 shows the e�ort diagram, now in
luding the version of Rolling Stone withoverestimation using maximum partial penalties and a s
aling fa
tor of s = 1:8.The improvement appears signi�
ant with about one order of magnitude savings insear
h-tree size.There are a 
ouple of interesting points about the data in Table 7.3. With rel-evan
e 
uts, almost all problems, ex
ept #49, have smaller or insigni�
antly largernumber of nodes. Problem #26, for example, drops from over 20 million nodes to justunder 123,000. Other problems, like #23, #25, #36, #40, #54 and #76, also dropin node numbers signi�
antly. While most sear
hes with overestimation use moreiterations to �nd a goal, the sear
h for problem #26 uses less. The initial position isoverestimated enough to allow the sear
h to �nd a solution in fewer iterations. Onaverage, the top-level and total nodes are redu
ed by roughly half, from 3.6 to 1.7million and 129 to 71 million, respe
tively.7.5 Con
lusions and Open ProblemsWith respe
t to WIDA*, Sokoban is again proving to be a diÆ
ult domain. While inother domains s
aling h allows at least the opportunity to trade o� solution qualityfor sear
h e�ort, it seems to only randomly shift the sear
h e�ort in Sokoban. Thequality of the lower-bound fun
tion is not good enough to indi
ate reliably whenprogress is made. Therefore, using depth as an indi
ator for progress has its pitfalls.Parts of the sear
h tree that do not 
ontain solutions are explored with more e�ort128



without the expe
ted su

ess.Using knowledge that is readily available (the patterns mat
hing in ea
h position)to identify situations that are likely diÆ
ult was proven to be of greater value. RollingStone using this dynami
, knowledge-driven overestimation is able to solve three moreproblems.When looking through Tables 7.2 and 7.3 one 
an see that Rolling Stone has foundsolutions to a total of 54 problems. Problem #77 
an be solved when s is set to 2.2.In fa
t, Rolling Stone has solved 56 di�erent problems with di�erent 
ombinations ofs and w, but never with one version. A 
ontrol fun
tion to set s and w a

ordingto features of the maze that will have to be identi�ed 
ould be of bene�t. How toidentify su
h features is an open problem. Espe
ially in domains su
h as Sokoban,where the absen
e of a good heuristi
 fun
tion 
auses ineÆ
ient sear
hes, dis
overingreliable, predi
table features seems a daunting task.
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Chapter 8Single-Agent Sear
h Enhan
ements
8.1 Introdu
tionThe AI resear
h 
ommunity has developed an impressive suite of te
hniques forsolving state-spa
e problems. These te
hniques range from general-purpose domain-independent methods su
h as A*, to domain-spe
i�
 enhan
ements, as we have seenin this thesis. There is a strong movement towards developing domain-independentmethods to solve problems. While these approa
hes require minimal e�ort to spe
ifya problem to be solved, the performan
e of these solvers is often limited, ex
eedingavailable resour
es on even simple problem instan
es. This requires the developmentof domain-dependent methods that exploit additional knowledge about the sear
hspa
e. These methods 
an greatly improve the eÆ
ien
y of a sear
h-based program,as measured in the size of the sear
h tree needed to solve a problem instan
e.Previous 
hapters reported on our attempts to solve Sokoban problems using anarray of di�erent te
hniques and sear
h enhan
ements. This allowed 53 problems tobe solved.1 These results show the large gains a
hieved by dynami
ally dis
overingand applying knowledge in our program Rolling Stone. With ea
h enhan
ement,redu
tions of sear
h-tree sizes by several orders of magnitude are possible.Analyzing all the additions made to Rolling Stone reveals that the most valu-able sear
h enhan
ements are based on sear
h (both on-line and o�-line) to improvethe lower bound. In this 
hapter, we 
lassify the sear
h enhan
ements along severaldimensions in
luding their generality, 
omputational model, 
ompleteness and admis-sibility. Not surprisingly, the more spe
i�
 an enhan
ement is, the greater its impa
ton sear
h performan
e.When presented in the literature, single-agent sear
h (usually IDA*) 
onsists of afew lines of 
ode. Most textbooks do not dis
uss sear
h enhan
ements other than 
y
ledete
tion. In reality, non-trivial single-agent sear
h problems require more extensiveprogramming (and possibly resear
h) e�ort. For example, a
hieving high perfor-man
e at solving sliding-tile puzzles requires enhan
ements su
h as 
y
le dete
tion,1Due to an oversight, we failed to dete
t problem # 30 as being solved until it was too lateto in
lude the numbers in this thesis. Re
ent experiments using Rapid Random Restart [GSK98℄in
reased this number even further to 57. 130



Figure 8.1: Two Simple Sokoban Problemspattern databases, move ordering and enhan
ed lower-bound 
al
ulations [CS96℄. Inthis 
hapter, we outline a new framework for high-performan
e single-agent sear
hprograms and propose a taxonomy of single-agent sear
h enhan
ements.8.2 Appli
ation-Independent Te
hniquesIdeally, appli
ations should be spe
i�ed with minimal e�ort and a \generi
" solverwould be used to 
ompute the solutions. In small domains this is attainable (e.g., ifit is easily enumerable). For more 
hallenging domains, there have re
ently been anumber of interesting attempts at domain-independent solvers (e.g., bla
kbox [KS96℄).Before investing a lot of e�ort in developing a Sokoban-spe
i�
 program, it is impor-tant to understand the 
apabilities of 
urrent AI tools. Hen
e, we in
lude this in-formation to illustrate the disparity between what appli
ation-independent problemsolvers 
an a
hieve, 
ompared to appli
ation-dependent te
hniques.The Sokoban problems in Figure 8.1 [M
D98℄ were given to the program bla
kboxto solve. Bla
kbox was one of the best programs at the AIPS'98 fastest planner
ompetition. The �rst problem was solved within a few se
onds and the se
ondproblem was solved in over an hour.Clearly, domain-independent planners, like bla
kbox, have a long way to go if theyare to solve the even simplest problem in the test suite. Hen
e, for this appli
ationdomain, we have no 
hoi
e but to pursue an appli
ation-dependent implementation.Note also, that many of the domain-des
ription languages used, su
h as STRIPS,often do not allow for eÆ
ient domain des
riptions. While Rolling Stone 
an usesimpli�
ations, su
h as ignoring the exa
t position of the man, planners reading aSTRIPS-like problem des
ription have to deal with a mu
h larger sear
h spa
e, be-
ause the man's position is en
oded expli
itly and 
annot be handled eÆ
iently.8.3 Appli
ation-Dependent Te
hniquesAppli
ation-dependent te
hniques are not per se appli
ation dependent, in fa
t they
an be applied to a variety of domains. We 
all them appli
ation (or domain) depen-dent be
ause the knowledge they use applies to a parti
ular domain.131
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problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8

R8 + overestimation = R9Figure 8.3: E�ort Graph, Repeated (Linear and Log S
ale)The pre
eding 
hapters of this thesis show the power and limitations of appli
ation-dependent sear
h enhan
ements. Their performan
e 
omes at a pri
e: programmingand resear
h e�ort. Figure 8.2 shows how these results were a
hieved during 2.5 yearsof development time. The development e�ort equates to a full-time PhD student, apart-time professor, a full-time summer student (4 months), and feedba
k from manypeople. Additionally, a large number of ma
hine 
y
les were used for tuning anddebugging. It is interesting to note the o

asional de
rease in the number of problemssolved, the result of (favorable) bugs being �xed. The long, slow, steady in
rease isindi
ative of the reality of building a large system. Progress is in
remental and oftenpainfully slow.The large redu
tions in sear
h-tree sizes that we have seen previously are nota
hievable with the 
urrent state-of-the-art domain-independent te
hniques. Unfor-tunately, if solutions to 
omplex problems are required, appli
ation-dependent te
h-niques are ne
essary.The performan
e gap between the �rst and last versions of Rolling Stone in Fig-132



0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R9, goal macros (cuts) disabled
R9, pattern searches (overestimation) disabled

R9, transposition tables disabled
R9, relevance cuts disabled

R9, overestimation disabled
R9, move ordering disabled

R9, deadlock tables disabled
R9, tunnel macros disabled

R9, goal cuts disabled
R9, all enhancements enabled

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R9, goal macros (cuts) disabled
R9, pattern searches (overestimation) disabled
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R9, all enhancements enabled

