
Univ ersit y of Alb erta

Library Release F orm

Name of Author : Andreas Junghanns

Title of Thesis : Pushing the Limits: New Dev elopmen ts in Single-Agen t Searc h

Degree : Do ctor of Philosoph y

Y ear this Degree Gran ted : 1999

P ermission is hereb y gran ted to the Univ ersit y of Alb erta Library to repro duce single

copies of this thesis and to lend or sell suc h copies for priv ate, sc holarly or scien ti�c

researc h purp oses only .

The author reserv es all other publication and other righ ts in asso ciation with the

cop yrigh t in the thesis, and except as herein b efore pro vided, neither the thesis nor an y

substan tial p ortion thereof ma y b e prin ted or otherwise repro duced in an y material

form whatev er without the author's prior written p ermission.

.

Andreas Junghanns

F eldstra�e 12

09755 Niederwiesa

German y

Date :

Univ ersit y of Alb erta

Pushing the Limits: New Developments in Single-A gent Sear ch

b y

Andreas Junghanns

A thesis submitted to the F acult y of Graduate Studies and Researc h in partial ful�ll-

men t of the requiremen ts for the degree of Do ctor of Philosoph y .

Departmen t of Computing Science

Edmon ton, Alb erta

F all 1999

Univ ersit y of Alb erta

F acult y of Graduate Studies and Researc h

The undersigned certify that they ha v e read, and recommend to the F acult y of Grad-

uate Studies and Researc h for acceptance, a thesis en titled Pushing the Limits:

New Dev elopmen ts in Single-Agen t Searc h submitted b y Andreas Junghanns

in partial ful�llmen t of the requiremen ts for the degree of Do ctor of Philosoph y .

.

Dr. Jonathan Sc hae�er

.

Dr. Ric hard Korf

.

Dr. Gordon Rostok er

.

Dr. Joseph Culb erson

.

Dr. P eter v an Beek

Date :

Meinen Eltern

Abstract

Searc h is one of the fundamen tal metho ds in arti�cial in telligence (AI). It is at the core

of man y successes of AI that range from b eating w orld c hampions in non-trivial games

to building master sc hedules for large corp orations. Ho w ev er, the applications of

to da y and tomorro w require more than exhaustiv e, brute-force searc h, b ecause these

application domains ha v e b ecome increasingly complex. T raditional metho ds fail to

break the complexit y barrier caused b y the com binatorial explosion that c haracterizes

these large, real-w orld domains.

This thesis enhances our understanding of single-agen t searc h metho ds. A puzzle

(Sok oban) is used to explore new searc h tec hniques for single-agen t searc h. Sok oban

o�ers new c hallenges to AI researc h, b ecause it has a m uc h larger searc h space than

previously studied puzzle domains and exhibits a new, real-w orld-lik e searc h-space

prop ert y . Deadlo c k, the p ossibilit y to maneuv er in to an unsolv able p osition, pro vides

traditional searc h metho ds with considerable di�culties. This thesis sho ws the failure

of these traditional searc h metho ds to solv e more than trivial Sok oban problems. The

state-of-the-art is signi�can tly impro v ed when traditional metho ds are c hanged suc h

that they are able to adapt to eac h instance. F urthermore, sev eral new tec hniques

are suggested to com bat the complexities and c hallenges exempli�ed b y Sok oban.

Most successful is a tec hnique that dynamically gathers kno wledge during the searc h

to a v oid deadlo c ks and to impro v e the searc h's understanding of the searc h space.

Another tec hnique is describ ed and analyzed that uses the heuristic notion of relev ance

to fo cus the searc h e�ort. This thesis closes with a suggestion of a framew ork and a

classi�cation for single-agen t searc h enhancemen ts.

Preface

It is quite in teresting to ask p eople what they think of their PhD thesis after it is

�nished. The reactions range from dismissiv e hand-w a ving, to excuses for a n um b er

of things. It is rare to meet someb o dy who is op enly proud of their PhD thesis. That

is go o d. It means I am not alone...

I ha v e tried to understand ho w so m uc h en th usiasm, driv e and optimism could turn

in to impatience and a hop e-it-will-b e-o v er-so on attitude. By trying to understand

what caused m y frustration, I did regain some of the lost excitemen t for the researc h.

Of course, it alw a ys tak es to o long to �nish a thesis. Naturally , the disco v ery phase is

m uc h more fun than do cumen ting what has b een found in full detail. W e are h ungry

for the kno wledge, but not for the clean-up! The writing phase do es not giv e the

same impression of progress { indeed, it seems it will nev er end. After doing a lot of

researc h and unco v ering man y things, I feel that I kno w less no w than ev er b efore.

Ho w is this p ossible? W e start out seeking the T ruth, but inevitably �nd only deep er

questions.

"The more I kno w, the more I realize ho w little I kno w." { So crates

In the quest to enlarge our circle of kno wledge, w e inevitably enlarge the fron-

tier, where the questions lie. In the end, the searc h for answ ers is a searc h for new

questions. A w orking title for the thesis w as "The Searc h is the Goal", a pla y on

the Zen Buddhist adage "the path is the goal". This migh t explain wh y the feeling

of completeness that I w as hoping to ac hiev e is missing. T o put it in more de�nite

terms, thesis writing is ab out dra wing the line. When enough new questions ha v e

b een created, it is time to stop. Th us, the thesis in fron t of y ou is a w ork in progress,

halted for a momen t in time to allo w for prop er do cumen tation of the results ac hiev ed

so far. The circle of kno wledge do es not stop expanding.

I w as privileged to ha v e had the opp ortunit y to come to the Univ ersit y of Alb erta,

its Computing Science Departmen t, and not least, the GAMES researc h group. Stu-

den ts from around the w orld come to Edmon ton to study some of the hardest problems

that games ha v e to o�er. The div erse in terests and exp ertise of all the mem b ers form

a w onderful synergy that leads to high-p erformance programs and exciting researc h.

I can recall coun tless discussions in researc h meetings and at parties where games and

puzzles (and ho w to solv e them) w ere the sub ject of in tense debate.

I ha v e man y p eople to thank, without whom this thesis w ould not b e what it is

to da y . First and foremost, Jonathan Sc hae�er and his relen tless pursuit of excellence

{ nothing is go o d enough. Dra wing from his w ealth of kno wledge and exp erience has

allo w ed me to solv e man y hard problems. I thank the mem b ers of m y examining

committee, P eter v an Beek, Jo e Culb erson, Ric hard Korf, and Gordon Rostok er, for

their time and v aluable suggestions on ho w to impro v e the thesis. Yngvi Bj• ornsson,

for b eing a sounding b oard for ra w or unp olished ideas, and for the man y v aluable

hin ts and ideas he shared. Darse Billings, for stim ulating discussions ab out games

and ho w they p ertain to other asp ects of life, as w ell as his e�orts in impro ving

m y sp eak en and wrotten English. Neil Burc h, who rekindled m y spirits after a long

drough t of ideas. T on y Marsland, for b eing instrumen tal in m y coming to Alb erta.

Other mem b ers of the GAMES group that help ed pro duce ideas for this thesis, in so

man y direct and indirect w a ys: Mark Bro c kington, Ask e Plaat, Ro el v an der Go ot,

Duane Szafron, Denis P app, Lourdes P e ~ na, and Jac k v an Rijswijc k.

And, last but not least, m y family . Man uela, for her patience and supp ort, whic h

cannot b e repaid! Anne and Rob ert, for the jo y and inspiration they ga v e during the

�nal stages of this thesis. T o all of y ou { Thanks!