Figure 8.4: Turning One Enhan
ement O� (Linear and Log S
ale)ure 8.3 is astounding. For example, 
onsider extrapolating the performan
e of RollingStone only with transposition tables (R1) so that it 
an solve the same number ofproblems (53) as the 
omplete program (R9). 1050 (not a typo!) seems to be areasonable lower bound on the di�eren
e in sear
h-tree sizes.As already dis
ussed in Chapter 4, the results in Figure 8.3 may misrepresent theimportan
e of ea
h feature. Figure 8.4 shows the results of taking the full versionof Rolling Stone (R9) and disabling one sear
h enhan
ement at a time. The exa
tnumbers 
an be found split over Tables 8.1 and 8.2. In the absen
e of a parti
ularmethod, other sear
h enhan
ements might 
ompensate su
h that most of the solutions
an still be found. But if the sear
h-tree redu
tions of an enhan
ement are mostlyunique, turning it o� will redu
e the total number of problems solved signi�
antly.While the lower-bound fun
tion alone 
annot solve a single problem, neither 
anthe 
omplete system solve a single problem without the lower-bound fun
tion. Thisexplains why the lower bound is never disabled in our tests. It is of paramountimportan
e, without it no problem 
an be solved.Figure 8.4 shows that turning o� goal ma
ros redu
es the number of problemssolved by 32, more than 50%! When turning o� pattern sear
hes, the number ofsolved problems drops by 21. Turning o� transposition tables loses 18 problems.Besides the lower-bound fun
tion, these three enhan
ements are the most importantones for Rolling Stone; losing any one of them dramati
ally redu
es the performan
e.Relevan
e 
uts are responsible for 4 solutions and tunnel ma
ros for 2. Turning o�either move ordering or deadlo
k tables results in the loss of only one problem. Notethat even though in Se
tion 4.8 disabling goal 
uts lost 7 problems, the full version(R9) still solves all problems, only with slightly larger node 
ounts. Pattern sear
hes,relevan
e 
uts and/or overestimation are able to 
ompensate for the loss of the goal
uts.
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# goal ma
ros (
uts) disabled pattern sear
hes (overestimation) disabled transposition tables disabled relevan
e 
uts disabled all enabledIDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns1 111 1,798 3 52 52 2 55 1,752 3 55 1,267 3 55 1,267 32 129 7,775 1 194 194 2 80 9,729 1 82 7,532 1 80 7,530 13 9,975 45,553 1 305 305 2 101 23,614 1 106 15,188 1 94 14,095 14 21,469 665,602 3 392 392 1 187 63,527 1 187 50,369 1 187 50,369 15 811,912 4,145,913 8 20,213 20,213 3 287 121,360 2 218 36,778 1 153 33,755 16 9,163 115,558 1 174 174 3 111 9,922 1 85 5,504 1 84 5,503 17 207 12,177 1 8,295 8,295 5 336 28,439 1 391 13,984 2 338 14,832 28 738,055 2,921,408 4 450,161 450,161 6 540 867,357 5 371 465,263 5 315 409,714 59 2,859 390,770 4 34,514 34,514 8 824 327,033 1 172 80,434 1 1,591 385,084 410 > 99,661 > 20,000,000 3 > 20,000,000 > 20,000,000 2 > 25,983 > 20,000,000 1 19,119 12,029,738 5 2,920 2,539,524 311 > 734,353 > 20,000,000 12 > 20,000,000 > 20,000,000 16 > 32,628 > 20,000,000 8 6,553 2,076,276 12 4,058 2,527,286 1212 > 307,056 > 20,000,000 8 > 20,000,000 > 20,000,000 10 > 252,493 > 20,000,000 1 > 1,674,420 > 20,000,000 1 951 372,264 817 > 2,515,393 > 20,000,000 12 9,182 9,182 7 > 919,122 > 20,000,000 9 2,698 30,287 9 2,158 30,242 919 > 910,691 > 20,000,000 10 > 20,000,000 > 20,000,000 8 > 31,982 > 20,000,000 6 > 59,322 > 20,000,000 8 14,178 6,631,475 1021 > 7,398,297 > 20,000,000 3 286,982 286,982 10 2,762 577,354 10 17,221 884,501 3 573 113,042 323 > 584,364 > 20,000,000 12 > 20,000,000 > 20,000,000 3 > 169,507 > 20,000,000 7 31,868 5,264,113 12 23,337 6,555,398 1225 > 2,440,537 > 20,000,000 7 > 20,000,000 > 20,000,000 5 619 399,815 6 901 409,941 7 683 366,035 726 > 2,240,971 > 20,000,000 7 > 20,000,000 > 20,000,000 15 > 3,219,787 > 20,000,000 13 > 4,285,048 > 20,000,000 7 380 122,997 733 > 863,437 > 20,000,000 2 > 20,000,000 > 20,000,000 7 > 65,650 > 20,000,000 1 2,155 378,220 1 604 283,926 134 32,227 2,500,435 2 2,234,289 2,234,289 9 17,069 6,376,898 3 513 358,480 3 9,746 749,787 236 > 194,690 > 20,000,000 6 > 20,000,000 > 20,000,000 6 2,167 1,461,524 6 259,772 9,570,145 6 18,338 12,150,606 738 22,278 93,959 1 27,259 27,259 9 9,348 174,488 1 2,012 38,114 1 10,473 160,176 140 > 86,192 > 20,000,000 8 > 20,000,000 > 20,000,000 7 > 27,370 > 20,000,000 6 43,639 17,686,156 8 16,725 10,086,547 943 341,553 2,681,897 8 385,869 385,869 8 > 39,775 > 20,000,000 8 10,477 1,025,451 8 2,225 535,148 845 > 462,451 > 20,000,000 2 > 20,000,000 > 20,000,000 7 5,898 3,479,354 5 398 216,082 1 602 404,217 249 > 3,421,140 > 20,000,000 6 320,669 320,669 13 > 2,128,496 > 20,000,000 9 > 4,294,023 > 20,000,000 9 441,638 3,486,905 951 99,047 1,388,288 2 2,819 2,819 1 277 34,152 1 137 8,825 1 256 21,491 153 > 2,164,029 > 20,000,000 1 > 20,000,000 > 20,000,000 1 157 23,416 1 159 22,310 1 157 22,308 154 > 1,382,259 > 20,000,000 4 > 20,000,000 > 20,000,000 3 344 46,619 4 224 40,708 3 269 45,332 355 > 3,408,250 > 20,000,000 1 136 136 1 97 3,490 1 97 2,993 1 97 2,993 156 65,549 156,228 7 > 20,000,000 > 20,000,000 5 2,893 75,141 5 2,415 87,905 7 911 55,865 757 > 3,485,817 > 20,000,000 1 5,070,525 5,070,525 5 252 127,478 2 239 122,033 1 209 128,282 158 > 6,848,326 > 20,000,000 3 > 20,000,000 > 20,000,000 1 > 26,375 > 20,000,000 2 783 439,792 3 231 138,838 359 > 2,468,760 > 20,000,000 7 > 20,000,000 > 20,000,000 6 > 855,045 > 20,000,000 8 1,105 590,482 4 602 337,905 460 259,279 1,138,911 1 12,683 12,683 3 > 3,148,019 > 20,000,000 1 1,375 55,725 1 18,100 114,642 161 > 1,377,709 > 20,000,000 8 > 20,000,000 > 20,000,000 6 > 132,563 > 20,000,000 2 302 76,588 8 299 77,555 862 > 1,549,298 > 20,000,000 5 3,812 3,812 5 184 95,696 5 195 82,351 4 180 69,728 463 > 989,550 > 20,000,000 1 715,579 715,579 3 584 322,947 3 483 217,033 1 473 237,196 164 > 158,253 > 20,000,000 1 369,870 369,870 10 348 406,986 1 191 178,401 1 193 186,508 165 > 387,680 > 20,000,000 1 293 293 5 144 29,983 1 156 21,739 1 165 23,004 167 > 2,539,252 > 20,000,000 1 > 20,000,000 > 20,000,000 10 524 152,897 5 302 115,122 1 298 104,356 168 > 6,935,468 > 20,000,000 9 > 20,000,000 > 20,000,000 6 > 1,467,936 > 20,000,000 10 334 235,911 1 324 236,157 170 > 476,971 > 20,000,000 5 > 20,000,000 > 20,000,000 1 430 252,302 5 480 118,716 4 446 178,657 572 > 785,374 > 20,000,000 1 727,780 727,780 5 148 69,042 5 123 45,735 1 123 45,735 173 > 1,524,435 > 20,000,000 1 408,462 408,462 3 232 151,776 1 212 90,906 1 225 103,494 176 2,208,039 17,583,377 2 > 20,000,000 > 20,000,000 5 > 36,784 > 20,000,000 4 1,044 409,335 3 251 183,656 278 139 5,058 1 75 75 1 64 6,017 1 64 4,451 1 64 4,913 179 591,019 1,612,679 2 723 723 5 155 24,317 5 133 12,788 2 127 13,114 280 > 3,395,043 > 20,000,000 1 842 842 1 205 55,016 1 118 18,004 1 176 26,309 181 > 5,572,202 > 20,000,000 1 48,302 48,302 4 > 2,215,418 > 20,000,000 2 31,962 360,177 1 875 111,033 182 287 46,526 3 39,043 39,043 5 140 121,397 5 104 48,197 3 117 45,014 383 174 6,694 1 297 297 1 138 21,032 1 96 7,440 1 108 6,856 184 2,127,005 10,109,624 1 199,985 199,985 4 106 8,260 1 97 6,127 1 108 7,818 1>75,048,385 >685,630,230 >431,379,776 >431,379,776 >14,842,739 >375,950,130 >10,754,736 >134,063,617 577,870 50,566,483

Table8.1:TurningOneEnhan
ementO�(I)
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# overestimation disabled tunnel ma
ros disabled move ordering disabled deadlo
k tables disabled goal 
uts disabled all enabledIDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns1 50 1,042 2 65 1,598 3 114 2,731 3 56 1,272 3 55 1,267 3 55 1,267 32 80 7,530 1 86 8,831 1 124 5,352 1 80 7,598 1 80 7,530 1 80 7,530 13 87 12,902 1 94 14,095 1 149 25,029 1 105 16,153 1 94 14,095 1 94 14,095 14 187 50,369 1 243 67,490 1 406 83,627 1 193 46,980 1 187 50,369 1 187 50,369 15 202 43,298 2 153 33,755 1 131 21,709 1 165 34,731 1 153 33,755 1 153 33,755 16 84 5,118 1 87 5,723 1 128 6,019 1 86 7,746 1 181 7,232 1 84 5,503 17 1,392 28,460 2 118 15,996 3 174 9,785 2 109 15,962 3 1,133 20,776 2 338 14,832 28 291 311,609 3 315 409,714 5 491 389,334 5 238 201,910 2 325 427,271 5 315 409,714 59 1,884 435,388 5 348 146,380 1 4,728 1,070,275 6 2,286 441,909 5 1,591 385,084 4 1,591 385,084 410 1,810 1,713,429 1 2,920 2,539,524 3 > 27,300 > 20,000,000 3 1,782 1,815,042 3 2,920 2,539,524 3 2,920 2,539,524 311 5,679 2,994,297 11 5,161 2,764,259 16 3,813 1,840,154 12 3,584 2,203,618 13 4,071 2,527,299 12 4,058 2,527,286 1212 4,912 559,184 8 951 372,264 8 2,646 603,990 1 1,066 369,286 8 951 372,264 8 951 372,264 817 2,038 29,116 7 2,368 65,480 9 2,946 32,065 9 2,264 30,524 9 2,158 30,242 9 2,158 30,242 919 16,606 7,269,595 9 16,869 8,300,723 9 21,411 9,304,716 11 12,033 5,452,990 10 6,710 3,514,503 10 14,178 6,631,475 1021 1,177 179,734 7 1,843 313,507 4 599 138,481 4 634 122,882 7 576 115,755 3 573 113,042 323 > 59,498 > 20,000,000 7 > 63,547 >20,000,000 12 21,295 5,202,990 11 35,594 8,603,866 9 23,337 6,555,398 12 23,337 6,555,398 1225 21,536 5,784,086 7 723 385,622 7 965 424,750 5 1,977 1,006,404 11 709 366,069 7 683 366,035 726 >2,125,116 > 20,000,000 9 503 119,343 7 126,026 1,787,791 5 657 130,246 7 752 128,806 7 380 122,997 733 2,765 586,684 3 604 283,926 1 3,257 227,672 1 603 291,506 1 604 283,926 1 604 283,926 134 11,431 1,981,993 3 9,746 749,787 2 351,818 9,615,236 2 11,390 780,578 2 93,838 3,978,637 2 9,746 749,787 236 > 23,467 > 20,000,000 5 > 41,993 >20,000,000 8 278,538 17,666,104 6 5,527 2,465,788 6 18,338 12,150,606 7 18,338 12,150,606 738 7,011 154,969 6 11,228 186,979 1 2,789 28,559 1 11,678 166,511 1 14,021 165,930 1 10,473 160,176 140 23,274 17,004,253 7 17,772 10,048,532 9 20,683 11,135,404 9 20,623 10,220,101 9 19,029 11,508,074 9 16,725 10,086,547 943 1,729 421,483 7 2,225 535,148 8 2,357 549,141 8 2,604 612,082 8 2,225 535,148 8 2,225 535,148 845 339 181,566 2 697 434,293 2 986 637,176 2 703 426,790 1 602 404,217 2 602 404,217 249 53,113 327,643 9 774,682 5,413,505 9 72,419 369,491 9 452,534 3,524,020 9 510,730 3,989,973 9 441,638 3,486,905 951 256 21,491 1 264 23,774 1 1,207 51,895 1 260 23,377 1 406 22,269 1 256 21,491 153 157 22,308 1 171 22,345 1 309 45,633 1 157 21,993 1 157 22,308 1 157 22,308 154 163,757 2,031,577 2 >1,503,864 >20,000,000 1 36,390 901,024 2 >1,655,503 >20,000,000 1 269 45,332 3 269 45,332 355 97 2,993 1 97 2,993 1 322 4,084 1 96 2,927 1 97 2,993 1 97 2,993 156 377 61,189 3 911 55,865 7 36,677 252,888 8 961 54,227 7 627 84,730 11 911 55,865 757 234 114,416 2 217 108,909 1 887 222,032 2 235 111,068 1 209 128,282 1 209 128,282 158 211 130,474 2 275 180,500 3 1,584 259,662 3 240 138,725 3 231 138,838 3 231 138,838 359 1,420 775,753 4 778 214,008 7 1,465 292,744 7 7,535 416,503 7 602 337,905 4 602 337,905 460 160 27,386 1 34,700 287,151 1 280 25,623 1 18,320 119,642 1 32,916 126,160 1 18,100 114,642 161 309 105,411 5 493 164,727 7 1,337 179,764 8 334 77,926 8 299 77,555 8 299 77,555 862 195 101,934 3 216 78,095 4 253 116,583 5 190 93,424 5 180 69,728 4 180 69,728 463 703 312,546 1 473 237,196 1 >1,892,813 > 20,000,000 1 698 349,299 3 473 237,196 1 473 237,196 164 405 332,402 4 209 190,724 1 1,859 1,425,833 1 230 193,795 1 193 186,508 1 193 186,508 165 196 21,442 2 181 24,500 1 > 687,199 > 20,000,000 1 167 22,363 1 165 23,004 1 165 23,004 167 12,669 512,488 6 322 108,248 1 17,495 311,723 1 300 101,536 1 298 104,356 1 298 104,356 168 1,953 538,509 6 324 236,157 1 1,140 228,388 4 556 228,978 6 324 236,157 1 324 236,157 170 431 140,765 3 474 188,237 5 1,421 164,454 4 437 160,238 5 446 178,657 5 446 178,657 572 134 44,908 2 123 45,735 1 243 58,255 1 150 39,160 5 123 45,735 1 123 45,735 173 214 94,568 1 225 103,494 1 408 119,498 1 229 105,679 1 225 103,494 1 225 103,494 176 74,315 3,775,394 4 257 193,943 2 2,854 369,255 2 255 185,001 2 251 183,656 2 251 183,656 278 64 4,913 1 70 4,934 1 90 5,017 1 65 6,341 1 64 4,913 1 64 4,913 179 122 15,527 2 132 13,748 2 403 38,396 2 130 13,296 2 219 13,286 2 127 13,114 280 165 26,943 1 285 42,338 1 302 32,638 1 176 28,967 1 176 26,309 1 176 26,309 181 2,662 42,445 1 333 109,338 1 360 101,241 1 925 114,593 1 2,427 113,291 1 875 111,033 182 86 33,445 2 118 45,197 3 184 48,111 3 133 46,823 2 117 45,014 3 117 45,014 383 80 5,631 1 159 12,350 1 303 12,381 1 108 7,472 1 108 6,856 1 108 6,856 184 106 7,938 1 121 8,816 1 219 16,615 1 109 8,004 1 108 7,818 1 108 7,818 1>2,627,236 >109,388,544 >2,501,133 >95,919,796 >3,634,297 >126,461,318 >2,257,070 >61,667,852 747,080 52,686,100 577,870 50,566,483

Table8.2:TurningOneEnhan
ementO�(II)
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# IDA* IDA* + PIDA* # IDA* IDA* + PIDA*1 14 53 32 4 92 786 830 33 12 913 9 22 34 37 1294 14 38 35 25 1075 23 58 36 15 716 10 30 37 82 1557 6 30 38 43 1838 19 50 39 28 659 6 13 40 20 11910 7 14 41 39 13911 15 26 42 13 6712 10 20 43 34 9513 5 20 44 15 4514 7 16 45 33 10815 16 27 46 49 15716 55 125 47 22 4517 16 26 48 76 13118 15 57 49 18 3619 22 125 50 68 22020 20 40 51 256 84821 22 72 52 79 23222 30 52 53 11 3223 11 54 54 771 1,93824 14 57 55 318 53125 5 22 56 170 29026 63 148 57 135,255 342,78527 4 9 58 > 9,486,886 > 20,000,00028 16 48 59 27 7629 41 112 60 2,866 4,46030 23 49 61 > 11,044,404 > 20,000,00031 19 41 > 20,672,999 > 40,355,448Table 8.3: The Kids Problems
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8.4 Test Sets and Sear
h E�ortUsing one test set to tune andmeasure progress with will ne
essarily lead to over�ttingof the program to the test set. We have tested our program Rolling Stone on a setof 61 simple problems to verify that it is at least not geared towards large problems.Rolling Stone solves 59 of the 61 problems. The two it 
annot solve with 20 millionnodes of sear
h e�ort require parking in the goal area, a 
on
ept the program doesnot know about. Appendix B shows the 
omplete test set.The limit of 20 million nodes in our experiments is arbitrarily 
hosen. However,Figures 8.3 and 8.4 show that de
reasing the sear
h e�ort even by 2 orders of mag-nitude would lead to almost the same qualitative results. To see how 
lose we are tosolving more problems with our 20 million node e�ort limit, we 
ondu
ted an exper-iment with the best version of Rolling Stone, allowing for 1 billion nodes of sear
he�ort. One more problem 
ould be solved: #24 uses 591,287,416 nodes. This 
on�rmsthe exponential nature of the domain.8.5 Knowledge TaxonomySeveral di�erent ways of 
lassifying the domain-spe
i�
 knowledge used to solveSokoban problems 
an be identi�ed:Generality: Classify based on how general the knowledge is: domain (e.g., Sokoban),instan
e (a parti
ular Sokoban problem), and subtree (within a Sokoban sear
h).Computation: Di�erentiate how the knowledge was obtained: stati
 (su
h as advi
efrom a human expert) and dynami
 (gleaned from a sear
h).Admissibility/Completeness: Knowledge 
an be: admissible (preserve optimalityin a solution) or non-admissible. Non-admissible knowledge 
an either preserve
ompleteness of the algorithm or render it in
omplete. Admissible knowledge isne
essarily 
omplete.Figure 8.5 summarizes the sear
h enhan
ements used in Rolling Stone. Other en-han
ements from the literature 
ould easily be added into spa
es that are still blank,e.g. perimeter databases [Man95℄ (dynami
, admissible, instan
e). Note that some ofthe enhan
ement 
lassi�
ations are �xed by the type of the enhan
ement. For exam-ple, any type of heuristi
 (unsafe) forward pruning is in
omplete by de�nition, andmove ordering always preserves admissibility. For some enhan
ements, the propertiesdepend on the implementation. For example, overestimation te
hniques 
an be stati
or dynami
; goal ma
ros 
an be admissible or non-admissible; pattern databases 
anbe domain-based or instan
e-based.It is interesting to note that, apart from the lower-bound fun
tion itself, thethree most important program enhan
ements in terms of program performan
e areall dynami
 (sear
h-based) and instan
e/subtree spe
i�
. The stati
 enhan
ements,while of value, turn out to be of less importan
e. Stati
 knowledge is usually rigid137



Classi�
ation Domain Instan
e SubtreeStati
 admissible lower tunnel movebound ma
ros ordering
ompletein
omplete relevan
e goal
uts 
utsDynami
 admissible deadlo
k patterntables sear
hestransposi-tion table
omplete overesti-mationin
omplete goalma
rosFigure 8.5: Taxonomy of Sear
h Enhan
ements in Sokobanand does not in
lude the myriad of ex
eptions that sear
h-based methods 
an un
overand rea
t to.8.6 Control Fun
tionsThere is another type of appli
ation-dependent knowledge that is 
riti
al to perfor-man
e, but re
eives s
ant attention in the literature. Control fun
tions are intrinsi
parts of eÆ
ient sear
h programs, 
ontrolling when to use or not use a sear
h en-han
ement. In Rolling Stone numerous 
ontrol fun
tions are used to improve thesear
h eÆ
ien
y. Some examples in
lude:Transposition Table: A �xed-size transposition table 
an only hold so mu
h infor-mation. Control knowledge is needed to de
ide when new information shouldrepla
e older information in the table. Also, when reading from the table, 
on-trol information 
an de
ide whether or not the bene�ts of the lookup justify the
ost. For example, sear
h appli
ations may not look up table entries 
lose tothe leaf nodes.Goal Ma
ros: If a goal area has too few goal squares, then goal ma
ros are disabled.With a small number of goals or too many entran
es, the sear
h will likelynot need ma
ro moves, and the potential savings are not worth the risk ofeliminating possible solutions.Pattern Sear
hes: Pattern sear
hes are exe
uted only when a non-trivial heuristi
fun
tion indi
ates the likelihood of a penalty being present. Exe
uting a patternsear
h is expensive, so this overhead should be introdu
ed only when it is likely138



to be 
ost e�e
tive. Control fun
tions are also used to stop a pattern sear
hwhen su

ess appears unlikely.Implementing a sear
h enhan
ement is often only one part of the programminge�ort. Implementing and tuning its 
ontrol fun
tion(s) 
an be signi�
antly more time
onsuming and more 
riti
al to performan
e. We estimate that whereas the sear
henhan
ements take about 90% of the 
oding e�ort and the 
ontrol fun
tions only 10%,the reverse distribution applies to the amount of tuning e�ort needed and ma
hine
y
les 
onsumed.A 
lear separation between the sear
h enhan
ements and their respe
tive 
ontrolfun
tions (task and 
ontrol knowledge) 
an help the tuning e�ort. For example, whilethe goal ma
ro 
reation only 
onsiders whi
h order the stones should be pla
ed intothe goal area, the 
ontrol fun
tion 
an determine if goal ma
ros should be 
reatedat all. Both tuning e�orts have very di�erent obje
tives: one is sear
h eÆ
ien
y, theother risk minimization. Separating the two seems natural and 
onvenient.However, this split is not solving the general problem we are fa
ing when tuning.As shown in the NFL dis
ussion, when spe
ializing an algorithm (by tuning or anyother measure, su
h as sear
h enhan
ements in general) we are trading o� performan
eof the algorithm for one kind of problem against the performan
e for other kinds ofproblems. When tuning parameters using performan
e on a test suite as a measure ofimprovement, we are impli
itly adapting the algorithm to the properties exempli�edin the test suite. For our 90 problems, this is most 
ertainly true. Humans 
omposedthe problems, using 
on
epts su
h as rooms and hallways, stru
turing the problemsin a very spe
i�
 way. Goal ma
ros are a good example how we exploited one ofthese properties: goals are often together in lumps in a designated area. Randominstan
es would defy goal ma
ros. Control fun
tions are an attempt to re
ognizethese situations and turn goal ma
ros o�.8.7 Single-Agent Sear
h FrameworkFigure 8.6 illustrates the basi
 IDA* routine, with our enhan
ements in
luded (initali
s). This routine is spe
i�
 to Rolling Stone, but 
ould be written in more generalterms. It does not in
lude a number of well-known single-agent sear
h enhan
ementsavailable in the literature. Control fun
tions are indi
ated by parameters to sear
henhan
ement routines. In pra
ti
e, some of these fun
tions are implemented as simpleif statements 
ontrolling a

ess to the enhan
ement 
ode.Examining the 
ode in Figure 8.6, one realizes that there are really only four typesof sear
h enhan
ements:1. Modifying the lower bound (as indi
ated by the updates to lb). This 
an taketwo forms: optimally in
reasing the bound (e.g. using patterns) whi
h redu
esthe distan
e to sear
h, or non-optimally (using overestimation) whi
h redis-tributes where the sear
h e�ort is 
on
entrated.139