Con ten ts

Abstract 5

Preface 6

Con ten ts 8

List of Figures 13

List of T ables 16

1 In tro duction 1

1.1 Arti�cial In telligence and Searc h . 2

1.2 Con tributions . 4

1.3 Organization . 5

1.4 Publications . 6

2 Single-Agen t Searc h 7

2.1 Purp ose of Searc h . 7

2.1.1 Notation and T erminology . 8

2.2 Algorithms . 9

2.2.1 Uninformed Searc h . 9

2.2.2 Informed Searc h . 14

2.2.3 Cho osing the R ight Algorithm 22

2.3 Enhancemen ts . 22

2.3.1 T ransp osition T able . 23

2.3.2 Mo v e Ordering . 24

2.3.3 P attern Databases . 25

2.3.4 Macro Mo v es . 26

2.3.5 Summary . 27

2.4 Heuristic F unctions and Searc h Spaces 28

2.5 No-F ree-Lunc h Theorem(s) . 31

2.5.1 Bad News . 32

2.5.2 Go o d News . 32

2.6 Example Domains from the Literature 33

2.6.1 Sliding-Tile Puzzles . 33

2.6.2 Rubik's Cub e . 33

2.6.3 Mazes . 34

2.7 Summary . 34

3 Sok oban 35

3.1 The Game . 35

3.1.1 History and T est Suite . 36

3.1.2 Deadlo c k . 37

3.1.3 P osition of the Man . 38

3.1.4 High-Lev el Themes and Strategies 39

3.1.5 Creativit y , Art and Challenge 40

3.2 Wh y Is Sok oban Challenging? . 41

3.2.1 Deadlo c k . 42

3.2.2 Searc h-Space Size . 43

3.2.3 Lo w er Bound . 45

3.2.4 Conclusions . 45

3.3 Related W ork . 46

3.3.1 Mark James . 46

3.3.2 Andrew My ers . 46

3.3.3 Stefan Edelk amp . 47

3.3.4 Meiji Univ ersit y . 47

3.3.5 Sok oban Lab oratory . 47

3.3.6 Deepgreen . 48

4 Standard Single-Agen t Searc h Metho ds 49

4.1 Problem De�nition . 50

4.2 Searc h Algorithm . 50

4.3 Lo w er Bound Heuristic . 51

4.3.1 Minim um Cost Matc hing . 51

4.3.2 Deadlo c k Detection . 52

4.3.3 Underlying Algorithms . 52

4.3.4 En trance Impro v emen t . 52

4.3.5 P osition of the Man . 53

4.3.6 Linear Con
icts . 55

4.3.7 Dynamic Up dates . 56

4.3.8 Limitations . 57

4.3.9 Results . 59

4.4 T ransp osition T able . 59

4.4.1 Implemen tation . 59

4.4.2 Results . 60

4.5 Mo v e Ordering . 61

4.5.1 Implemen tation . 61

4.5.2 Results . 61

4.6 Deadlo c k T ables . 63

4.6.1 Construction . 63

4.6.2 V eri�cation and Compression 63

4.6.3 Usage of the Deadlo c k T ables 64

4.6.4 Limitations and Op en Problems 64

4.6.5 Results . 65

4.7 Macro Mo v es . 66

4.7.1 T unnel Macros . 66

4.7.2 Goal Macros . 68

4.7.3 Goal Cuts . 70

4.7.4 Correctness, Completeness and Optimalit y 72

4.8 Exp erimen tal Results . 72

4.9 Summary and Conclusions . 73

5 P attern Searc h 77

5.1 In tro duction . 77

5.2 Basic Idea . 77

5.3 Basic Algorithm . 78

5.4 Example . 80

5.5 Minimizing P atterns . 81

5.6 Deadlo c ks and P enalties . 81

5.7 Sp ecializing P attern Searc hes . 82

5.8 P arameters and Con trol F unction . 82

5.9 Storage and Matc hing . 84

5.10 Cuto�s and Bac k-Jumping . 85

5.11 Scan Searc h . 85

5.12 Utilit y Considerations . 87

5.13 Related W ork . 88

5.14 Limitations and Op en Problems . 88

5.15 Exp erimen tal Results . 89

5.16 Theoretical Considerations . 94

5.16.1 State Description Prop erties 94

5.16.2 Heuristic Prop erties . 95

5.16.3 P enalties . 95

5.16.4 Conclusions . 96

5.17 P attern Searc hes in the 15-Puzzle . 97

5.17.1 Implemen tation . 97

5.17.2 Exp erimen tal Results . 98

5.17.3 Conclusions . 100

5.18 Conclusions . 100

6 Relev ance Cuts 104

6.1 In tro duction and Motiv ation . 104

6.2 Relev ance Cuts . 105

6.2.1 In
uence . 106

6.2.2 Relev ance Cut Rules . 108

6.2.3 Example . 108

6.2.4 Discussion . 109

6.3 A Closer Lo ok at Relev ance Cuts . 110

6.3.1 Relev ance Cuts in Theory . 110

6.3.2 Randomizing Relev ance Cuts 112

6.4 Exp erimen tal Results . 112

6.4.1 Randomizing Relev ance Cuts 114

6.4.2 Relev ance Cuts in Theory Revisited 116

6.4.3 Summary . 119

6.5 Conclusions . 119

7 Ov erestimation 121

7.1 In tro duction and Motiv ation . 121

7.2 WID A* . 121

7.3 P attern Ov erestimation . 122

7.3.1 Maxim um P artial P enalties 122

7.3.2 Example . 123

7.3.3 Pruning versus P ostp oning . 124

7.4 Exp erimen tal Results . 124

7.4.1 WID A* . 124

7.4.2 P attern Ov erestimation . 124

7.4.3 Summary . 128

7.5 Conclusions and Op en Problems . 128

8 Single-Agen t Searc h Enhancemen ts 130

8.1 In tro duction . 130

8.2 Application-Indep enden t T ec hniques 131

8.3 Application-Dep enden t T ec hniques 131

8.4 T est Sets and Searc h E�ort . 137

8.5 Kno wledge T axonom y . 137

8.6 Con trol F unctions . 138

8.7 Single-Agen t Searc h F ramew ork . 139

8.8 Conclusions . 142

9 Conclusions and F uture W ork 143

Bibliograph y 146

A The 90 Problem T est Suite 152

B The 61 Kids Problems 158

C Implemen tation Details 160

C.1 Construction of Deadlo c k T ables . 160

C.2 Goal Macros . 162

C.2.1 Goal Ro oms . 162

C.2.2 En trances . 163

C.2.3 Goal-Macro T rees . 164

C.2.4 T arget Squares . 164

C.2.5 Goal-Macro T ree Generation 166

C.2.6 Piv ot P oin ts . 167

C.2.7 Included Stones . 167

C.2.8 P arking . 167

C.3 Customizing ID A* for P attern Searc hes 168

C.3.1 Stone Remo v al . 168

C.3.2 Multiple Goal States . 168

C.3.3 E�cien t Lo w er Bound . 168

C.3.4 T ransp osition T able En tries 169

C.4 Relev ance Cuts . 169

C.4.1 In
uence T able . 169

C.4.2 P arameter Settings . 171

D F ailed Ideas 172

D.1 Means End Analysis . 174

D.2 Bac kw ard Searc h . 174

D.3 Bidirectional Searc h . 175

D.4 Real-Time Searc h . 176

D.5 General P attern Databases . 176

D.6 Stone Reac habilit y . 177

D.7 Sup er Macros . 178

D.8 Conclusions . 179

List of Figures

1.1 Chapter Dep endencies . 5

2.1 Example Searc h Graph (T ree) With Legend 8

2.2 Random-Generation Algorithm . 10

2.3 Illustration of Breadth-First Searc h 10

2.4 Breadth-First Algorithm (for Unit-Cost Actions) 11

2.5 Illustration of Depth-First Searc h . 12

2.6 Depth-First Algorithm . 13

2.7 Best-First Algorithm . 15

2.8 Illustration of Best-First Searc h . 16

2.9 A* Algorithm . 17

2.10 Illustration of A* . 18

2.11 ID A* Algorithm . 19

2.12 Illustration of ID A* . 19

2.13 Illustration of Bidirectional Searc h 21

2.14 Example Problem to Illustrate T ransp osition T ables and Macros . . . 23

2.15 Impact of T ransp osition T ables . 23

2.16 Impact of Macro Mo v es . 26

2.17 T unneling: The Dynamic Creation of Macros 27

2.18 Searc h Space Without Heuristic Kno wledge 28

2.19 Searc h Space With Go o d Heuristic Kno wledge 29

2.20 Searc h Space With Misleading Heuristic Kno wledge 30

2.21 Searc h Space With P erfect Kno wledge 30

2.22 Examples of Searc h-Space W a v es . 31

3.1 Sok oban Problem #1 With One Solution 35

3.2 Sok oban Problem #39 . 36

3.3 Examples of Deadlo c ks . 37

3.4 A Large Deadlo c k in Maze #8 . 38

3.5 P osition of the Man Matters . 38

3.6 P arking . 39

3.7 Sok oban Problem #50 . 39

3.8 Sok oban Problem #38 . 40

3.9 Hiroshi Y amamoto's Masterpiece . 40

3.10 Masato Hiramatsu's Creation . 41

3.11 Mic hael Reinek e's Christmas T ree . 41

3.12 Example of Necessary Irrev ersible Mo v es 42

4.1 Minmatc hing Example . 51

4.2 Minmatc hing Detects Deadlo c k . 52

4.3 Both Stones Are F orced to P ass Through Ce 53

4.4 Distance Dep ends on the P osition of the Man 54

4.5 The Stone Needs to Be Bac k ed Out 54

4.6 Bac k out Con
ict Impro v es Lo w er Bound for Problem #4 54

4.7 Example of Linear Con
icts . 55

4.8 Complications With Linear Con
icts 56

4.9 Example for Dynamic Distance Up dates 57

4.10 Limitations of the Lo w er Bound Estimator 57

4.11 Adding T ransp osition T ables (Linear and Log Scale) 60

4.12 The E�ect of Mo v e Ordering (Av eraged Ov er 1% and 5% Depth) . . 61

4.13 Adding Mo v e Ordering (Linear and Log Scale) 62

4.14 Example Co v erage of the Deadlo c k T ables 64

4.15 E�ect of Deadlo c k T ables (Av eraged Ov er 1% and 5% Depth) 65

4.16 Adding Deadlo c k T ables (Linear and Log Scale) 65

4.17 A One-W a y T unnel . 66

4.18 Tw o-W a y T unnels . 67

4.19 Adding T unnel Macros (Linear and Log Scale) 68

4.20 Comparing T unnel and Goal Macro E�ects 69

4.21 P arking in a Goal Area . 69

4.22 Adding Goal Macros (Linear and Log Scale) 71

4.23 Adding Goal Cuts (Linear and Log Scale) 71

4.24 T urning One Searc h Enhancemen t O� at a Time 73

5.1 Pseudo Co de for P attern Searc hes . 78

5.2 Deadlo c k Example . 80

5.3 Sequence of T est Mazes as P assed to PID A* (a, b, c, and d) 80

5.4 P enalt y Example . 81

5.5 Example for Con trol F unction . 83

5.6 Maximizing the T otal P enalt y (a to d) 85

5.7 Maze #30 With a P enalt y of 38 (24+14) 86

5.8 No P enalt y . 88

5.9 Enabling One P attern Searc h (Linear and Log Scale) 89

5.10 E�ort Graph Including P attern Searc h (Linear and Log Scale) 91

5.11 Disabling One P attern Searc h (Linear and Log Scale) 93

5.12 Example of C of In�nit y . 94

5.13 P attern Searc hes in the 15-Puzzle (Linear and Log Scale) 99

5.14 P attern Searc hes in the 15-Puzzle Reusing P atterns (Linear and Log

Scale) . 99

6.1 The Num b er of Alternativ es Changes the In
uence 106

6.2 The Lo cation of the Goals Matters 106

6.3 T unnels and In
uence . 107

6.4 Example Maze With Lo calit y . 109

6.5 The E�ect of Relev ance Cuts . 114

6.6 E�ort Graph Including Relev ance Cuts (Linear and Log Scale) 115

6.7 Relev ance Cuts Sa vings . 115

6.8 Measuring b and r . 116

6.9 P ercen t of Relev ance Cuts Eliminating Solutions 117

6.10 Solution Articulation Sequence . 118

7.1 Maxim um P artial P enalt y Example 123

7.2 WID A*, V arying w (Linear and Log Scale) 125

7.3 P attern Ov erestimation, V arying s (Linear and Log Scale) 125

7.4 Scatter Plot for Ov erestimation With s = 1 : 8 (Linear and Log Scale) 125

7.5 Adding Ov erestimation to R ol ling Stone (Linear and Log Scale) . . . 128

8.1 Tw o Simple Sok oban Problems . 131

8.2 Num b er of Problems Solv ed Ov er Time 132

8.3 E�ort Graph, Rep eated (Linear and Log Scale) 132

8.4 T urning One Enhancemen t O� (Linear and Log Scale) 133

8.5 T axonom y of Searc h Enhancemen ts in Sok oban 138

8.6 Enhanced ID A* . 140

8.7 Prepro cessing Hierarc h y . 141

C.1 Deadlo c k T ree . 161

C.2 Example Deadlo c k T able Query Order 162

C.3 Goal Macro Example . 162

C.4 Tw o Kinds of En trances . 163

C.5 Goal-Macro T ree Example . 165

C.6 T arget Squares . 165

C.7 Piv ot P oin t Example . 167

C.8 Example Squares . 170

D.1 Dev elopmen t Chain of Success . 173

D.2 A Problem Where Bac kw ard Searc h Wins 174

List of T ables

3.1 Searc h-Space Sizes for the T est Suite 44

4.1 Lo w er Bounds . 58

4.2 E�ort Graph Data . 74

4.3 T urning One F eature O� at a Time 75

5.1 Enabling One P attern Searc h . 90

5.2 Disabling One P attern Searc h . 92

5.3 Exp erimen tal Results for the 15 Puzzle (I) 101

5.4 Exp erimen tal Results for the 15 Puzzle (I I) 102

6.1 Exp erimen tal Data . 113

7.1 Calculation of Maxim um P artial P enalties 123

7.2 WID A*, V arying w . 126

7.3 P attern Ov erestimation, V arying s 127

8.1 T urning One Enhancemen t O� (I) . 134

8.2 T urning One Enhancemen t O� (I I) 135

8.3 The Kids Problems . 136

C.1 Example In
uence V alues . 170

C.2 Example In
uence Calculation . 171

Chapter 1

In tro duction

\T o �nd the w a y out of a lab yrin th," William recited, \there is only one

means. A t ev ery new junction, nev er seen b efore, the path w e ha v e tak en

will b e mark ed with three signs. If, b ecause of previous signs on some

of the paths of the junction, y ou see that the junction has already b een

visited, y ou will mak e only one mark on the path y ou ha v e tak en. If

all the ap ertures ha v e already b een mark ed, then y ou m ust retrace y our

steps. But if one or t w o ap ertures of the junction are still without signs,

y ou will c ho ose an y one, making t w o signs on it. Pro ceeding through an

ap erture that b ears only one sign, y ou will mak e t w o more, so that no w

the ap erture b ears three. All the parts of the lab yrin th m ust ha v e b een

visited if, arriving at a junction, y ou nev er tak e a passage with three signs,

unless none of the other passages is no w without signs."

\Ho w do y ou kno w that? Are y ou an exp ert on lab yrin ths?"

\No, I am citing an ancien t text I once read."

\And b y observing this rule y ou get out?"

\Almost nev er, as far as I kno w..."

Adso and William in the lab yrin th, \The Name of the Rose", Um b erto Eco.

1

1.1 Arti�cial In telligence and Searc h

Researc h in to searc h metho ds is a fundamen tal branc h of Arti�cial In telligence (AI).

Without joining the debate o v er what in telligence is and ho w it can b e ac hiev ed,

it seems generally recognized that searc h-based programs can solv e problems that

h umans w ould sa y require in telligence. Games and puzzles are examples of these

problems. They ha v e pro vided arti�cial in telligence researc hers with excellen t exp er-

imen tal domains. First, games are closed and w ell-de�ned applications where im-

pro v emen ts are easily measured. Second, they ha v e supplied researc hers with strong

motiv ation and clear goals, suc h as b eating the b est h umans with an arti�cial en tit y .