IDA*() f/** Compute the best possible lower bound **/lb = ComputeLowerBound();lb += UsePatterns(); /** Mat
h Patterns **/lb += UseDeadlo
kTable();lb += UseOverestimate( CntrlOverestimate() );IF( 
utoff ) RETURN;/** Prepro
ess **/lb += ReadTransTable();IF( 
uto� ) RETURN;PatternSear
h( CntrlPatternSear
h() );lb += UsePatterns();IF( 
uto� ) RETURN;/** Generate sear
hable moves **/movelist = GenerateMoves();RemoveDeadMoves( movelist );IdentifyMa
ros( movelist );OrderMoves( movelist );FOREACH( move ) fIF( Irrelevant( move, CntrlIrrelevant() )) NEXT;solution = IDA*();IF( solution ) RETURN;IF( GoalCut() ) BREAK;UpdateLowerBound(); /** Use New Patterns **/IF( 
uto� ) RETURN;g/** Post-pro
ess **/SaveTransTable( CntrlTransTable() );RETURN;g Figure 8.6: Enhan
ed IDA*
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FOREACH( domain ) f/** Prepro
ess **/BuildDeadlo
kTable( CntrlDeadlo
kTable() );FOREACH( instan
e ) f/** Prepro
ess **/FindTunnelMa
ros();FindGoalMa
ros( CntrlGoalMa
ros() );WHILE( NOT solved ) fSetSear
hParamaters();IDA*();g/** Postpro
ess **/SavePatterns( CntrlSavingPatterns() );gg Figure 8.7: Prepro
essing Hierar
hy2. Removing bran
hes unlikely to add additional information to the sear
h (thenext and break statements in the for loop). This forward pruning 
an result inlarge redu
tions in the sear
h tree, at the expense of possibly removing solutions.3. Collapsing the tree height by repla
ing a sequen
e of moves with one move (forexample, ma
ros).4. Move ordering allows for savings in the last iteration by exploring promisinglines �rst.Some of the sear
h enhan
ements involve 
omputations outside of the sear
h. Fig-ure 8.7 shows where the pre-sear
h pro
essing o

urs at the domain and instan
e lev-els. O�-line 
omputation of pattern databases or prepro
essing of problem instan
esare powerful te
hniques that re
eive s
ant attention in the literature (
hess endgamedatabases are a notable ex
eption). Yet these te
hniques are an important step to-wards the automation of knowledge dis
overy and ma
hine learning. Prepro
essing isinvolved in many of the most valuable enhan
ements that are used in Rolling Stone.Similar issues o

ur with other sear
h algorithms. For example, although it takesonly a few lines to spe
ify the alpha-beta algorithm, the Deep Blue 
hess program'ssear
h pro
edure in
ludes numerous enhan
ements (many similar in spirit to thoseused in Rolling Stone) that 
umulatively redu
e the sear
h-tree size by several or-141



ders of magnitude. If nothing else, the Deep Blue result demonstrated the degree ofengineering required to build high-performan
e sear
h-based systems.8.8 Con
lusionsThis 
hapter summarizes our experien
es working with Sokoban. In 
ontrast tothe simpli
ity of the basi
 IDA* formulation, building a high-performan
e single-agent sear
her 
an be a 
omplex task that 
ombines both resear
h and engineering.Appli
ation-dependent knowledge, spe
i�
ally that obtained using sear
h, 
an resultin an orders-of-magnitude improvement in sear
h eÆ
ien
y. This 
an be a
hievedthrough a judi
ious 
ombination of several sear
h enhan
ements. Control fun
tionsare overlooked in the literature, yet are 
riti
al to performan
e. They represent asigni�
ant portion of the program development time and most of the program exper-imentation resour
es.Domain-independent tools o�er a qui
k programming solution when 
ompared tothe e�ort required to develop domain-dependent appli
ations. However, with 
urrentAI tools, performan
e is 
ommensurate with e�ort. Domain-dependent solutions 
anbe vastly superior in performan
e. The trade-o� between programming e�ort andperforman
e is the 
riti
al design de
ision that needs to be made.

142



Chapter 9Con
lusions and Future WorkResear
h into single-agent sear
h methods has been dominated by relatively simpledomains. Domains, su
h as the 15-puzzle or Rubik's Cube, have relatively smallsear
h-spa
e 
omplexities and/or de
ision 
omplexities. The 
on
lusions from theresear
h in these domains have simpli�ed our view of single-agent sear
h. Often,impli
it assumptions are made for 
ertain methods to work. Well-behaved sear
hspa
es with reversible moves and relatively small bran
hing fa
tors and sear
h depthsare usually assumed. The availability of high-quality, low-
ost lower-bound estimatorsis another one of these assumptions. Naturally, one has to be 
areful about 
on
lusionsdrawn from domains having su
h ni
e properties.In this thesis, we have seen an instan
e of a problem domain that de�es thetraditional approa
hes and requires more sophisti
ated methods. Sokoban has notjust a large sear
h spa
e, but also exhibits the 
hallenging sear
h-spa
e property ofnon-reversible moves whi
h lead to deadlo
k 
on�gurations. Furthermore, an eÆ
ientand e�e
tive lower-bound fun
tion remains elusive. Many or even all the impli
itlyassumed pre
onditions of the text-book approa
hes are violated and the state-of-the-art methods fail.This thesis shows how to ta
kle this 
hallenge and makes signi�
ant progress insolving non-trivial problem 
on�gurations for Sokoban. New sear
h enhan
ements areintrodu
ed. The most su

essful of them use small spe
ialized sear
hes to dis
overknowledge that 
an be used to improve the eÆ
ien
y of the main sear
h. Stati
,o�-line sear
hes produ
ing goal ma
ros show 
onsiderable improvements in sear
heÆ
ien
y. However, dynami
, on-line pattern sear
hes gather knowledge that leadsto more signi�
ant redu
tions in sear
h-tree sizes. It appears that sear
hes, anddynami
 sear
hes in parti
ular, 
an glean the information that is needed to breakthe 
omplexity barrier build up by the 
ombinatorial explosion 
hara
terizing these
hallenging domains. Other enhan
ements suggested here, su
h as relevan
e 
utsand the pattern-driven overestimation, indi
ate that further 
onsiderable progress ispossible.An interesting observation made in this thesis is that the most powerful of sear
henhan
ements are 
losely linked to spe
i�
 knowledge about the problem instan
es,or even spe
i�
 problem 
on�gurations. Examples are:� Transposition table entries store sear
h results about spe
i�
 states.143



� Penalty patterns 
ontaining information about sets of states of one probleminstan
e (with these patterns present) are results of sear
hes.� Goal ma
ros are found by o�-line sear
hes and represent the knowledge of howto solve the subproblem of goal-pa
king in one instan
e.We believe that this is no 
oin
iden
e. While generalized and broadly appli
ableheuristi
s 
an help to give the sear
h a general dire
tion, it 
annot possibly 
apturethe subtleties of 
omplex domains. Ex
eptions and spe
ial 
ases make these problemsdiÆ
ult and 
hallenging and they have to be found by the sear
h on an instan
e-by-instan
e basis. For puzzle games su
h as Sokoban, this wealth of intri
ate details iswhat draws humans and keeps them 
oming ba
k. For the pra
ti
e, this wealth iswhat 
hara
terizes many of the 
hallenging real-world problems we are interested insolving. After all, if general guidelines or rules would apply, we would probably notper
eive these problems as hard.Even though Sokoban is primarily used as our resear
h domain here, the meth-ods and enhan
ements suggested as well as the lessons learned are largely domainindependent and 
arry therefore over to other domains.Short from ex
using ourselves for pi
king Sokoban as an experimental testbed, wewould like to point out that it 
ould be a ri
h and fertile ground for many sub�elds ofAI. Even though we have made 
onsiderable progress in this domain using advan
edsear
h methods, sear
h alone is not going to be suÆ
ient to solve the toughest of theSokoban problems.A Sokoban solver 
ould bene�t from any of the following areas of AI:� Reasoning in all its di�erent forms (automated, 
ase-based, probabilisti
, geo-metri
 and spatial,...) 
ould help to de
ompose Sokoban instan
es into subprob-lems and, taking all the intera
tions of the subproblems into a

ount, reassemblethe solution for the 
omplete problem.� Belief revision must 
ertainly play a role for the dynami
 dis
overy of subsolu-tion intera
tions. As new, possibly 
on
i
ting fa
ts (intera
tions, partial solu-tions, 
onstraints), are dis
overed they have to be integrated into the 
urrentknowledge base.� Case-based reasoning 
ould help to adapt solutions from similar instan
es solvedin the past to new problems 
urrently at hand.� Knowledge a
quisition and representation 
an help to ta
kle one of the funda-mental problems of AI, of how to represent and store all the knowledge eÆ-
iently. As we have seen, this be
omes an important problem.� Planning 
an help to dire
t the sear
h by providing it with the global 
ontextof lo
al a
tions to assist in 
riti
al de
isions like forward pruning and moveordering.However, these areas 
an also bene�t from Sokoban! Sokoban o�ers a non-trivial testbed for many te
hniques from di�erent sub�elds of AI.144



There are many more sear
h related 
hallenges and open questions left to explorein the domain of Sokoban. Sear
h methods 
an most 
ertainly be improved signif-i
antly. Some of the immediate issues that 
ome to mind are: Can relevan
e 
utsbene�t from dynami
ally a

umulated knowledge? Can move ordering be improvedwith additional knowledge? Are there better heuristi
s to de
ide whi
h stone to in-
lude next in a pattern sear
h? What 
ould that knowledge be and how 
ould it be
olle
ted?However, a mu
h more fruitful question to explore is probably how to use themethods developed for Sokoban in other domains. Di�erent domains 
an providedi�erent 
onditions and properties whi
h these methods 
an be subje
ted to. Thene
essary generalizations 
an yield interesting new insights into why and how 
ertainmethods work for di�erent appli
ation domains.Yet another step is to try to use the methods developed here (and of 
ourse else-where) in a domain-independent way. It is fairly straightforward for some of thesimpler sear
h enhan
ements, like transposition tables, to be instantiated for a newdomain. Espe
ially transposition tables 
ould also be turned o�, when simple sta-tisti
al tests about hit rates show that the savings do not justify their use. But,how 
an other, more 
omplex methods be automati
ally instantiated like that? How
an the knowledge needed for these domain-dependent sear
h enhan
ements be au-tomati
ally extra
ted? More to the point: How 
an we invoke a method, instead of as
ientist? With the example of pattern sear
hes we have shown that we 
an identifyne
essary 
onditions for the use of sear
h enhan
ements. Can these 
onditions betested automati
ally and, depending on the result of the test, sear
h enhan
ementsbe enabled or disabled, or even adjusted? Are domain des
riptions the sour
e of mostof the ne
essary information? Or would example sear
hes reveal 
ertain properties ofthe sear
h spa
e (of 
ourse assuming we are dealing with a well behaved, predi
tabledomain)? Or both?
Humans are in
redibly apt in adapting their problem solving methods. They dothis on many di�erent levels, su
h as for di�erent domains, as well as for di�erentinstan
es of the same domain, and even for di�erent phases of the solution of oneproblem instan
e. Humans are able to re
ognize when they are not making anyprogress and they 
an 
hange their solution strategies. What are the next stepstowards 
reating an arti�
ial entity with su
h 
apabilities?
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Appendix AThe 90 Problem Test Suite
Problem #1 Problem #2 Problem #3
Problem #4 Problem #5 Problem #6
Problem #7 Problem #8 Problem #9
Problem #10 Problem #11 Problem #12152



Problem #13 Problem #14 Problem #15
Problem #16 Problem #17 Problem #18
Problem #19 Problem #20 Problem #21
Problem #22 Problem #23 Problem #24
Problem #25 Problem #26 Problem #27
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Problem #28 Problem #29 Problem #30
Problem #31 Problem #32 Problem #33
Problem #34 Problem #35 Problem #36
Problem #37 Problem #38 Problem #39
Problem #40 Problem #41 Problem #42
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Problem #43 Problem #44 Problem #45
Problem #46 Problem #47 Problem #48
Problem #49 Problem #50 Problem #51
Problem #52 Problem #53 Problem #54
Problem #55 Problem #56 Problem #57
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Problem #58 Problem #59 Problem #60
Problem #61 Problem #62 Problem #63
Problem #64 Problem #65 Problem #66
Problem #67 Problem #68 Problem #69
Problem #70 Problem #71 Problem #72
Problem #73 Problem #74 Problem #75
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Problem #76 Problem #77 Problem #78
Problem #79 Problem #80 Problem #81
Problem #82 Problem #83 Problem #84
Problem #85 Problem #86 Problem #87
Problem #88 Problem #89 Problem #90
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Appendix BThe 61 Kids Problems
Problem #1 Problem #2 Problem #3 Problem #4 Problem #5
Problem #6 Problem #7 Problem #8 Problem #9 Problem #10
Problem #11 Problem #12 Problem #13 Problem #14 Problem #15
Problem #16 Problem #17 Problem #18 Problem #19 Problem #20
Problem #21 Problem #22 Problem #23 Problem #24 Problem #25
Problem #26 Problem #27 Problem #28 Problem #29 Problem #30
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Problem #31 Problem #32 Problem #33 Problem #34 Problem #35
Problem #36 Problem #37 Problem #38 Problem #39 Problem #40
Problem #41 Problem #42 Problem #43 Problem #44 Problem #45
Problem #46 Problem #47 Problem #48 Problem #49 Problem #50
Problem #51 Problem #52 Problem #53 Problem #54
Problem #55 Problem #56 Problem #57 Problem #58
Problem #59 Problem #60 Problem #61
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Appendix CImplementation DetailsTo improve readability and not to wear the patien
e of the reader too thin, we de
idedto move most of the implementation details into this appendix. These details are non-essential to the basi
 ideas of the algorithms, but are important to understand howthe implementation is realized. It is geared towards explaining how something works,without trying to justify anything. There will be more \magi
 numbers", but we willnot point to them spe
i�
ally anymore.C.1 Constru
tion of Deadlo
k TablesThis se
tion 
ontains a detailed a

ount of the implementation used to 
onstru
t thedeadlo
k tables.An o�-line sear
h was used to enumerate all possible 
ombinations of walls, stonesand empty squares for a �xed-size region. For ea
h 
ombination of squares and their
ontents, a small sear
h was performed to determine whether or not a deadlo
k waspresent. This information was stored in a tree data stru
ture.Ea
h node in the tree of Figure C.1 represents a 
ertain pattern of stones, wallsand empty squares. The root of the tree is the empty maze, ex
ept for the man andone stone. The three su

essors of the root represent a pattern with an additionalstone, wall or empty square. Ea
h of their su

essors represent a pattern 
ontainingone more stone, wall or empty square, and so on. Figure C.2 shows a possible orderof pla
ing/querying the squares in a maze. The pattern with a wall on square 1 anda wall on square 2 represents a deadlo
k, and the tree terminates at that point. To�nd out if a 
ertain pattern is a deadlo
k, a spe
ial sear
h is performed whi
h triesto push all stones to goal squares. Every square that is not part of the 
urrentlyinvestigated pattern is a goal square. If the sear
h fails to �nd a solution { pushingall stones to goals, a deadlo
k pattern was dis
overed.There are many optimizations that make the 
omputation of the tree more eÆ-
ient.� If a wall is pla
ed, su
h that a stone be
omes immediately deadlo
ked (the wall
reates a dead square on whi
h a stone is positioned), the sear
h 
an be avoidedand deadlo
k is de
lared immediately.160



...

... ...

... ... ... ... ...

1
2
3

4
5

deadlock deadlock deadlock deadlock

deadlock

2
3

4
5

2
3

4
5

2
3

4
5

3
4
5 3

4
5 3

4
5 3

4
5 3

4
5 3

4
5 3

4
5 3

4
5 3

4
5

4
5

4
5

4
5

4
5

4
5

4
5

FigureC.1:Deadlo
kTree
161



Figure C.2: Example Deadlo
k Table Query Order
Figure C.3: Goal Ma
ro Example� If neither pla
ing a wall nor a stone on a parti
ular square 
reated a deadlo
k,pla
ing an empty square there 
annot 
reate deadlo
k either.� When pla
ing a stone, we 
an 
he
k if the patterns 
omputed so far 
an identifythis position as a deadlo
k.� The sear
h of a deadlo
k pattern 
an be sped up by removing stones immediatelywhen they rea
h a goal square.� The sear
h 
an use a 
heap lower bound that sums the distan
es of all stonesto their respe
tive 
losest goal.Even with all these enhan
ements, 
omputing a deadlo
k table of approximately 5x4takes several weeks of 
omputation, sin
e most interior nodes of the pattern treerepresent a small sear
h, averaging several hundred nodes. Pushing deadlo
k tablesfurther would require an enormous number of CPU 
y
les and the e�e
ts would belimited (see Se
tion 4.6.4).C.2 Goal Ma
rosC.2.1 Goal RoomsA goal room is a vague 
on
ept. Humans rarely de�ne hard boundaries as are neededby a program trying to pre
ompute goal ma
ros. The pro
edure des
ribed here shouldnot be viewed as the ultimate answer to the problem of goal room dete
tion.162



Figure C.4: Two Kinds of Entran
esFirst, all goal squares that are dire
t neighbors are in
luded in the goal room.If less than three goal squares are found together, no goal room is 
reated, sin
ethe possible savings do not outweight the risk of produ
ing unsafe goal ma
ros (seeSe
tion 4.7.2). Then, using the goal squares as a start state, a highly pruned depth-�rst bran
h-and-bound sear
h is exe
uted that sear
hes through the sear
h spa
e ofgoal room 
on�gurations for the \best" goal room. \Best" is de�ned as follows:� in
lude as few stones as possible,� leave as few entran
es as possible, and� in
lude as many squares as possible.The primary 
on
ern is to identify a goal room with a minimum number of en-tran
es, and then, if possible, to maximize the number of squares in the goal room.At ea
h node in this goal-room sear
h, su

essor states are goal-room 
on�gurationsin
reased by one square through whi
h a stone 
an enter the 
urrent goal-room 
on-�guration. To improve eÆ
ien
y, a transposition table is used to prevent dupli
atingwork. The result of this sear
h for the example problem in Figure C.3 is a goal roomwith the entran
es at the squares D
 and Dd. Note, that the squares G
 and Gdwould also form a goal room with two entran
es, but with fewer squares inside.To determine goal rooms is extremely diÆ
ult, be
ause many problems in
uen
eit. The larger the goal room the larger the potential gains, but also the higher the riskof 
reating goal ma
ros that 
ut o� solutions. Fewer entran
es are generally preferred,sin
e many entran
es in
rease the risk of blo
king 
ommuni
ation 
hannels. If goalrooms are too small however, the pro
edures des
ribed in the following se
tions mightnot be able to �nd solutions be
ause stones have to temporarily leave the goal area.C.2.2 Entran
esThere are generally two types of entran
es.Man Entran
e: an entran
e through whi
h only the man 
an enter, andStone Entran
e: an entran
e through whi
h stones (and man) 
an enter.If we talk about \entran
e" without spe
ifying if it is a man or stone entran
e,we will assume it is a stone entran
e. For example, assume the entran
es to the goal163



room in Figure C.4 are E
 and Ee, then E
 is a stone entran
e, sin
e stones 
an rea
hgoal squares from E
. However, the entran
e at Ee is a man entran
e only; no stone
an rea
h a goal from this entran
e.C.2.3 Goal-Ma
ro TreesHaving identi�ed a goal room, another o�-line sear
h now 
reates a goal-ma
ro tree.We 
all this sear
h goal-ma
ro tree generation and it is dis
ussed in detail in Se
-tion C.2.5. Figure C.5 shows an example of a goal-ma
ro tree1. Ea
h node in thistree represents a spe
i�
 