Fift y y ears of AI researc h using games as an exp erimen tal test b ed has led to some

imp ortan t results:

� Some games are solv ed. That means the computer kno ws a strategy that allo ws

it to alw a ys ac hiev e the b est p ossible result. Among these games are Go-Moku

and Qubic [All94], Nine-Men's-Morris [Gas94] and Connect-4 [All88].

� In sev eral games, programs ha v e surpassed the b est h umans. In c hec k ers, the

program Chino ok w on the W orld Championship in a regular matc h and defended

its title sev eral times un til it retired [SLLB96 , Sc h97]. The Othello program

L o gistel lo defeated the w orld c hampion 6-0 in a matc h [Bur97]. The program

Maven pla ys Scrabble at suc h a high lev el that it loses only a few p ossible p oin ts

p er game, consisten tly surpassing h uman p erformance.

� In other games, programs are approac hing c hampionship calib er that riv als the

b est h umans. In c hess, strong programs can b eat all but the v ery b est h umans.

De ep Blue ev en defeated the W orld Champion Garry Kasparo v in an exhibition

matc h [New96]. Gerry T esaro's TD-Gammon pla ys bac kgammon on par with

the b est h umans in the w orld [T es95].

� F or games lik e bridge [Gin99] and p ok er [BPSS99], signi�can t progress is b eing

made that ma y lead to high qualit y pla y riv aling the b est h uman pla y ers.

These are imp ortan t success stories for AI researc h. F or some of these games,

one could argue that the T uring test has b een passed, alb eit in a limited domain.

Ho w ev er, some of the programs pla y so w ell that they w ould ha v e to start blundering

once in a while to app ear to b e h uman!

Of course, there are man y c hallenges left. Games suc h as Go and Shogi still resist

the traditional approac hes that are successful in most of the men tioned games. W e

b eliev e it is no coincidence that success in writing programs for games app ears to

b e correlated with our understanding of ho w to mak e searc h w ork for them. This

observ ation underscores that searc h is one of the most basic and imp ortan t to ols in

AI.

Domains b esides t w o-pla y er games in whic h searc h is successfully deplo y ed are

optimization tasks, sc heduling, and, to a lesser exten t, planning. These applications

are examples of single-agen t searc h domains. In con trast to adv ersarial games, suc h as

c hess and p ok er, where opp onen ts try to ac hiev e opp osing goals, single-agen t searc h

2

assumes that only one agen t is manipulating the w orld in order to ac hiev e some

(optimal) goal. Puzzles b elong to the single-agen t category as w ell.

The researc h in to games and puzzles has pro duced an enormous b o dy of useful

tec hniques and metho ds for problem solving that has found its w a y in to main stream

computing science. Ho w ev er, it has also some serious dra wbac ks. The arti�cial nature

of games is re
ected in their searc h-space prop erties. Relativ ely manageable searc h-

spaces, either small or w ell structured, ha v e b een implicitly assisting the early progress

of AI researc h. Ho w ev er, they do not compare to the complexities of the real-w orld

applications scien tists are w orking on to da y . Because of the com binatorial nature

of most domains and the resulting exp onen tial size of the searc h spaces, scalabilit y

of searc h metho ds is of great imp ortance. If the domains used as researc h v ehicles

do not k eep pace in complexit y and relev an t prop erties, the researc h results are less

lik ely to b e useful for practical domains.

The success of searc h dep ends on the abilit y of the program to visit most of the

relev an t parts of the searc h space. If the searc h space is to o large and/or heuristic

kno wledge to fo cus the searc h is missing, success is unlik ely . Since the searc h-space

size of a problem is �xed, kno wledge is needed to fo cus the searc h. This is where

mac hines curren tly fail and h umans still ha v e a considerable edge: �nding and using

kno wledge to reduce the problem complexit y . Th us, more researc h on ho w to fo cus

searc h on relev an t parts of the searc h space is needed.

Metho ds that do not adapt to the problem instance, but instead rely on general

prop erties of the domain, can help to impro v e searc h e�ciency . But, they are limited

b y the necessit y of k eeping their kno wledge generally applicable. Ho w ev er, h umans

are capable of learning during the problem solving pro cess ab out ho w to solv e the

curren t problem instance. This suggests dev eloping dynamic metho ds to glean and use

kno wledge that p ertains to the sp eci�c problem instance curren tly under examination.

This sp eci�cit y can help to break the complexit y barrier on a problem-b y-problem

basis. Sp eci�c problem kno wledge can remo v e irrelev an t parts from the searc h with

the precision of a scalp el. Of course, instance-dep enden t kno wledge has its price. It

has to b e found o v er and o v er again, and generalizing it is not only little understo o d,

but it w ould turn this kno wledge in to a dull, ev en though larger, mac hete.

Dynamic kno wledge disco v ery is in fact a form of learning. It is p erformed at the

lev el of problem instances, but sho ws all the prop erties of learning. As the learning

progresses, the classi�cation of subtrees as relev an t/irrelev an t b ecomes more precise.

The result is a more e�cien t searc h, reducing the complexit y of the searc h space at

hand. Ho w ev er, our curren t understanding of these dynamic metho ds is limited at

b est.

In this thesis, a puzzle game (Sok oban) is used to explore new searc h tec hniques for

single-agen t searc h. Sok oban o�ers new c hallenges, b ecause it has a m uc h larger searc h

space than previously studied puzzle domains and exhibits real-w orld-lik e searc h-

space prop erties. Deadlo c k, the p ossibilit y to maneuv er in to an unsolv able p osition,

pro vides considerable di�culties to traditional searc h metho ds. This thesis sho ws

that traditional searc h metho ds fail to solv e more than trivial Sok oban problems. The

state-of-the-art is signi�can tly impro v ed when traditional metho ds are c hanged suc h

that they are able to adapt to eac h instance. F urthermore, sev eral new tec hniques

3

are suggested to com bat the new complexities and c hallenges exempli�ed b y Sok oban.

Most successful is a tec hnique that dynamically gathers kno wledge during the searc h

to a v oid deadlo c ks and to impro v e the searc h's understanding of the searc h space.

Another metho d that uses the heuristic notion of relev ance to fo cus the searc h e�ort

is describ ed and analyzed. This thesis closes with a suggestion of a framew ork and a

classi�cation for single-agen t searc h enhancemen ts.

The researc h presen ted here lea v es a great n um b er of imp ortan t issues op en. The

p erformance of domain-indep enden t solv ers is still quite limited. The question is, ho w

can the enhancemen ts suggested here (and, of course, man y others already suggested

elsewhere) b e automatically instan tiated for a new domain? Can they b e form ulated

in a domain-indep enden t w a y? Can w e iden tify the essen tial prop erties a domain m ust

ha v e to b e amenable to a certain searc h enhancemen t? F or simple enhancemen ts,

suc h as transp osition tables, this is p ossible. Can w e �nd suc h w a ys for other, more

complex searc h enhancemen ts? After all, h umans seem to b e able to adapt their

cognitiv e pro cesses to a seemingly endless n um b er of new problems. W e are only at

the b eginning...

1.2 Con tributions

This thesis enhances our understanding of single-agen t searc h with the follo wing con-

tributions:

� The puzzle game Sok oban is in v estigated and it is sho wn that its large searc h-

space size and particular searc h-space prop erties o�er signi�can t new c hallenges

for AI researc h. One of these c hallenges is the p ossibilit y of deadlo c ks: the

searc h can create problem con�gurations that ha v e no solution. In fact, state-

of-the-art single-agen t searc h is sho wn to b e insu�cien t to ev en solv e Sok oban

problems of mo dest complexit y .

� The concept of macro mo v es [Kor85b] is impro v ed b y adding automatic o�-line

macro-mo v e generation. Signi�can t e�ciency gains are the result.

� A new searc h enhancemen t is in tro duced: pattern searc hes. Small, sp eculativ e

on-line searc hes gather dynamic kno wledge that helps a v oid deadlo c ks and im-

pro v e the heuristic estimate of the distance to the solution. The use of this

dynamic kno wledge allo ws orders-of-magnitude reductions in searc h-tree sizes

for our Sok oban solv er. The necessary prop erties of the application domain and

heuristic function are iden ti�ed that allo w the application of pattern searc hes.

The feasibilit y of pattern searc hes for di�eren t domains is sho wn using the ex-

ample of the 15-puzzle.

� Relev ance cuts, a new domain-indep enden t forw ard-pruning tec hnique is pre-

sen ted. It is theoretically analyzed, and the risks and b ene�ts are studied. The

analysis is con trasted with the exp erimen tal results. Relev ance cuts lead to

relativ ely small searc h-e�ciency impro v emen ts in the domain of Sok oban.

4

2. Single-Agent Search 3. Sokoban

4. Standard Single-Agent Search Methods

5. Pattern Search

7. Overestimation

8. Single-Agent Search Enhancements

6. Relevance Cuts

Figure 1.1: Chapter Dep endencies

� A traditionally successful metho d for o v erestimation (WID A* [Kor93]) is sho wn

to fail in Sok oban. An explanation for this phenomenon is giv en. An alternate,

domain-dep enden t metho d, driv en b y the dynamic kno wledge gathered with the

pattern searc hes, is sho wn to yield signi�can t impro v emen ts in searc h e�ciency .

� A classi�cation of single-agen t searc h enhancemen ts is presen ted. It rev eals

in teresting insigh ts in to the strengths and w eaknesses of certain fundamen tal

approac hes to enhancing searc h algorithms.

� Con trol kno wledge and con trol functions, new concepts in single-agen t searc h,

are prop osed. The distinction b et w een task and con trol kno wledge allo ws for a

cleaner treatmen t during design, implemen tation and tuning of searc h enhance-

men ts.

� A framew ork for single-agen t searc h enhancemen ts is giv en. F our basic t yp es of

searc h enhancemen ts are iden ti�ed.

1.3 Organization

Figure 1.1 con tains a graph sho wing these in ter-c hapter dep endencies. After an in-

tro duction to single-agen t searc h in Chapter 2, Chapter 3 in tro duces the puzzle game

Sok oban in detail. Chapter 2 will b e useful when reading through parts of Chapter 3,

but it is not essen tial. Readers familiar with single-agen t searc h and/or Sok oban ma y

wish to skip Chapter 2 and Chapter 3, resp ectiv ely .

Chapter 4 examines the p erformance of the standard single-agen t searc h tec h-

niques that are a v ailable in the literature and sho ws ho w to enhance macro mo v es

with o�-line precomputation. This c hapter also la ys out the exp erimen tal setup used

throughout this thesis. It is fundamen tal to the understanding of either of the fol-

lo wing three c hapters in terms of metho dology and terminology .

5

Chapter 5 in tro duces Pattern Se ar ch , a metho d that dynamically learns ho w to

a v oid deadlo c ks and impro v e the lo w er b ound.

Chapter 6 discusses a new forw ard-pruning tec hnique called R elevanc e Cuts .

In Chapter 7, the p ossibilities for o v erestimation are explored. The reader of this

c hapter should b e comfortable with ideas and terms de�ned in Chapter 5.

Chapter 8 sho ws ho w these tec hniques �t in to a framew ork that extends the tra-

ditional view on single-agen t searc h. T o get the most from this c hapter, the reader

should b e w ell v ersed with single-agen t searc h (Chapter 2), the standard single-agen t

searc h enhancemen ts (Chapter 4) and the new searc h enhancemen ts from Chapter 5

to Chapter 7.

1.4 Publications

Chapter 4 \Using Standard Single-Agen t Searc h Metho ds" is based on t w o pap ers.

The �rst pap er, \Sok oban: A Challenging Single-Agen t Searc h Problem" [JS97],

w as presen ted at the w orkshop \Using Games as an Exp erimen tal T estb ed for AI

Researc h" at IJCAI'97, Nago y a, Japan. The second pap er, \Sok oban: Ev aluating

Standard Single-Agen t Searc h T ec hniques in the Presence of Deadlo c k" [JS98c], is a

revised and up dated v ersion of the w orkshop pap er. It w as presen ted in 1998 at the

Canadian AI conference in V ancouv er, Canada.

Chapter 5 \P attern Searc hes" is based on the pap er \Single-Agen t Searc h in the

Presence of Deadlo c k" [JS98b] whic h w as presen ted at AAAI'98, Madison/WI, USA.