on�guration of stones in the goal room. Edges betweenthe nodes represent ma
ro moves. Ea
h edge is labeled with the number of pushesrequired by the ma
ro it represents. A ma
ro move is de�ned by the entran
e squareand the �nal goal square the stone is pushed to. The root of the tree represents theempty goal area at the beginning of the sear
h. If at any point in time during thesear
h a stone is pushed to the entran
e of a goal area, the goal-ma
ro tree is 
on-sulted as to whi
h ma
ro(s) should be tried by looking up the node that representsthe 
urrent stone 
on�guration in the goal room. To speed up the pro
ess of �ndingthe 
orre
t node in the goal-ma
ro tree, a pointer is kept that points to the node inthe goal-ma
ro tree that represents the 
urrent stone 
on�guration in the goal area.This pointer is updated every time a goal-ma
ro move is made or undone.C.2.4 Target SquaresGiven a 
ertain stone 
on�guration in the goal area, the goal-ma
ro generation hasto solve the problem of whi
h square(s) should the next stone be pushed to. Thesesquares are 
alled target squares. There is a potentially di�erent set of target squaresfor ea
h entran
e.Several properties of the empty goal squares are 
onsidered. Figure C.6 shows anexample goal room that we will be using to explain the following 
on
epts. There are�ve entran
e-independent properties used:FIXED: The stone would be �xed if pla
ed on this square. Squares Ih, Kh and Kehave this property.DEAD: Pla
ing a stone on this square would render one or more other empty goalsquares immediately ina

essible, essentially 
reating a deadlo
k. The squaresJg and Jf have this property. Note that the emphasis is on immediately, a one-move look-ahead. Pla
ing a stone on If 
reates a deadlo
k as well, but onlydeeper look-ahead is able to verify that.NONOBSTRUCT: The stone would not obstru
t any path to any of the othersquares, meaning if a square is rea
hable from some entran
e under some 
on-ditions, it still is. The squares Ih,Jh and Kh are su
h squares. However, the1In e�e
t, we treat goal-ma
ro trees as graphs for eÆ
ien
y reasons. We still 
all it a tree, be
ausethis is more intuitive. 164
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square Ig is not. It obstru
ts the rea
hability of square Ih from entran
e A. Alonger path is needed to get the stone to Ih.ACCESS: Pla
ing a stone on this square would render some square ina

essible fromsome entran
e. Squares If and Je are example squares with this property.COMMUNICATION: Pla
ing a stone on a square with this property does not 
uto� any 
ommuni
ation paths between stone and man entran
es. If possible, oneshould avoid pla
ing stones on squares that 
uto� 
ertain areas of the maze.The following square properties are with respe
t to a spe
i�
 entran
e:OPTIMAL: The stone 
an rea
h the target square with an optimal number ofpushes; no other stone is pla
ed su
h that we have to make a detour. Allsquares have this property for ea
h of the two entran
es in our empty examplemaze. The man is allowed to leave the goal area.INSIDE: When pushing the stone to a target square with this property, the mandoes not have to leave the goal area. The squares Ig and Ih don't have this prop-erty for entran
e A, neither has square Ke for entran
e B, given that optimalityis required.STRICT: This property is a 
ombination of OPTIMAL and INSIDE. Squares Ig,Ih and Ke do not have this property. Either the man needs to leave the goalroom or the ma
ro move will require a non-optimal push sequen
e.LOOSEST: A target square with this property is only rea
hable with the man leav-ing the goal area and the stone taking a non-optimal path.CLOSEST: CLOSEST is trying heuristi
ally to guess where stones should go ifthey 
ome through a spe
i�
 entran
e. Sin
e entran
es 
an be arbitrarily faraway from the �rst goal square (see entran
e A for example), CLOSEST is withrespe
t to the 
losest goal square to that entran
e. For entran
e A the squaresIf,Ig and Ih are 
losest, so are the squares Je and Ke for entran
e B.A heuristi
 fun
tion evaluates ea
h of the target squares using the propertiesdes
ribed above. These values and properties are used to order the target squares toallow for a more eÆ
ient goal-ma
ro tree generation.C.2.5 Goal-Ma
ro Tree GenerationGoal-ma
ro tree generation is a sear
h that traverses the highly pruned sear
h spa
eof stone 
on�gurations in the goal area to �nd possible ways to pa
k the stones intothe goal room. Stones 
an enter through all stone entran
es and in any order. Thesear
h saves its results in a goal-ma
ro tree, su
h that the IDA* sear
h 
an reuse theknowledge found by the goal-ma
ro tree generation.Ea
h node the sear
h tries a set of target squares for ea
h entran
e. It pla
es astone on ea
h of the squares in turn and re
ursively 
alls itself. The re
ursive 
all166



Figure C.7: Pivot Point Examplereturns su

essfully if at least one possible way was found to pa
k all the stones intothe goal area. In that 
ase, the goal ma
ro to the target square is added to the 
urrentnode. The sear
h attempts to satisfy ea
h of the following properties with at least onetarget square: CLOSEST, OPTIMAL, INSIDE and NONOBSTRUCT. If the sear
h
annot �nd any su

essful target square at a node, it returns with failure.C.2.6 Pivot PointsIf all of the target squares have the ACCESS property (they 
ut o� some square fromsome entran
e), we 
all the position a pivot position and all squares are in
luded asma
ros. This is ne
essary be
ause at pivot points in the sear
h there is no way ofknowing how many stones will be pushed through whi
h entran
e. Figure C.7 showsone su
h position. Pla
ing the stone at any of the remaining goal squares dividesthe goal area into parts a

essible only from one entran
e. Sin
e the goal-ma
rogeneration 
annot know what happens during the IDA* sear
h, any guess might bewrong. Hen
e all squares have to be in
luded.C.2.7 In
luded StonesThe goal-ma
ro tree 
reation assumes an empty goal area at the start of the sear
h.If stones were in
luded in the goal area of the start 
on�guration, then the goal-ma
ro tree that is 
reated, and the pointer the sear
h has into it representing the
urrent stone 
on�guration in the goal area, do not 
orrespond. Whenever a moveis generated for a stone inside the goal area during IDA*, a spe
ial routine is 
alledthat tries to put the stone in the 
losest goal square that the 
urrent goal-ma
ro treenode o�ers.C.2.8 ParkingIf the �rst attempt to build a goal-ma
ro tree fails, it was most likely be
ause aparking maneuver is needed that the sear
h 
annot handle. A se
ond attempt isstarted, and this time the sear
h is allowed to keep nodes in the goal ma
ro tree thathave no su

essor. It is assumed that at that point, stones need to be parked and thatthe IDA* sear
h will be able to solve the parking problem. Sin
e parking happens167



mostly late in the goal pa
king, we 
an get most of the bene�ts of goal ma
ros withoutrendering the problems unsolvable.C.3 Customizing IDA* for Pattern Sear
hesIf the pattern sear
hes used the same IDA* pro
edure and lower-bound estimator asin Rolling Stone, the sear
h would be prohibitively large and slow. Instead, we use aspe
ial version of IDA* (PIDA*) that is 
ustomized for pattern sear
hes, allowing foradditional optimizations that dramati
ally improve the sear
h eÆ
ien
y. By relaxingthe rules of Sokoban and introdu
ing new goal 
riteria, the resulting sear
h is moreeÆ
ient and still returns an admissible lower bound on the solution.C.3.1 Stone RemovalOne enhan
ement is to remove stones from the test maze on
e they rea
h a goalsquare. For deadlo
k PIDA* sear
hes, stones are also removed when they are pushedonto a man-rea
hable square. This 
omes from the observation that most deadlo
ksresult in a number of stones getting 
rowded together. Hen
e, if a stone \breaks free",we assume we no longer need to 
onsider it in that sear
h subtree.C.3.2 Multiple Goal StatesAnother optimization is to relax what we 
onsider a goal state. In this relaxation,goal states are also positions where the man 
an rea
h all squares, and at least one
on
i
t with the 
urrent StonePath has been found. Penalty PIDA* sear
hes do notuse this simpli�
ation.These short
uts simplify the sear
h leading to large savings in the 
ost of a patternsear
h. However, this 
omes at the expense of possibly missing a penalty or deadlo
k.In pra
ti
e, the redu
ed sear
h e�ort more than 
ompensates for the few missedopportunities.C.3.3 EÆ
ient Lower BoundSin
e stones get removed from the board when they rea
h a goal square, the Min-mat
hing lower-bound heuristi
 is not appropriate. A 
heaper heuristi
 
an be used:the sum of the shortest distan
es of ea
h stone to its 
losest goal. When a stonemoves, this lower bound is easily updated. This results in large savings in the 
ostper node 
ompared to the original O(n3) lower bound. Sin
e the number of stonesis small in a pattern sear
h, most sear
h-related routines are fast, be
ause their 
ostdepends on the number of stones in the maze.
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C.3.4 Transposition Table EntriesUsually, if an IDA* sear
h is started, the transposition table has to be 
leared, sin
eold entries are not valid for the 
urrent sear
h. Sin
e multiple PIDA* sear
hes arerun on the same problem just with di�erent stone 
on�gurations, we 
an potentiallyreuse transposition table entries from previous PIDA* sear
hes within the same IDA*sear
h. However, spe
ial 
are has to be taken when updating the transposition tableat the end of an aborted sear
h. Reusing entries from previous sear
hes 
an drasti
allyredu
e the overhead for the PIDA* sear
hes.C.4 Relevan
e CutsC.4.1 In
uen
e TableOur implementation runs a shortest-path �nding algorithm to �nd the largest in
u-en
e between any pair of squares. The �rst is referred to as the start square; these
ond as the destination square. Ea
h square on a path between the start and des-tination squares 
ontributes points depending on how it in
uen
es that path. Themore points are asso
iated with a pair of squares, the less the squares in
uen
e ea
hother. The exa
t numbers used to 
al
ulate in
uen
e are the following:Alternatives: A square s on a path will have two neighboring squares that are noton the path. For ea
h of the neighboring squares n, the following points areadded: 2 points if it is possible to push a stone (if present) from s to n; 1 pointif it is only possible to move a man from s to n; and 0 if n is a wall. Thus, themaximum number of points that one square 
an 
ontribute for alternatives is 4.Goal-Skew: However, if s is on an optimal path from the start square to any of thegoals in the maze, then the alternative points are divided by two.Conne
tion: The 
onne
tion between 
onse
utive squares along a path is used tomodify the in
uen
e. If a stone 
an be pushed in the dire
tion of the destinationsquare, then 1 point is added. If only the man 
an traverse the 
onne
tionbetween the squares (moving towards the destination square), then 2 points areadded.Tunnel: If the previous square on a path is in a tunnel, 0 points are added, regardlessof the above properties.Figure C.8 is used to illustrate in
uen
e. For a subset of squares in the �gure,Table C.1 shows the in
uen
e numbers. In this example, the program automati
allydetermines that an in
uen
e relationship > 8 implies that two squares are distantwith respe
t to ea
h other. How this threshold is determined is des
ribed in the nextse
tion.In this example, square A is in
uen
ing squares B and C. However, only B isin
uen
ing A (the non-symmetri
 property). The table shows that there are several169