Chapter 6 \Relev ance Cuts" stems from the pap er \Sok oban: Impro ving the

Searc h with Relev ance Cuts" [JS99b] whic h w as accepted in 1999 for a sp ecial issue

of the Journal of Theoretical Computing Science. This pap er is based on an earlier

v ersion, \Relev ance Cuts: Lo calizing the Searc h" [JS98a], whic h w as presen ted in

1998 at \The First In ternational Conference on Computers and Games", Tsukuba,

Japan.

Chapter 8 \Single-Agen t Searc h Enhancemen ts" is based on the pap er \Domain-

Dep enden t Single-Agen t Searc h Enhancemen ts" [JS99a] whic h w as presen ted at IJ-

CAI'99, Sto c kholm, Sw eden.

6

Chapter 2

Single-Agen t Searc h

2.1 Purp ose of Searc h

Real-w orld problems can often b e abstracted in to mo dels where a state of the w orld

is describ ed mathematically . State-tr ansition rules describ e the conditions for the

transitions b et w een states in the mo del and the c hanges these transitions cause.

F or example, the c hildren's to y called sliding-tile puzzle can b e mo deled in the

follo wing w a y . A state consists of the curren t lo cation of the tiles and the empt y

space. The state-transition rules de�ne that an y of the up to 4 neigh b oring tiles

can b e pushed in to the empt y space. This simple description allo ws us to mo del the

\real-w orld" problem of the sliding-tile puzzle economically .

Single-agent se ar ch assumes that only one \agen t" is c hanging the state of the

w orld, in principle, ha ving total con trol within the rules de�ned b y the mo del. A d-

versarial se ar ch assumes m ultiple (t ypically t w o) agen ts that b oth c hange the w orld

to ac hiev e opp osing goals. W e will restrict ourselv es to single-agen t searc h in this

thesis.

State descriptions and state-transition rules (collectiv ely , the \mo del") implicitly

de�ne a gr aph that is called the pr oblem or state sp ac e . The no des in this graph

represen t the states and the edges are transitions b et w een states. A pr oblem is giv en

b y a start state of the w orld and a description of at least one go al state . A solution

w ould b e a path leading from the start state to an y of the goal states. A solution

path indicates the sequence of transitions needed to transform the start state in to

the goal state. Some restrictions on that path migh t b e giv en, suc h as the shortest

p ossible path in terms of n um b er of transitions.

In a problem description as de�ned ab o v e, �nding a solution means �nding a path

in a graph. Di�eren t algorithms ha v e b een prop osed that attempt exactly that. They

follo w di�eren t strategies.

7

Edge to (best) Goal

Edge

g Closed Node
h*
h

f

g Open Node
h*
h

f

Entire Graph

1

0

1

2

3

22 3
4

2
3

3

1
2

1
1

0
0

0
0

2
2

2

1
3

3 3
1
1

4
4

3
4

2 3

5

Figure 2.1: Example Searc h Graph (T ree) With Legend

2.1.1 Notation and T erminology

First w e will in tro duce some notation and terminology to help explain the algorithms

in the next sections. The exact distanc e

1

from a state s to the closest goal is usually

referred to as h

�

(s). The function h

�

(s) is generally unkno wn. If w e had a p erfect

function for h

�

, �nding an optimal path to a goal w ould b e trivial and searc h w ould b e

unnecessary . The heuristic function h (s) estimates h

�

(s) and is said to b e admissible ,

if h (s) � h

�

(s) ; 8 s 2 S , where S is the set of all states in the searc h space. In

other w ords, h (s) is a lower b ound on h

�

(s). The function h (s) is called c onsistent , if

h (s

1

) � h (s

2

) + c (s

1

; s

2

) ; 8 s

1

; s

2

2 S , with c (s

1

; s

2

) b eing the cost to get from s

1

to s

2

.

Consistency means that eac h transition ha ving cost c (s

1

; s

2

) can decrease the heuristic

v alue b y at most that cost. Consisten t heuristics are necessarily admissible. F or an y

of the goal states h (s

g

) = 0, where s

g

2 G and G is the set of all goal states and

G � S . The v alue g (s) is the cost of all the transitions (or actions) p erformed to reac h

s from the start state s

0

, therefore g (s

0

) = 0. W e will also use the function f (s), whic h

is de�ned as f (s) = g (s) + h (s). In tuitiv ely , f (s) is the estimate of the total distance

from the start state to a goal state via s . f

�

(s) is de�ned as f

�

(s) = g (s) + h

�

(s).

Th us, f

�

(s) is the actual cost along an optimal path through the state s . W e will

call a generated no de in a searc h graph op en if all of its successors ha v e not y et b een

generated b y the searc h algorithm and close d otherwise.

Figure 2.1 sho ws an example of a state space whic h w e will use throughout this

c hapter to illustrate the di�eren t searc h algorithms. No des are mark ed with h and

h

�

, and with g and f , as indicated in the legend of Figure 2.1.

1

Cost and distance will b e used in terc hangeably , since w e assume cost to b e equal to distance.

This simplifying assumption do es not in v alidate the generalit y of the follo wing statemen ts, since

distance could b e de�ned di�eren tly .

8

2.2 Algorithms

Man y di�eren t algorithms ha v e b een prop osed to tra v erse searc h spaces. W e will

concen trate on the most imp ortan t and relev an t to this thesis. W e will start with

three uninformed searc hes: random w alk, breadth-�rst searc h and depth-�rst searc h.

W e then mo v e on to informed searc hes, lik e A*, that use additional information in

the form of heuristic kno wledge to guide the searc h. This section closes with some

in tuitiv e explanations of searc h spaces and heuristic functions.

2.2.1 Uninformed Searc h

Random Generation and Random W alk

Random w alk do es what the name suggests: The algorithm w alks randomly through

the searc h space, c ho osing an y of the neigh b ors. This migh t sound silly , but it can b e

a go o d idea if the goal densit y (the ratio of goal to non-goal states) is high enough, the

qualit y (cost) of a solution is not a ma jor issue, and little or no kno wledge ab out the

problem domain is a v ailable. Systematic searc h algorithms can su�er from problems

suc h as space requiremen ts, cycles, transp ositions, and in�nite paths { problems that

are almost no issue in random algorithms. Ho w ev er, random algorithms are easily

outp erformed b y more systematic approac hes when searc hing for go o d qualit y solu-

tions, or searc hing in large searc h spaces with lo w goal densit y , or when high-qualit y

kno wledge ab out the problem is a v ailable.

Figure 2.2 sho ws pseudo co de for a random-generation algorithm. Instead of

c ho osing a neigh b or, it randomly selects an y of the op en no des. OpenStorage refers

to a data structure that can simply hold states visited, suc h as a list. The routines

Store and SelectRandomly store and retriev e as w ell as remo v e states from that data

structure. Empty tests if the data structure still con tains states. Child expands a

state (creates all p ossible successors b y applying all legal actions) and Solution tests

if a state is a goal state.

Some h umans practice a form of random w alk when they try to �nd, for example,

bab y fo o d in a big departmen t store that they visit for the �rst time. Without

kno wledge of where the pro ducts are lo cated, most of their steps tak e them in a

random direction, ev en tually reac hing the shelf with the bab y fo o d.

Breadth-First Searc h

In tuitiv ely , breadth-�rst searc h tra v erses the searc h space systematically b y visiting

all the no des that are closest to the start state b efore visiting the ones further a w a y ,

hence br e adth-�rst . Figure 2.3 sho ws an order the no des of the example graph in

Figure 2.1 are expanded.

Figure 2.4 sho ws the pseudo co de for breadth-�rst searc h. It starts b y storing

the start state in to a �rst-in-�rst-out (FIF O) queue that holds all op en states, states

that are due to b e expanded.

2

Un til a goal state is found, breadth-�rst searc h tak es

2

Note that Store for OpenStorage in the random w alk er and Store for OpenFIFO ha v e sligh tly

9

RandomWalk(StartState)

f

Store(OpenStorage, StartState);

Success = FALSE;

DO f

CurrentState = SelectRandomly(OpenStorage);

IF(Solution(CurrentState))

Success = TRUE;

ELSE

FOREACH(Child(CurrentState)) DO

Store(OpenStorage, Child(CurrentState));

g UNTIL(Success OR Empty(OpenStorage));

IF(Success) RETURN(CurrentState);

ELSE RETURN(NULL);

g

Figure 2.2: Random-Generation Algorithm

3
2

1
3

3
2

2
2

2
2

3
2

1
3

1
2

3
4

2
2

3
2

1
1

1
3

1
1

1
2

3
4

Step 6

2
2

3
2

1
1

1
3

1
1

1
2

0
0

3
4

Step 7

2
2

3
2

1
1

1
3

1
1

1
2

0
0

0
0

3
4

Step 8

2
2

3
2

1
1

1
3

1
1

1
2

0
0

0
0

Step 9

3
4

2
2

3
2

1
3

1
2 1

1

Step 5

3
41

1

2
2

3
2

1
3

1
2

Step 4

3
4

Step 3Step 2Step 1

Figure 2.3: Illustration of Breadth-First Searc h

10

BreadthFirst(StartState)

f

Store(OpenFIFO, StartState);

Success = FALSE;

DO f

CurrentState = GetFirstIn(OpenFIFO);

IF(Solution(CurrentState))

Success = TRUE;

ELSE

FOREACH(Child(CurrentState)) DO

Store(OpenFIFO, Child(CurrentState));

g UNTIL(Success OR Empty(OpenFIFO));

IF(Success) RETURN(CurrentState);

ELSE RETURN(NULL);

g

Figure 2.4: Breadth-First Algorithm (for Unit-Cost Actions)

the next state from the queue, expands it and stores all successors at the end of the

queue.

Consider an analogy . When w e drop our last matc h in a dark cellar, one w ould

usually kneel do wn, touc hing the immediate area on the
o or, slo wly extending our

reac h, enlarging the area searc hed un til w e touc h the matc h. This is in principle a

breadth-�rst searc h. This approac h seems reasonable, since w e exp ect the matc h to

b e close b y .

This simple algorithm is guaran teed to �nd an optimal solution, if all actions ha v e

the same (unit) cost. In the case of non-unit-cost actions, ha ving found a solution,

w e ha v e to con tin ue to expand all states in the queue that ha v e a cost less than the

curren tly b est solution. Tw o c hanges are necessary to ac hiev e this. First, a simple

c hec k of eac h new state is added b efore it is put in to the queue to see if its cost is less

than the curren t b est solution. Second, the algorithm stops only after the queue is

empt y . Dijkstra's shortest-path algorithm is the generalisation of breadth-�rst searc h

to this case.

The immediate concern with this algorithm is its space requiremen t. The queue

con tains the en tire searc h fron tier, all the op en states. This can quic kly exhaust the

memory capacit y , ev en for mo derately complex problems. F or problems where that

is the case, w e need an alternativ e.

Depth-First Searc h

Depth-�rst searc h explores the searc h space from top to b ottom across the graph (lik e

columns in a table). More sp eci�cally , b efore searc hing the siblings of a no de, all its

c hildren are searc hed. Th us, the deep est op en no des are expanded �rst. Figure 2.5

di�eren t seman tics, eac h according to the kind of data structure they are op erating on.

11

3
2

Step 1

3
2

2
21

3

Step 2

2
2

3
2

1
2

1
3

Step 3

3
4

2
2

3
2

1
2

1
3

3
4

Step 4

2
2

3
2

1
3

1
2

3
4

1
1

0
0

Step 7

2
2

3
2

1
3

1
2

3
4

1
1

0
0

Step 6

2
2

3
2

1
1

1
3

3
4

1
2

Step 5

Figure 2.5: Illustration of Depth-First Searc h

sho ws depth-�rst searc h for our example graph in Figure 2.1.