Figure C.8: Example SquaresA B C D E F G H I J K L M N OA 1 6 10 18 19 21 13 17 17 24 12 12 10 18 16B 4 1 5 13 14 18 8 16 16 22 10 11 9 17 15C 7 4 1 9 10 15 9 15 15 25 13 14 12 20 18D 11 8 5 3 9 14 12 14 14 29 17 18 16 24 22E 13 10 7 7 2 7 9 7 7 26 19 12 14 18 20F 23 19 17 18 10 2 13 6 6 25 34 11 13 17 19G 12 7 9 15 14 11 1 15 15 34 23 19 17 25 23H 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8I 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8J 16 16 20 27 19 15 23 11 11 1 10 11 12 11 14K 10 10 14 22 23 26 17 22 22 16 1 17 15 23 21L 8 8 12 20 14 10 15 6 6 21 14 1 2 7 8M 7 7 11 19 16 12 14 8 8 23 13 3 1 9 7N 12 12 16 24 18 14 19 10 10 16 18 5 6 3 6O 11 11 15 23 20 16 18 12 12 18 17 7 5 8 3Table C.1: Example In
uen
e Valuesregions with high lo
ality, whereas most of the entries indi
ate non-lo
al relationships.Given the high per
entage of non-lo
al entries in the table, one might expe
t relevan
e
uts to eliminate most of the sear
h tree. This is not quite true, in that a sequen
eof lo
al moves 
an result in the start and end squares of the move sequen
e not beinglo
al with respe
t to ea
h other.Consider 
al
ulating the in
uen
e between squares A and C, as well as C andA (see Table C.2). The table entries 
orrespond to the 
ontribution of ea
h of thein
uen
e properties. The table indi
ates the in
uen
e s
ores for the squares A, B,C, and the intermediate squares p and q, as well as for the 
onne
tion between thesquares (indi
ated by the arrows). Ea
h line modi�es the previous line (adding newvalues or 
hanging existing values). The �nal in
uen
e, the sum of the pre
eding
olumns, is shown in the last 
olumn. 170



Influen
eTable[C;A℄ C ! q ! B ! p ! A in
uen
ealternatives 1 0 2 0 0 0 4 0 0
onne
tion 1 1 2 1 0 1 4 1 0tunnel 1 1 2 1 0 0 4 1 0goal-skew 1 1 1 1 0 0 2 1 0 7Influen
eTable[A;C℄ A ! p ! B ! q ! C in
uen
ealternatives 2 0 4 0 0 0 1 0 1
onne
tion 2 1 4 1 0 1 1 2 1tunnel 2 0 4 1 0 0 1 2 1goal-skew 1 0 4 1 0 0 1 2 1 10Table C.2: Example In
uen
e Cal
ulationC.4.2 Parameter SettingsTo re
e
t di�eren
es in mazes, the parameters infthreshold and m are set at thebeginning of the sear
h. The maximal in
uen
e distan
e, infthreshold, is 
omputedas follows:1. Compute the average value for all entries Influen
eTable[x; y℄ satisfying the
ondition that square y is on an optimal path from x to any goal.2. The average is too high. S
ale it ba
k by dividing it by two.3. To ensure that the 
uts are not too aggressive, infthreshold is not allowed tobe less than 6.The length of the history used, m, is 
al
ulated as follows:1. Compute the average value for all entries Influen
eTable[x; y℄ satisfying the
ondition that a stone on square y 
an be pushed to a goal (e.g. in Figure C.8,squares F and G would not be in
luded).2. To ensure that the 
uts are not too aggressive, m is not allowed to be morethan 10.
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Appendix DFailed IdeasWe had no shortage of \good" ideas during the Sokoban proje
t, many of whi
h didnot produ
e the expe
ted results. This appendix 
ontains a 
olle
tion of the mostpromising of these ideas that we tried but did not lead to signi�
ant improvements.Even though this might not be 
onsidered as a 
ontribution of the thesis (hen
e thelo
ation in the appendix), it might prove valuable for the keen beginners in Sokobanto 
aution themselves.We have found dis
ussions about Sokoban invariably leading into 
ertain dire
-tions, suggesting things to try and ideas to pursue. Unfortunately, we then have topoint out that we have tried many of the suggested ideas with little or no su

ess.Some of the ideas are saving sear
h nodes, but 
ome at a 
ost that prohibits theiruse be
ause the overall runtime in
reases. Other methods work, but only for so fewproblems that we did not want them in
luded be
ause we were afraid they 
ould domore harm than good.Wherever possible, we try to identify the problems that need to be solved in orderto make some te
hnique feasible. This, of 
ourse, is not ne
essarily a 
omplete list,other problems might exist that we are not aware of. The reader might also dete
ta sar
asti
 tone in the des
ription of some of our attempts - unfortunately that iswhat often remains. After months of design, implementation, tuning and debugging,redesign, reimplementation and tuning and debugging again, and again, the insightsgained are often demoralizing in nature. The sear
h-tree size is one of these 
on
eptswe still fail to appre
iate 
ompletely. We are fa
ed with su
h an in
redibly largesear
h spa
e that sear
hing in it for solutions seems like the proverbial sear
h for the\needle in the haysta
k" - ex
ept that we probably fa
e an even more daunting task.This appendix might therefore seem like a turno� to many, but it is not meant likethat. We are 
onvin
ed that a publi
 re
ord of \ideas that failed" is needed, not justfor proje
ts like Sokoban, but for Computing S
ien
e in general. This appendix is anattempt to start su
h a re
ord for the domain of Sokoban and single-agent sear
h.It might help to spark and/or further the dis
ussion into the merits of these ideasin general, ultimately possibly leading to interesting publi
ations in their own right.The potential bene�ts are manifold and not restri
ted to avoiding dupli
ated e�orts,but in
lude fo
using future resear
h, improving experimental work and in
reasing the
ommuni
ation on hard problems. 172



Idea Efficient ImplementationConcrete Algorithmic RepresentationHard ConceptsFigure D.1: Development Chain of Su

essWhy is it so hard to make an idea work? Figure D.1 shows what it takes for usto 
onsider an idea a su

ess. We need to make three 
riti
al transitions.1. We need to take the idea that was 
on
eived (and often has a vague nature) andform hard 
on
epts around it. It is often easy to utter fuzzy ideas, but the mo-ment one has to be more 
on
rete, it is mu
h more 
ompli
ated to 
apture whatwas meant when one was thinking about it. For example, what do you meanwith \avoid diÆ
ult stone 
on�gurations"? Maybe the 
on
ept of 
rowding ismore 
on
rete: \Many stones in a restri
ted area must be avoided."2. The se
ond step is to develop a 
on
rete algorithm that represents an idea.How 
an a hard 
on
ept be put into a 
on
rete algorithm? For example, how
an 
rowding be 
al
ulated in a Sokoban maze? What is \many stones" for a\restri
ted area" and what does it mean to \avoid" su
h situation in the sear
h:
utting them o�, or postponing them?3. Assuming we haven't failed so far, now we have to �nd a way to implement thealgorithm eÆ
iently. Saving 50% of the nodes is not good enough if ea
h nodesear
hed be
omes 10 times more expensive.Often, even though all three hurdles were passed su

essfully, one �nds out thata 
ertain idea is redundant with another idea already present in the solver and onlysmall additional gains are possible. This is espe
ially prevalent in high-performan
esolvers that are very eÆ
ient already: improving on their performan
e is often in-
redibly 
hallenging.Worse are intera
ting features. Even though the new sear
h enhan
ement workslike a 
harm, it hinders another one and they 
on
i
t in su
h a way that the overallperforman
e drops.We have also seen what we 
all logi
al bugs. After developing and implementingan idea, thorough testing might reveal that pathologi
al 
ases or ex
eptions exist. Tohandle those ex
eptions well is often the di�eren
e between failure and su

ess of amethod.And then there are implementation errors - or bugs for short...We have en
ountered all these problems{and more{while working on the Sokobanproje
t. The following list of failed ideas provides some insight into our e�orts inta
kling the \Go of single-agent sear
h": Sokoban. We fo
us here on the des
ription ofthe high-level ideas that failed. Many ideas took weeks of e�ort to 
onvin
e ourselvesof their futility.
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Figure D.2: A Problem Where Ba
kward Sear
h WinsD.1 Means End AnalysisEven before we started seriously thinking about exhaustive sear
h, we invested sev-eral weeks in trying to make Means End Analysis (MEA) work. The problem ween
ountered is how to restri
t and order all the possible 
hoi
es of moves. Intera
tingsubgoals do not allow for easy ordering of the 
hoi
es. A lot of domain knowledgewould be needed to solve this problem using MEA.D.2 Ba
kward Sear
hAs already pointed out in Chapter 2, there is nothing for
ing us to sear
h from theinitial position forward to �nd a goal state. We 
ould also start from a goal state andsear
h ba
kwards. There are several problems we fa
e when implementing su
h anapproa
h:� Multiple start states: Be
ause only the stone/goal lo
ations are de�ned, theman 
an potentially be in di�erent pla
es in the goal position. For push-optimalsolutions that is a small number, like 1 to usually not more than 4, but for move-optimal solutions this 
an be quite a bit more. Of 
ourse, that in
reases thesear
h-tree size.� We trade forward deadlo
ks for ba
kward deadlo
ks. Ba
kward deadlo
ks areusually easier to dete
t; the man runs out of moves, be
ause it is \
ompressing"its own spa
e. But, there are ba
kward deadlo
ks that are just as hard to dete
tas forward deadlo
ks. Those are the ones where the man 
ompresses an areaof the maze, but 
an es
ape to do other (futile) work, leaving a few stones ina lo
ked position. We found with the pattern sear
hes a way to dete
t forwarddeadlo
ks, but we would have to 
hange them to dete
t ba
kward deadlo
ks.� Usually, goals are in goal areas (forward sear
hes), but when sear
hing ba
k-wards, they are s
attered throughout the maze, making it hard to establishorders in whi
h you want to put stones in. Goal ma
ros, one of our mostvaluable sear
h enhan
ements, are useless.We have a maze in whi
h our ba
kward sear
h beats our forward sear
h, but wehad to spe
ially design it to get the e�e
t. Figure D.2 shows the maze. The forwardsear
h needs 99,829 nodes to solve the maze; the ba
kward sear
h needs only 10,244.174