T o ac hiev e the b eha vior from the sk etc h of the breadth-�rst algorithm ab o v e, w e

simply c hange the queue in to a stac k (last-in-�rst-out = LIF O)

3

. Figure 2.6 sho ws

the pseudo co de for the depth-�rst algorithm. If the algorithm stops after the �rst

solution is found, w e cannot b e guaran teed to ha v e an optimal solution. W e will

ha v e to explore all c hildren of the start state to mak e sure. Ho w ev er, there is one

observ ation that can b e used to impro v e the e�ciency . Once a state s has a cost f (s)

larger than or equal to the curren tly b est solution, exploring its successors will not

yield an y b etter solution and w e can stop searc hing this part of the searc h space, if

no actions ha v e negativ e cost.

The adv an tage of depth-�rst searc h o v er breadth-�rst searc h is in the space re-

quiremen ts. The stac k only holds all the neigh b oring states of the states on the

curren t path. That means that the space needed for the stac k is linear in the length

of the curren t searc h path, whic h is logarithmic in the size of the tree. On the other

hand, breadth-�rst searc h stores the searc h fron tier, whic h, b ecause of the exp onen tial

gro wth of the searc h tree, gro ws exp onen tially .

When Colum bus set out from Spain to �nd India in the W est, he did not w aste

time trying to �nd it in the immediate vicinit y of Spain; he w en t straigh t W est. W e

kno w to da y that this depth-�rst approac h, b ecause of the size of the goal (w e assume

it w as America), mak es p erfect sense.

The ob vious dra wbac k of this algorithm is the p ossibilit y of cycles or in�nite paths.

3

The atten tiv e reader will notice a sligh t inconsistency here. If the no des are generated from left

to righ t, as is usually assumed, and immediately placed on the stac k, they w ould b e expanded righ t

to left. Ho w ev er, Figure 2.5 sho ws a left-to-righ t expansion.

12

DepthFirst(StartState)

f

Push(OpenStack, StartState);

Success = FALSE;

DO f

CurrentState = Pop(OpenStack);

IF(Solution(CurrentState))

Success = TRUE;

ELSE

FOREACH(Child(CurrentState)) DO

Push(OpenStack, Child(CurrentState));

g UNTIL(Success OR Empty(OpenStack));

IF(Success) RETURN(CurrentState);

ELSE RETURN(NULL);

g

Figure 2.6: Depth-First Algorithm

If the problem domain allo ws for either of these, the simple algorithm of Figure 2.6

migh t fail to �nd a solution. If the algorithm had a notion of ho w m uc h e�ort w as

sp en t on a certain path and an estimate ab out ho w far a p oten tial solution w as a w a y ,

these t w o problems could b e a v oided.

Iterativ e Deep ening

Iterativ e deep ening is an attempt to rectify the problems depth-�rst searc h faces

with in�nite paths or lo ops, without incurring the excessiv e space requiremen ts of

breadth-�rst searc h. It w as �rst in tro duced in [SA77, Kor85a], alb eit for minimax-

lik e algorithms and with a sligh tly di�eren t purp ose.

The basic idea is to iterativ ely deep en the maxim um depth a depth-�rst searc h

can tra v erse in to the searc h tree. If a certain iteration has �nished without �nding

a goal, the maximal depth is increased and the depth-�rst searc h is restarted. A t

�rst this migh t sound lik e a lot of w asted w ork, but since the searc h-tree size gro ws

exp onen tially with the depth, the size of the tree is dominated b y the e�ort sp en t

in the last iteration. Th us, all previous iterations searc h a relativ ely small p ortion

of no des when compared with the curren t iteration. Additionally , if a goal is found,

it m ust b e an optimal goal, since the previous iteration searc hed all no des reac hable

with less mo v es then the curren t iteration allo ws (giv en unit-cost actions).

Iterativ e Broadening

Iterativ e broadening [Gin93a] is to breadth-�rst searc h what iterativ e deep ening is

to depth-�rst searc h. The n um b er of successors explored at eac h no de in the tree is

restricted to a �xed p ortion (or alternativ ely a �xed n um b er) of all successors. If no

solution is found, the searc h can b e restarted with more successors considered at eac h

13

no de. It is imp ortan t to note here that the searc h-tree size gro wth is only damp ened;

it still gro ws exp onen tially!

Since iterativ e broadening do es not imp ose depth limits p er se , lo ops and in�nite

paths can lead to problems if not searc hed in a breadth-�rst manner. T o a v oid

excessiv e space requiremen ts, one can use the iterativ e deep ening idea in connection

with iterativ e broadening. Ho w ev er, if a searc h iteration failed to �nd a solution, it is

hard to decide if the searc h should broaden or deep en the searc h e�orts. V ery little

researc h has b een done to in v estigate mec hanisms that migh t b e useful to con trol

suc h h ybrid searc hes.

Beam Searc h

Beam searc h [Win92 , Bis92] restricts the n um b er of op en states p er lev el in the tree

to a constan t { the b eam in to the searc h tree. Ob viously , the searc h trees are only

gro wing linearly in depth. Ev en though the idea migh t seem app ealing at �rst, it

comes with its o wn set of problems that are similar to the h ybrid iterativ e approac hes.

If a searc h returns failure, ho w m uc h wider should the searc h b eam b e? Whic h no des

should b e k ept at a particular lev el? These and similar issues are under in v estigation

(F or an example see [Zha98].).

2.2.2 Informed Searc h

All previous algorithms had no more information ab out a state other than the cost

needed to reac h it from the start state. Informed algorithms use additional kno wledge

to estimate ho w far a w a y a solution is. This domain-dep enden t kno wledge is enco ded

in to a heuristic function. It returns an estimate of the distance to the goal for an y

arbitrary state. This heuristic function is called admissible if it nev er o v erestimates

the distance (or cost) from an y state in the searc h space to the closest goal. This

estimate is also called a lo w er-b ound estimator.

T o get a lo w er-b ound heuristic, one can remo v e constrain ts from the original set

of rules for the domain and use this simpler problem to come up with an optimistic

estimate on the cost to ac hiev e a solution. F or example, in the sliding-tile puzzle (see

Section 2.6.1), w e migh t c ho ose to ignore the rules that only one tile can b e at one

square at a time and that a blank has to b e b eside a tile to b e mo v ed. With these

t w o relaxations of the rules of the game, w e get the Manhattan distance heuristic (see

Section 2.3.3). Of course, the more simplifying (or ignoran t) the assumptions are, the

greater the error b et w een the lo w er-b ound estimator and the real cost to a goal.

The few er the simpli�cations, the smaller the error b et w een h and h

�

will p oten-

tially b e. T aking more details of the domain in to accoun t mak es the lo w er-b ound

estimator more exp ensiv e to compute. Ho w ev er, since decreasing the error in the

lo w er-b ound estimator means a more e�cien t searc h

4

, the gains in e�ciency can

o�set the more exp ensiv e lo w er-b ound calculations.

Man y of the go o d lo w er-b ound functions used for sp eci�c domains, suc h as the

sliding-tile puzzle, are hand-crafted. Often, they result from clev er reductions in to

4

This relationship will b ecome more apparen t in up coming sections.

14

BestFirst(StartState)

f

Insert(OpenSortedList, StartState);

Success = FALSE;

DO f

CurrentState = GetBest(OpenSortedList);

IF(Solution(CurrentState))

Success = TRUE;

ELSE

FOREACH(Child(CurrentState)) DO

InsertSortedOnH(OpenSortedList, Child(CurrentState));

g UNTIL(Success OR Empty(OpenSortedList));

IF(Success) RETURN(CurrentState);

ELSE RETURN(NULL);

g

Figure 2.7: Best-First Algorithm

functions that are easy to compute or appro ximate. The Manhattan distance is one

suc h function: a n um b er of table lo okups and a summation are su�cien t to calculate

it. F urthermore, one can incremen tally up date the Manhattan distance as mo v es are

made. This can result in e�ectiv e and e�cien t implemen tations.

Ho w ev er, these go o d lo w er-b ound functions are application-dep enden t. Eac h new

application domain requires new e�orts to �nd go o d heuristics. F or large and non-

in tuitiv e domains this can b e a hard problem. Holte et.al. [HPRA96] suggest using

hierarc hical searc hes to establish lo w er b ounds on distances to goals. By abstracting

the r e al searc h space (often b y simplifying it), a smaller searc h in an abstract searc h

space can pro duce a lo w er b ound on the n um b er of steps required to reac h a goal

in the real searc h space. Ge�ner [BG98 , BG99] suggests a similar approac h for his

state-space planner.

Naiv e (Pure) Best-First Searc h

Best-�rst searc h alw a ys expands the b est op en no de next. \Best" is de�ned with

resp ect to some measure, t ypically the estimated distance to the closest goal state

h (s). Th us, at eac h step a b est-�rst searc h expands the no de that it b eliev es to

b e closest to a goal. This b eha vior can b e ac hiev ed b y k eeping all op en states in a

sorted list, ordered b y the estimate of the distance to the goal (see pseudo co de in

Figure 2.7).

Unfortunately , this algorithm is not guaran teed to �nd an optimal solution. The

searc h migh t b e misled b y an optimistic estimator for a path to a non-optimal solution.

F or example, if the heuristic returns a distance of 1 on the path to a non-optimal goal

(see Figure 2.8), the path to an optimal goal is ignored and the sub optimal goal is

found �rst. Best-�rst searc h will follo w this sub optimal path to arbitrary depth. A

closer goal w as ignored b ecause of a sligh tly larger estimate of the distance to the

15

2
2

3
2

1
2

1
3

Step 3

3
4

3
2

2
21

3

Step 2

3
2

Step 1

2
2

3
2

1
1

1
2

2
2

3
2

0
0

1
1

1
2

2
2

3
2

0
0

1
1

1
2

1
3

1
3

1
3

Step 4

3
4

Step 5

3
4

Step 6

3
4

Figure 2.8: Illustration of Best-First Searc h

goal on an optimal path. This happ ens b ecause the cost of actually getting to the

curren t state from the start state is ignored.

A*

A* [HNR68] is a b est-�rst algorithm whic h uses f (s) as the measure for \b est". By

taking b oth the actual cost of getting to a state and the admissibly estimated distance

to a goal in to accoun t, A* is guaran teed to �nd an optimal solution. F urthermore,

A* handles searc h graphs, not just trees. This can lead to imp ortan t e�ciency gains

when iden tical parts of a searc h tree (or cycles) are detected and m ultiple tra v ersal

of these parts is a v oided. Unfortunately , this comes at a price: ev ery time a no de is

generated, it m ust b e c hec k ed to see if it w as already visited or generated. Tw o lists

are used to k eep trac k of op en and closed no des, an OPEN list and a CLOSED list,

resp ectiv ely .

The description of A* in Figure 2.9 sho ws a simpli�ed v ersion that ignores all the

details w e ha v e to tak e care of when w e w an t to connect paren t and c hild no des in

the graph. If a shorter path to a no de is found, PropagateG is used to up date the

impro v ed g v alue in all the successors of that no de. Note that the function Get do es

not remo v e the no de from an y of the lists. InsertSortedOnF sorts the states in the

queue according to the f v alue.

It is in teresting to note that b y appropriately c ho osing v alues for g and h , A* can

b eha v e lik e an y of breadth-�rst, depth-�rst or the naiv e b est-�rst algorithms. Setting

the cost of an action to 1 and h to 0, A* defaults to breadth-�rst searc h. If w e set

the cost of an action to -1 and k eep h at 0, depth-�rst b eha vior results. And �nally ,

16

A STAR(StartState)

f

StartState.g = 0;

Insert(OpenSortedList, StartState);

Success = FALSE;

DO f

CurrentState = GetBest(OpenSortedList);

IF(Solution(CurrentState))

Success = TRUE;

ELSE

f

FOREACH(Child(CurrentState)) DO f

IF(IsIn(OpenSortedList(Child(CurrentState))))

f

OldState = Get(OpenSortedList(Child(CurrentState)));

OldState.g = min(OldState.g, Child(CurrentState).g);

g

ELSIF(IsIn(ClosedList(Child(CurrentState))))

PropagateG(Get(ClosedList(Child(CurrentState))));

ELSE

InsertSortedOnF(OpenSortedList, Child(CurrentState));

g

Insert(ClosedList, CurrentState);

g

g UNTIL(Success OR Empty(OpenSortedList));

IF(Success) RETURN(CurrentState);

ELSE RETURN(NULL);

g

Figure 2.9: A* Algorithm

17

3
2

Step 1

0
2 3

2

2
21

3

1
3

0
2

1
2

Step 2

2
2

3
2

1
2

1
3

1
3

0
2

1
2

2
5

2
3

Step 3

3
4

2
2

1
1

1
2

1
2

0
2

2
5

3
4

1
3

2
3

1
3

3
2

2
2

3
2

1
3

1
2

0
2

1
2

2
5

2
3

1
3

1
1

3
2

3
3

0
01

1
3
4

2
2

3
2

1
3

1
2

0
2

1
2

2
5

2
3

1
3

1
1

3
2

3
4

1
1 3

3
0
0

2
21

3

1
1

1
2

0
2

1
2

2
5

3
4

2
3

1
3

3
2

Step 4

3
4

Step 7

3
4

Step 6

3
4

Step 5

3
4 3

2
1
1

Figure 2.10: Illustration of A*

b y setting the cost of actions to 0 (resulting in g b eing 0) and using the normal h , w e

ac hiev e the naiv e b est-�rst b eha vior.

The main tenance and size of the OPEN and CLOSED lists, with the exp ensiv e Get

and InsertSortedOnF op erations, are the main dra wbac ks of A*. Ev en mo derately

complex problems can bring the space requiremen ts b ey ond the acceptable.

ID A*

Korf [Kor85a] applied the idea of iterativ e deep ening to A*. The resulting algorithm

(see Figure 2.11), Iterativ e Deep ening A* (ID A*), tra v erses the searc h tree in a depth-

�rst manner, iterativ ely deep ening the tree. Eac h iteration of ID A* tries to �nd a

solution with a path length equal to P athLimit. F or the �rst iteration, P athLimit is

set to the heuristic estimate for the start state (h(s)). If the heuristic is admissible,

an y no de s with g (s) + h (s) = f (s) > P athLimit cannot b e on a solution path of

length P athLimit and can therefore b e ignored (pruned from the tree in this iteration).

Exhaustiv ely searc hing the tree during an iteration and not �nding a solution is pro of

that no solution with length P athLimit exists. P athLimit is increased and a new

iteration started. Ev en tually , w e will increase P athLimit to a v alue that is as large as

the optimal solution length (cost). During this last iteration w e will �nd an optimal

solution.

Is this approac h e�cien t?

18

IDA STAR(StartState)

f

PathLimit = H(StartState) - 1;

Success = FALSE;

DO f

PathLimit ++;

StartState.g = 0;

Push(OpenStack, StartState);

DO f

CurrentState = Pop(OpenStack);

IF(Solution(CurrentState))

Success = TRUE;

ELSIF(PathLimit >= (CurrentState.g + H(CurrentState)))

FOREACH(Child(CurrentState)) DO

Push(OpenStack, Child(CurrentState));

g UNTIL(Success OR Empty(OpenStack));

g UNTIL(Success OR ResourceLimitsReached());

IF(Success) RETURN(CurrentState);

ELSE RETURN(NULL);

g

Figure 2.11: ID A* Algorithm

3
2

Step 1

0
2 3

2

2
21

3

1
3

0
2

1
2

Step 2

2
2

3
2

1
2

1
3

1
3

0
2

1
2

2
5

2
3

Step 3

3
4

3
2

Step 1

0
2 3

2

2
21

3

1
3

0
2

1
2

Step 2

2
2

3
2

1
2

1
3

1
3

0
2

1
2

2
5

2
3

Step 3

3
4

2
2

1
1

1
2

1
2

0
2

2
5

3
4

1
3

2
3

1
3

3
2

Step 4

3
4

2
21

3

1
1

1
2

0
2

1
2

2
5

3
4

2
3

1
3

3
2

Step 5

3
4 3

2
1
1

2
2

3
2

1
3

1
2

0
2

1
2

2
5

2
3

1
3

1
1

3
2

3
4

1
1 3

3
0
0

Step 6

3
4

2
2

3
2

1
3

1
2

0
2

1
2

2
5

2
3

1
3

1
1

3
2

3
3

0
01

1
3
4

Step 7

3
4

Ite
ra

tio
n

2
(P

at
hL

im
it

3)
Ite

ra
tio

n
1

(P
at

hL
im

it
2)

Figure 2.12: Illustration of ID A*

19

� Eac h iteration is a depth-�rst searc h, restricting the space requiremen ts to log-

arithmic space in the size of the searc h tree, whereas A* needed linear space in

the size of the searc h tree.

� No exp ensiv e list op erations are needed an ymore, lists are replaced with a c heap

stac k.

� With the limit on the solution length, an additional cuto� criterion is giv en that

con trols the size of the searc h tree.

� Since w e are dealing with trees that gro w exp onen tially in size, earlier iterations

are usually small enough to b e virtually negligible in cost compared to the last

iteration.

These four reasons mak e ID A* a viable con tender for practical applications in searc h.

The e�ciency of ID A* dep ends directly on the qualit y of the heuristic function h .

If h = h

�

the searc h w ould simply w alk to the solution. It is imp ortan t to note that

the qualit y of the heuristic function dep ends on the a v erage error o v er all the states in

the searc h space, not just the ro ot no de. Ev en if the ro ot no de is estimated p erfectly

(no error), the searc h migh t not b e able to �nd a solution b ecause the heuristic is

p o or in the rest of the searc h space. In the w orst case, h = 0 for all states, ID A* will

degenerate to a series of depth-limited depth-�rst searc hes.

Depth-First Branc h and Bound

ID A* starts with a lo w er b ound on the solution length and increases this lo w er b ound

eac h time it pro v es that no solution with this lo w er b ound exists. Depth-�rst branc h

and b ound (DFBB) [L W66] starts with an upp er b ound on the solution length. The

upp er b ound is used to prune parts of the searc h space that cannot con tain a solution

b etter than the curren t b est solution. That means that whenev er DFBB encoun ters

a no de s in the searc h space that has an f -v alue (f (s) = g (s) + h (s)) equal or larger

than the b est solution found so far, s gets cut o�. DFBB tra v erses the searc h space

in a depth-�rst manner. Whenev er it �nds a new goal when attempting to expand it,

this goal m ust b e b etter than the previously found. The cost of the new goal is used

to adjust (lo w er) the upp er b ound and the searc h con tin ues. Depth-�rst branc h and

b ound dep ends on a high goal densit y , otherwise it will su�er from the same problems

as depth-�rst searc h.

Bidirectional Searc h

Nothing forces us to solv e the problem in a \forw ard" direction [Nil80]. Wh y not

searc h \bac kw ards", starting from the goal state and attempting to �nd a path to

the start state? Cho osing the righ t direction (\forw ard" or \bac kw ard") can lead to

signi�can t sa vings, since tree shap es migh t not b e symmetric and a forw ard tree migh t

b e larger than the corresp onding bac kw ard tree. Ho w ev er, so far w e are not talking

ab out something new, just that the searc h direction migh t b e an issue. Bac kw ard

searc h w ould use in v erse actions to create all p ossible predecessors of a no de in a

20

During Search Path Found Dark Gray: Possible Savings

Figure 2.13: Illustration of Bidirectional Searc h

forw ard sense, whic h are the successors in a bac kw ard sense. W e w ould also ha v e to

exc hange goal with start state(s).

But wh y do w e searc h only in one direction? Could it b e b ene�cial to searc h from

b oth sides? Bidirectional searc h [P oh71] pro ceeds to deep en the tree from b oth sides

un til b oth trees in tersect at one no de, connecting a path b et w een the start and a

goal state. This path is not necessarily an optimal path. The searc h strategies for

the forw ard and bac kw ard searc h do not need to b e the same. Dep ending on the

di�eren t searc h-space prop erties, di�eren t strategies migh t b e c hosen for the di�eren t

directions.

Figure 2.13 sho ws the searc h trees for the t w o directions. As they gro w to w ards

eac h other, they will ev en tually meet. A unidirectional approac h w ould ha v e to

expand a deep er tree with a p oten tially larger n um b er of no des than the t w o smaller

trees together. The dark gra y area in the third part of the �gure sho ws what the

p oten tial sa vings could lo ok lik e.

All this sounds rather con vincing. The question is wh y is this approac h not widely

used? There are sev eral problems with bidirectional searc h. F or a long time it w as

assumed that it w as hard to b e able to mak e the searc h fron tiers meet. Ho w ev er,

Kaindl and Kainz [KK97] sho w that �nding a solution w as not so m uc h the problem

as �nding an optimal solution. The searc h sp ends a lot of e�ort making sure an

optimal solution is returned. F urthermore, the sa vings sho wn in Figure 2.13 are not

necessarily ac hiev able, if the unidirectional searc h is e�cien t. If, for example, ID A*'s

last iteration is small b ecause of go o d mo v e ordering, the sa vings ac hiev able with

bidirectional searc h are small.

F urthermore, it is a problem to detect when searc h fron tiers ev en meet, since at

least one fron tier has to b e k ept in memory to �nd in tersections. Since trees gro w

21

exp onen tially , searc h fron tiers and, th us, space requiremen ts do to o, a ma jor dra wbac k

for bidirectional searc h.

Bac kw ard searc hes often face another problem. Since the goal state is not nec-

essarily one state, but a set of states, the bac kw ard searc h could p oten tially ha v e

sev eral p ossible start states. This increases the amoun t of w ork to b e done and sim ul-

taneously decreases p oten tial sa vings. Other, more practical reasons migh t include

di�culties with rev erse actions and the o v erhead of �nding, tuning and co ding the

additional heuristics.

2.2.3 Cho osing the R ight Algorithm

When presen ted with the c hoice of whic h algorithm to implemen t for a certain domain,

one migh t b e confused b y the m ultitude of di�eren t approac hes and ideas b ehind the

algorithms. So what driv es the selection of an algorithm? What are the prop erties of

the searc h space that are used to decide whic h algorithm to use?

The �rst c hoice b et w een informed and uninformed algorithms dep ends on the

a v ailabilit y of domain kno wledge. Usually , informed searc hes p erform b etter than

uninformed. Therefore, if kno wledge is a v ailable, informed algorithms are the pre-

ferred c hoice. As long as the searc h space �ts in to memory and the o v erhead of

main taining the OPEN and CLOSED lists is no concern, A* is the c hoice. Ho w ev er,

if memory or list main tenance is a concern, ID A* is the preferred c hoice.

No w, when w ould a branc h and b ound searc h b e useful? Branc h and b ound

searc hes op erate on the fact that w e can easily �nd a solution, but w an t to impro v e

on the qualit y of that solution. A high densit y of goal states in the searc h space is

needed if DFBB is used. Otherwise DFBB will degenerate in to a depth-�rst searc h.

Random w alk algorithms are of use when faced with h uge searc h spaces where w e

ha v e little or no kno wledge of the searc h space and w e are lo oking for just an y solution,

and not necessarily a high-qualit y solution. Recen t in terest in random w alk applica-

tions w as spark ed b y adv ances in the satis�abilit y (SA T) domain, where W ALKSA T

[SK C94] seems to p erform rather w ell. Other random w alk algorithms are heuristi-

cally guided, but use the random elemen t to a v oid lo cal minima. Genetic algorithms,

and certain hill clim b ers, suc h as sim ulated annealing, b elong to that group.

2.3 Enhancemen ts

The description of the algorithms in the previous section con v ey ed only the basic

ideas. Most of these algorithms are used in connection with p o w erful enhancemen ts.

Searc h enhancemen ts p oten tially increase the searc h e�ciency b y orders of magnitude,

dep ending on the problem domain and algorithm. Often, the c hoice of the righ t

algorithmic enhancemen t(s) is more di�cult and crucial to the p erformance of the

program than c ho osing the righ t algorithm. This problem will b e discussed in more

detail in Chapter 4.