This 
omparison is not quite fair, sin
e the ba
kward sear
h is not using patternsear
hes and thus does not 
reate their 
orresponding overhead, nor 
an it appre
iateany bene�ts. However, turning o� pattern sear
hes in the forward sear
h is an evenbigger looser (364,006 nodes) against the ba
kward sear
h.The feature in the problem in Figure D.2 that makes this problem amenable toba
kward sear
h is that the ba
kward sear
h dete
ts early on (high up in the sear
htree) that an extra move is needed to get all the stones out of the goal area. Theforward sear
h dete
ts this only deep in the sear
h, resulting in a mu
h larger sear
htree before it swit
hes into the se
ond iteration at whi
h point good move orderingresults in a qui
k su

essful termination of the sear
h.However, in general, the ba
kward sear
hes were mu
h larger than the forwardsear
hes, mostly be
ause of the lost opportunity to apply the goal ma
ros.D.3 Bidire
tional Sear
hLet's assume we solve the problems with the ba
kward sear
h. We 
ould 
ombineforward and ba
kward sear
h to form a bidire
tional approa
h. When using iterativedeepening for forward and ba
kward sear
hes, one 
an easily alternate both dire
tions.Sin
e both dire
tions 
an have di�erent sear
h-tree sizes, it seems natural to exploitthis fa
t. We tried to deepen the sear
h dire
tion that had a smaller tree in theprevious iteration.The general idea is the following: Let's say the lower-bound fun
tion estimates thelength of a solution (distan
e to the goal from the root node) to be D. We 
an startthe forward sear
h using normal IDA* and give it an additional hard depth limit of,say, X � D. Then we start the ba
kward sear
h and give it an additional depth limitof D�X. If there was a solution with length D, then the sear
h frontiers should meetat depths X and D�X. If the frontiers did not meet, no solution exists with lengthD. Consequently, we in
rease the target solution length and start either a forward ora ba
kward sear
h, now with in
reased threshold D and in
reased additional depthlimit X or D � X. If of the two initial sear
hes the forward sear
h had the smallertree, it is probably a good idea to use forward sear
h for the next step.However, the meeting of the sear
h frontiers is still the most important problem.Traditionally, this is regarded as the main drawba
k of bidire
tional sear
h. Thetrouble is that the sear
h frontiers 
an be so large that one needs lots of memory tostore them. We 
hanged the transposition table 
ode to dete
t that, but the likelihoodof overwriting entries is high. Table repla
ement s
hemes usually prefer entries fromdeep sear
hes, and shallow entries are thrown away. We 
hanged that to save thefrontier nodes from 
lobbering. Then, the table is 
ooded with all the frontier nodes.X is an important variable here. Setting X to about half of the solution lengthwill keep both trees about the same size, maximizing the theoreti
al savings of bidi-re
tional sear
h. Using X biased towards 
utting one sear
h shorter than the otherwill keep at least one sear
h frontier small, allowing it to be stored with pra
ti
alamounts of memory.We fa
ed two major problems with our implementation. The �rst was predi
ting175



whi
h dire
tion was more pro�table to sear
h. The previous sear
h sizes are only aweak predi
tor of the size of the next iteration, be
ause iterations grow rather errat-i
ally. Se
ond, what should X be set to? We tried an iterative approa
h, in
reasingX for the ba
kward sear
h for the same threshold D, but that is not 
ost e�e
tivebe
ause large portions of the tree are re-sear
hed.Future dire
tions might in
lude sear
hing both dire
tions unbounded, assumingthat the �rst iterations will fail to make the frontiers meet, and to re
ord how deeplythey penetrated the tree to make a more informed de
ision as to whi
h sear
h dire
tionto grow next and where to set the depth limit. It be
omes obvious here how important
ontrol fun
tions are. They 
ould 
ontrol the setting ofX andD and swit
h the sear
hdire
tions, basi
ally 
ontrolling the sear
h using information gathered by previoussear
hes.D.4 Real-Time Sear
hThe sear
h now spends all its allo
ated time to �nd a solution. What if we had to
ontrol a robot that had to move every n se
onds? If n is small enough, su
h thatwe 
annot �nd a 
omplete solution, we have to 
ommit to a move without knowingif that move leads to a solution. Mu
h worse, and unique to domains with dire
tedsear
h spa
es su
h as Sokoban, by making a move, we might introdu
e a deadlo
kand thus never be able to solve the problem.Our attempt at real-time sear
h tried to minimize the risk of being trapped in adeadlo
k by exe
uting the following steps:1. Spend about 25% of the allo
ated time to order moves by small sear
hes andusing the sear
h results to estimate whi
h move is best. If, by 
han
e, we �nda solution, we are done, the rest of the problem is easy. Else, go to step 2.2. Che
k if the 
urrently best move is reversible (use 25% of e�ort). If the bestmove is reversible, go to step 4. Else, go to step 3.3. Che
k if we 
an �nd a deadlo
k (use 25% of e�ort). If so, goto step 1. Else, goto step 4.4. Exe
ute best move. Go to step 1 to �nd next move.The last 25% are \banked" for the 
ases when we have to return to step 1 be
ausea deadlo
k was found in step 3. This pro
edure usually gets 
aught in a loop, be
auseit �nds reversible moves attra
tive. Some measure of progress is needed to guide thereal-time sear
h. Otherwise the threat of deadlo
k for
es the program into a \safe",but unprodu
tive 
hoi
e.D.5 General Pattern DatabasesAfter a sear
h �nishes, the patterns found by the pattern sear
hes are just forgotten.We implemented a s
heme where these patterns are saved and then reused in later,176



di�erent mazes.We restri
ted the patterns saved to areas of size 6x6 and �ltered all patternsto remove \loose" walls. These are walls that, when removing the 
ontext outsidethe 6x6 area, are not 
onne
ted to any other wall and do not neighbor any stone.The resulting patterns are then appended to a dynami
ally growing database of su
hpatterns. When starting a sear
h, all patterns are mat
hed in all possible ways inthe maze (rotating, mirroring) and veri�ed by a small sear
h to make sure that thepenalties still hold in the new maze. The approved patterns are then entered into thedatabase.The overheads at the end and the beginning of the sear
hes are negligible. Eventhe veri�
ation sear
hes, limited to 100 nodes ea
h, are fast. What kills this ap-proa
h is the pattern mat
hing overhead. Too many patterns are entered in theon-line database, and mat
hing during the sear
h slows the program down signi�-
antly. Moreover, the mat
hing rate is small. The majority of the patterns are nevermat
hed and only 
ost overhead without eÆ
ien
y gain. That is a typi
al instan
e ofthe utility problem [Min88℄.After we abandoned this idea we implemented the pattern limits. With the patternlimits, this method might work better, but additional investigation is needed.D.6 Stone Rea
habilityOne of the most ex
iting, but failed, ideas we pursued is the idea of stone rea
habil-ity. This idea 
ame up in several serious dis
ussions with interested people and wassuggested in slightly di�erent variations. Don Beal 
alled it roaming, Bart Massey
alls them equivalen
e 
lasses, Neil Bur
h's version was named stone rea
h and DaveGombo
 suggested it as 
anoni
al form.The idea is roughly the following: Keep pushing a stone until the rea
hability ofother stones is e�e
ted. Rea
hability of stones is de�ned as the squares the man 
anpush stones to without pushing other stones in between. Alternatively, one 
an thinkof it as the area in whi
h a stone 
an be pushed around reversibly.The idea is that one 
ould 
reate pseudo ma
ro moves: as long as no stone rea
h-abilities are 
hanged, keep pushing this stone and do not 
onsider any alternativepushes. However, Sokoban proves itself more diÆ
ult than foreseen, again. There arefrequently o

urring 
ases when this heuristi
 fails and trun
ates solutions. Se
ond-order rea
hability 
onsiderations are of importan
e. Often, by moving a stone to a
ertain square, stone rea
hability is 
hanged, but only if another stone is moved �rst.We 
all this shadowing. Moving stone A would 
hange the rea
hability of stone B,but stone C shadows (restri
ts) stone B's rea
hability su
h that the e�e
t is not im-mediately visible. Only after removing stone C, one 
an now see that moving stoneA was indeed 
hanging stone B's rea
hability.We tried a two-step version of the initial idea. If the �rst-order stone rea
habilitywas not e�e
ted, a se
ond test was performed. Now, all stones, ex
ept the two inquestion (A and B in the previous example) are removed and it is determined if stoneA's move 
hanges stone B's rea
hability. If not, we 
an treat the sequen
e of moves of177



stone A as a ma
ro. That works quite well, the sear
h trees get redu
ed by about 50%,however, the 
ost of 
omputing stone rea
hability in
reases the 
ost of 
omputationfor ea
h node by about 10 times! The net loss is about 5 times longer runtimes.The reader is 
autioned to assume this might be an implementation ineÆ
ien
y. Weredu
ed the 
ost of naively 
omputing stone rea
hability by many 
lever enhan
ementsby at least one order of magnitude and 
loser examination reveals why this 
ost is sohigh. To 
ompute stone rea
hability, one has to 
ompute man rea
hability many timesover (at least around the stone to be pushed) and that is an expensive 
omputation(depth- or breadth-�rst sear
h).It is hard to a

ept the fa
t that a beautiful idea fails on something as trivialas 
omputation 
ost of a 
onstant fa
tor. Unfortunately, high-performan
e problemsolvers 
annot 
onveniently ignore these 
onstants and thus, even ni
e ideas are of-ten retired after months of intense intelle
tual, programming, tuning and debugginge�orts. This is espe
ially frustrating be
ause one 
an never be sure when to stopthese e�orts. The brilliant idea might be just around the 
orner to save the method,or more realisti
ally, one might �nd the bug that 
aused the implementation to fail.After all, admitting defeat also means giving up on a lot of e�ort spent.D.7 Super Ma
rosAnother ex
iting idea we pursued was that of super ma
ros. When a penalty sear
hfails to produ
e a pattern be
ause there are no more stones 
on
i
ting with the 
urrentStonePath and ManPath, then this is a hint that the set of stones just 
onsidered 
anbe pushed to goals independently of other stones. In prin
iple, the penalty sear
h hasjust proven that there exists a solution for an independent subproblem in the maze:a set of stones.The knowledge about the independen
e of a subset of stones 
an be used to restri
tthe IDA* sear
h to this subset, until this entire subset of stones is pushed onto goals.Hen
e the name super ma
ros. This idea was implemented and proven to work, butthe savings are small, usually less than 5%. We de
ided not to use it be
ause thereare a few problems with the above reasoning. Pattern sear
hes assume that a stoneis going to its 
losest goal. What if that assumption is wrong? We might not havean independent set of stones; the pattern sear
h 
ould be wrong. While we did notwitness su
h adverse e�e
ts, the risk involved seemed too high to ignore 
ompared tothe possible savings.Why are the savings so small? These independent sets of stones are usually 
loseto the goal areas. Usually they are few stones and optimal solutions 
an be found forpushing them to goals. With our move ordering, IDA* will try these optimal moves
lose to the goal area �rst anyways. If these moves lead to goal ma
ros, the goal 
utsare already removing alternatives to these moves in 
ase no solution was found.Super ma
ros are an example of an idea that is almost entirely subsumed by anarray of other sear
h enhan
ements, and adding it on top does not improve the sear
hany further. 178



D.8 Con
lusionsTo put it into one senten
e:Ideas are 
heap; making them work is expensive.Every one of the ideas des
ribed in this appendix is interesting, even promising.Most of the time, the reasons behind their failure are not obvious. Future resear
h,hopefully motivated by new insights, might �nd ways to turn some of these ideas intosu

essful methods. However, it is unlikely to be easy to over
ome the problems ween
ountered.
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