22

Figure 2.14: Example Problem to Illustrate T ransp osition T ables and Macros

c c c c c c c c cfcff fffffff

d c c ac f

ac

ad

a

e

b

be

b bc c c bbfff ce e ee e ef

e b b f

b

b

d

e

feed

f

c c

without hash table with hash table

cf

d c a

ac

ad

a

e

b

b

be f

b

d

e

fed

f

c

Figure 2.15: Impact of T ransp osition T ables

2.3.1 T ransp osition T able

Ev en though searc h spaces are generally graphs, most searc h algorithms treat them

as trees. If a state can ha v e sev eral predecessors, this can lead to duplicate w ork.

The searc h could revisit no des and ev en en tire subtrees sev eral times. These \trans-

p ositions" are detected using a large transp osition table [SA77]

5

in whic h useful in-

formation ab out previously visited no des is stored. Before expanding a no de, the

transp osition table is consulted, and if v alid information is found, it is used to p o-

ten tially curtail the searc h. T ransp osition tables are usually implemen ted as hash

tables.

F urthermore, when iterativ e deep ening is used, the transp osition table serv es to

store information that can b e used to mak e subsequen t iterations more e�cien t (see

Section 2.3.2 \Mo v e Ordering").

Consider the p osition in Figure 2.14: Tw o stones need to mak e three mo v es in a

ro w. W e will use a,b,c for the mo v es of the left stone and d,e,f for the righ t stone.

The mo v es of eac h stone ha v e to b e made in sequence, but can b e in terlea v ed in an y

w a y b et w een the t w o di�eren t stones. Figure 2.15 sho ws what happ ens if the searc h is

enhanced with a transp osition table. Solid no des represen t no des searc hed normally ,

while ligh t no des represen t cuto� no des b ecause of a transp osition table matc h, with

dotted lines connecting iden tical p ositions in the tree. F or example, the top most

ligh t no de is reac hed with the mo v e sequence d,a whic h results in the same p osition

that w as previously searc hed after the mo v es a,d .

5

Another w a y of detecting transp ositions in v olv es �nite state mac hines [TK93].

23

Another w a y of lo oking at the function of the transp osition table is b y describing

it in terms of the heuristic lo w er b ound and ID A*. Eac h state s searc hed in ID A*

m ust ha v e the follo wing prop ert y: g (s) + h (s) = f (s) < = P athLimit , otherwise the

searc h w ould not consider this state. When a state w as searc hed exhaustiv ely and the

searc h bac ks up with failure, w e ha v e pro v en that our heuristic function h (s) w as o�.

W e kno w no w that g (s) + h

0

(s) = f

0

(s) > P athLimit , or h

0

(s) > P athLimit � g (s),

or h

0

(s) > = P athLimit � g (s) + 1. When storing h

0

(s) in the transp osition table,

w e allo w the searc h to impro v e on the heuristic v alue h (s) ev ery time it revisits the

state s . The v alue stored in the transp osition table is used to impro v e the lo w er

b ound. This dynamic impro v emen t of the lo w er b ound leads to additional cuto�s in

the searc h in t w o w a ys.

� Within an iteration, revisiting a state with the same or larger g (s) allo ws us to

impro v e the lo w er b ound with a transp osition table lo okup. The impro v ed lo w er

b ound will b e enough to cause a cuto� (g (s) + h

0

(s) = f

0

(s) > P athLimit).

� If the searc h revisits the state s with a lo w er g (s), no cuto� can happ en, the

searc h will pro ceed. Ho w ev er, in the next iteration, if w e visit no de s in the

same order, the h

0

(s) stored in the transp osition table is no w su�cien t to cause

a cuto� when reac hing s via a non-optimal g (s).

This sc heme also handles cycle detection. Rather than storing the new lo w er

b ound after w e searc hed the subtree, w e up date the transp osition table b efor e de-

scending in to the tree. If w e ev er cycle bac k in to a state that is on the curren t path,

g (s) m ust b e larger than it w as previously and th us, a cuto� will o ccur. No sp ecial

co de is needed to detect cycles.

6

2.3.2 Mo v e Ordering

Instead of visiting successors of a mo v e in an arbitrary order, one can try to lo ok at

\go o d" successors �rst.

Mo v e ordering is not used in b est-�rst searc hes; the algorithm itself pro vides for

a global ordering of the alternativ es. In depth- and breadth-�rst searc hes, mo v e

ordering can lead to e�ciency gains b ecause goals are found earlier (left in the tree)

rather than later (righ t in the tree). Reinefeld and Marsland [RM94] commen t on

the e�ectiv eness of mo v e ordering in single-agen t searc h. F or ID A*, ordering mo v es

at in terior no des mak es no di�erence to the searc h, except for the �nal iteration.

Because the �nal iteration is ab orted once a solution is found, �nding a solution early

in the �nal iteration can signi�can tly impro v e the p erformance, esp ecially considering

that the last iteration is p oten tially the largest.

The information used to order mo v es can come from di�eren t sources, usually

domain-dep enden t kno wledge. Sometimes domain-indep enden t kno wledge gathered

6

Some readers migh t feel uncomfortable with this statemen t, b ecause there is the remote p ossi-

bilit y of collisions in the hash table that o v erwrite en tries, resulting in undetected cycles. While this

is true, this should happ en v ery infrequen tly and in suc h rare cases w e are willing to go the extra

depth un til g (s) is large enough to curtail the searc h.

24

in the searc h tree (e.g. , tree sizes, tree depths...) can b e useful. In the case of

iterativ e deep ening, mo v e ordering information is passed from one iteration to the

next b y means of the transp osition table.

The alpha-b eta algorithm, used in adv ersarial searc h, relies on go o d mo v e ordering

to ac hiev e maximal e�ciency b y establishing go o d b ounds early (w orst case tree size

is w

d

, b est case with p erfect mo v e ordering is w

d= 2

, where w is the branc hing factor

and d is the depth of the tree). In single-agen t searc h, mo v e ordering can b e m uc h

more crucial. If a depth-�rst searc h had p erfect mo v e ordering, it could go straigh t to

the goal. In the w orst case, depth-�rst searc h sp ends exp onen tial e�ort. Of course,

p erfect mo v e ordering do es not exist in searc h, since it w ould en tirely obsolete searc h

p er se . Ho w ev er, the b etter the mo v e ordering the more e�cien t the searc h, if the

o v erhead of ac hieving this ordering do es not o�set the gains.

2.3.3 P attern Databases

Lo w er-b ound functions pro vide the searc h with guidance in the form of cost estimates

for reac hing a goal from a p osition in the searc h. These functions usually ignore some

of the domain constrain ts to allo w for e�cien t implemen tations. A common approac h

is to decomp ose the total cost of solving the problem in to solving indep enden t sub-

tasks. These subtasks usually consist in mo ving ph ysical ob jects to goal squares. F or

example, for the sliding-tile puzzles, the distance of eac h tile to its target square is

summed to pro duce a lo w er b ound on the total n um b er of steps required to solv e the

en tire problem. This heuristic is called Manhattan distanc e . The Manhattan distance

assumes that ev ery tile can directly mo v e to its goal without detour.

Lo w er-b ound functions follo wing this approac h can b e v ery e�cien tly computed

and are ev en amenable to incremen tal up dates during the searc h b ecause of the in-

dep endence of the subgoals.

Ho w ev er, the c hallenge of these puzzles and real-w orld problems lies in the in ter-

actions of the subgoals. Neglecting them creates p o or lo w er b ounds. An impro v emen t

to the sliding-tile puzzle's Manhattan distance, called linear con
icts, w as prop osed

b y Hannson et al. [HMY92]. It uses the observ ation that one of t w o neigh b oring

squares that are in eac h others w a y to reac h their goal square optimally has to mak e

at least t w o non-optimal mo v es o� the optimal path. Iden tifying t w o suc h squares

allo ws us to increase the lo w er b ound b y 2.

Linear con
icts con tain the core idea used for pattern databases [CS96]. Instead of

lo oking at one of the (ph ysical) elemen ts or subgoals at a time, com binations of these

elemen ts (patterns) are used. F or eac h of these patterns a precomputation determines

the minim um cost to get all the elemen ts of the pattern to their resp ectiv e goals. The

precomputation tak es in teractions of these elemen ts in to accoun t and stores the costs

in a database that can b e queried during the searc h. The more elemen ts are tak en

in to accoun t the more accurate the lo w er b ound. One could ev en call the Manhattan

distance a one-tile pattern database and the Manhattan distance plus linear con
icts

a t w o-tile pattern database.

Culb erson and Sc hae�er [CS96] sho w results for the sliding-tile puzzle and Korf

[Kor97] applies the tec hnique to Rubik's Cub e. The impro v emen ts in lo w er-b ound

25

c c c c c c c c cfcff fffffff

d c c ac f

ac

ad

a

e

b

be

b bc c c bbfff ce e ee e ef

e b b f

b

b

d

e

feed

f

c c

a-b-c

a-b-c

f

e

a-b-c

ff

e

d

da-b-c

f

e

a-b-c as macrono macros

Figure 2.16: Impact of Macro Mo v es

qualit y lead to signi�can t gains in the searc h e�ciency .

Cazena v e [Caz99] suggests an in teresting impro v emen t on the idea of pattern

databases for the domain of Go. A core pattern is annotated with external condi-

tions. The core patterns are de�ned b y the ph ysical arrangemen t of stones. External

conditions are logical prop erties of the b oard around the core pattern that help to

determine the state of the core pattern. The use of external conditions reduces the

n um b er of total patterns, b ecause a large n um b er of essen tially irrelev an t details are

abstracted in to a few rules.

2.3.4 Macro Mo v es

The searc h algorithms discussed so far treat all the mo v es equally . After making a

mo v e, all legal mo v es are considered as successors. These algorithms are therefore

considering all sequences of mo v es ev en though their order do es not matter.

Consider trying to solv e the problem of driving to w ork in the morning. When

trying to devise a plan to get from home to w ork, all the algorithms are considering

sequences suc h as: lea v e-the-house, mo w-the-la wn, op en-garage, get-in-car, exit-car,

mo w-the-la wn, get-in-car... All actions are legal, but not necessarily related. The

metho d of macro mo v es [Kor85b] is an attempt to group related atomic actions in to

higher lev el comp osed actions: macros. This can result in impressiv e searc h-space

reductions. Sp ecial atten tion has to b e paid to the impact these macro mo v es can

ha v e. They migh t in
uence the correctness and/or the completeness of the searc h as

w ell as the abilit y of the algorithm to �nd optimal solutions.

Figure 2.16 sho ws the impact of the mo v e sequence a-b-c b eing treated as a macro

in the p osition of Figure 2.14. The e�ect on the searc h-tree size is visible, instead of

exploring ev ery p ossible com bination of in terc hanging mo v es a, b, c , and d, e, f , the

searc h visits less no des and ev en the depth of the tree is reduced.

James [Jam93] builds on an idea from Iba [Iba89] and dynamically creates macros

b y \tunneling" p eaks in the searc h-space landscap e. Figure 2.17 sho ws what happ ens.

Iba suggested tunneling from one v alley in the cost landscap e to the next, leading

26

optimal tunnel

tunnel

search depth

h(n)

Figure 2.17: T unneling: The Dynamic Creation of Macros

to long macros with man y preconditions that are hard to matc h. James observ ed

that di�cult y and impro v ed on the tunneling idea b y suggesting the shortest p ossible

tunnel that \drains" the w ater in to the next v alley . This results in few er preconditions

and the increased c hance to matc h a macro.

It is imp ortan t to note that tunneling c hanges the searc h space b y creating macros

that b eha v e as shortcuts. They detour the error of the heuristic estimate, rather then

decreasing it.

2.3.5 Summary

Enhancemen ts to searc h algorithms can impro v e searc h e�ciency dramatically . De-

p ending on the application domain, those sa vings can b e sev eral orders of magnitude

for ev ery one of those enhancemen ts. Eac h enhancemen t is implicitly b ene�ting from

prop erties of the searc h space. T ransp osition tables w ork only if the underlying searc h

tree is in realit y a graph. Macro mo v es assume that treating sev eral mo v es as one do es

not c hange the rest of the problem and ultimately its solv abilit y (or completeness

7

).

F or related results see Culb erson and Sc hae�er [CS94].

Eac h new enhancemen t will ha v e a limited scop e of domains to whic h it applies.

The No-F ree-Lunc h (NFL) theorem, that w e will b e talking ab out later, bac ks this

7

Whereas completeness is an imp ortan t theoretical consideration, w e feel it has little or ev en

no practical v alue. \Complete" algorithms use exp onen tial time to ensure completeness. Since w e

face time constrain ts in practice, this theoretical completeness is of little v alue. F urthermore, it

is alw a ys easy to construct a complete algorithm. After exhausting a predetermined time limit,

an y theoretically complete algorithm can b e executed. This t w o-phase approac h is also theoretically

complete, but with a constan t run-time o v erhead. In practice it is only imp ortan t ho w man y problems

can b e solv ed within the time limit. Complete algorithms ha v e the nice prop ert y that they can

pro v e that no solution exists. But again, if they could do that in a reasonable time frame, the more

e�cien t algorithm w ould stop without �nding a solution ev en earlier and the second phase of our

h yp othetically complete algorithm will pro v e that the problem has no solution. Because the �rst

phase searc hes less of the searc h space, it will use less time than the second phase. Our t w o-phase

algorithm will therefore tak e at most t wice the time for this pro of than the complete algorithm of

the second phase w ould ha v e used on its o wn.

27

T0

T1

T2

T3

T4

T5

T6

Start
State

Goal
State

g(
s)

Search
Space

Figure 2.18: Searc h Space Without Heuristic Kno wledge

in tuitiv e statemen t up. There is no magic bullet, neither in the form of an algorithm

nor as an enhancemen t, that could b e used to solv e ev ery p ossible domain more

e�cien tly .

2.4 Heuristic F unctions and Searc h Spaces

This section is an attempt to underpin the formal concepts in tro duced earlier. Ex-

amples are used that will help the reader dev elop a more in tuitiv e feeling for searc h

spaces and ho w heuristic kno wledge can help to guide algorithms through them.

Searc h spaces are m ulti-dimensional structures that are v ery hard to visualize. W e

will therefore use simpli�ed searc h spaces here. Figure 2.18 sho ws a one dimensional

searc h space along the horizon tal axis of the graph. The function g (s) sho ws the

distance from the start state. Since searc h spaces are discrete structures, g (s) should

b e a step function. F or simplicit y , w e are using con tin uous functions here.

A breadth-�rst searc h w ould expand no des in w a v es; after all no des at a certain

depth T

i

are visited, the next depth is started un til the last lev el, here T

6

, is reac hed.

It no w dep ends on the order of expansion, when the goal state is found. If the searc h

is \luc ky", it visits states to the righ t �rst, �nding the goal state without expanding

states to the left of the start state.

Depth-�rst searc h is faced with a di�eren t problem. Assume our searc h space is

m uc h larger than sho wn. If depth-�rst searc h starts searc hing to the left, it will not

�nd the solution un til it has visited al l the states to the left. Ho w ev er, starting to

the righ t, it w ould get luc ky . Note that in practice, with the man y dimensions of a

real searc h space, getting \luc ky" w ould mean making the righ t decision man y times

{ an unrealistic hop e.

Figure 2.19 sho ws the same searc h space with go o d heuristic kno wledge. In addi-

tion to g (s), the distance from the start state, h (s), the lo w er-b ound estimate of the

distance to the goal, is a v ailable. The kno wledge is consisten t with the lo cation of the

28

Start
State State

Goal

g(
s)

T

T

T

T0

2

3

1

h(s)

f(s)=g(s)+h(s)

Search
Space

Figure 2.19: Searc h Space With Go o d Heuristic Kno wledge

goal state, h (s) decreases to w ards the goal state. A*, whic h uses f (s) for guidance,

will expand states in the searc h space in similar \w a v es" as breadth-�rst searc h do es.

Eac h new w a v e T

i +1

is larger then the previous w a v e T

i

. Ho w ev er, A* needs few er

w a v es and eac h w a v e-fron t is smaller than in breadth-�rst searc h, b ecause heuristic

kno wledge allo ws A* to prune p ortions of the searc h space whic h w ould b e visited b y

breadth-�rst searc h.

While Figure 2.19 sho ws an example with go o d heuristic kno wledge, heuristic

kno wledge can b e misleading. Figure 2.20 sho ws suc h an example. The path a w a y

from the goal lo oks initially b etter than the path to the goal state. Due to misleading

kno wledge more states are expanded in eac h w a v e. Ho w ev er, as long as the heuristic

kno wledge is admissible, A* will not expand more no des than breadth-�rst searc h.

Figure 2.21 sho ws the ideal case. If the searc h knew the correct distance to the goal

at eac h state in the searc h, it could directly go to the goal. As discussed earlier, this

is not an in teresting case for searc h, but it can sho w what b etter heuristic kno wledge

will asymptotically lead to.

Since Figures 2.18, 2.19, 2.20, and 2.21 sho w trivial, one-dimensional searc h spaces,

they cannot con v ey the exp onen tial gro wth of consecutiv e w a v es. Figure 2.22 sho ws

t w o searc h graphs with the w a v es sho wn in di�eren t shades of gra y . One could imagine

these graphs to sho w the searc h space from the top. The exp onen tial gro wth of eac h

larger w a v e is no w visible.

Impro v emen ts in the heuristic kno wledge that is a v ailable to the searc h algorithms

usually lead to t w o kinds of e�ciency gains:

� F ew er w a v es: With an increase in the heuristic v alue of the start state, the

di�erence b et w een h (star t) and h

�

(star t) decreases, leading to few er iterations

29

g(
s)

T

T

T

T0

2

3

1

Start
State

Goal
State

Search
Space

h(s)

f(s)=g(s)+h(s)

Figure 2.20: Searc h Space With Misleading Heuristic Kno wledge

Start
State State

Goal

f*(s)=g(s)+h*(s)

h*(s)

g(
s)

Search
Space

T0

Figure 2.21: Searc h Space With P erfect Kno wledge

30

T2

T1

T0

Start State

Goal State

T0

T1

T2

T3

Start State

Goal State

Figure 2.22: Examples of Searc h-Space W a v es

(ID A*) or few er w a v es (A*).

� Smaller w a v es: Impro v emen ts to the lo w er b ound for man y states in the searc h

space lead to more cuto�s in the tree whic h in turn results in smaller w a v es.

F or some problems the solution length is kno wn. That is equiv alen t to an impro v ed

lo w er b ound for the start state and helps to remo v e the initial iterations for ID A*,

b ecause it can start with the correct threshold.

8

Ho w ev er, the last iteration is still as

large as it w as b efore. Because of the exp onen tial gro wth of the searc h tree, the last

iteration dominates the e�ort of the searc h and th us, the sa vings are relativ ely small.

It is more imp ortan t to impro v e the lo w er-b ound function on a v erage for the

en tire searc h space to remo v e large p ortions of the last iteration. These sa vings are

p oten tially m uc h larger. Figure 2.22 sho ws a com bination of the t w o when comparing

the left with the righ t �gure: on the righ t side there are few er iterations searc hed and

there are few er states in eac h of the iterations.

2.5 No-F ree-Lunc h Theorem(s)

Throughout the computing science literature, the quest for the Holy Grail can b e

found: a univ ersal problem solv er, univ ersal function optimizer and alik e. Some

8

This tric k has one side e�ect w orth men tioning: The �rst action a w a y from the start state can

lead to a large reduction in the heuristic v alue, p oten tially larger than the cost of the action. The

resulting heuristic is therefore not consisten t.

31

p eople ev en claim to ha v e found suc h a to ol. Others are more mo dest in their claims;

they restrict their statemen t to a certain class of problems, suc h as searc h problems.

The last w a v e of suc h claims could b e observ ed during the adv en t of ev olutionary

algorithms. This w as, unfortunately , surely not the last.

2.5.1 Bad News

As seductiv e as the though t of a one-size-�ts-all algorithm is, suc h an algorithm do es

not exist. W olp ert and Macready [WM96] pro v e with their No-F ree-Lunc h (NFL)

theorems that all algorithms that searc h for an extrem um of a cost function p erform

exactly the same when a v eraged o v er all p ossible cost functions. A \univ ersally b est"

searc h algorithm w ould ha v e to outp erform all other algorithms on a v erage. W olp ert

and Macready sho w that if an algorithm A outp erforms algorithm B on some cost

functions, then B m ust outp erform A on others. Culb erson [Cul96] uses adv ersarial

argumen ts to come to the same conclusion.

What do es that mean? If w e lo ok at all p ossible cost functions (or, for that matter,

searc h spaces), there exists no algorithm that can outp erform all other algorithms.

W orse still, all algorithms, ev en totally random searc hers, will p erform the same on

a v erage on all p ossible searc h spaces.

Extensions of these theorems in [Cul96] ev en sho w that learning do es not w ork o v er

all p ossible instances. Not ev en adaptiv e (learning) algorithms that try to extrap olate

from what they ha v e seen so far to guess in to the future will w ork b etter, when

a v eraged o v er all searc h spaces. Heuristic kno wledge can also b e only problem sp eci�c

and not absolutely general. The claim of \univ ersal" can clearly b e rejected, in all

cases.

2.5.2 Go o d News

Ho w ev er, not all is lost. By restricting our algorithm to domains where w e ha v e

kno wledge a v ailable, the kno wledge can help to increase p erformance in that domain

as compared to a kno wledge-p o or algorithm. Giv en the ab o v e reasoning, w e trade the

p erformance increase for \our" problem with a p erformance decrease in some other

domain, but w e are happ y with that trade.

That means that algorithms and algorithmic enhancemen ts w ork for certain prob-

lem domains. What are these domains, what mak es them suited for a certain algo-

rithm and not for another? Usually , the kno wledge w e are enco ding in our algorithms

re
ects searc h-space prop erties that can b e exploited b y the searc h. F or example, if

w e kno w that our searc h space is a graph and not a tree, the use of a transp osition

table can yield p erformance impro v emen ts.

The general strategy for tac kling a domain is to lo ok for certain searc h-space

prop erties and exploit that kno wledge for e�ciency gains. Therefore, the question

ab out the generalit y of a searc h enhancemen t (or con v ersely , ho w domain dep enden t

is this enhancemen t) is not the prop er question to ask. One should rather ask, what

the prop erties of those searc h spaces are that the enhancemen t in question relies on

to yield a p erformance increase.

32

2.6 Example Domains from the Literature

The follo wing subsections in tro duce the domains used most often in researc h on single-

agen t searc h in the literature. The goal here is to in tro duce the reader to the general

complexities, sp ecial prop erties, and issues of the searc h spaces of those domains.

2.6.1 Sliding-Tile Puzzles

The sliding-tile puzzles are a family of the commonly kno wn to ys, where a (usually

square) matrix of tiles has to b e ordered. In a 4x4 matrix of tiles, there are 15 tiles

and one blank square. The tiles can only b e mo v ed in to the blank. Other studied

v ariations are the 24-puzzle (5x5), the 8-puzzle (3x3), and ev en the 19-puzzle (4x5,

and really MxN).

A state of the 15-puzzle can b e describ ed with the lo cation of all tiles. Eac h state

can ha v e a maxim um of 4 legal mo v es if the blank is in the middle 4 squares, 3 if

it is at the edge and 2 mo v es if the blank is in a corner. Ho w ev er, since one mo v e

led in to the curren t p osition, the mo v e unmaking it do es not need to b e considered.

Therefore, the resulting e�ectiv e branc hing factors are 3, 2 and 1, for the resp ectiv e

p ositions of the space. Edelk amp and Korf deriv e 2.13 as the asymptotic branc hing

factor for the 15-puzzle [EK98].

F or the 24-puzzle, Korf [Kor96] rep orts a v erage solution lengths (for randomly

generated instances) of o v er 112, for the 19-puzzle 71.5 and for the 15-puzzle 52.6.

The 8-puzzle is small enough to b e en umerated exhaustiv ely [Sc h67 , Rei93]. The

searc h spaces are almost 10

25

, 10

18

, 10

13

and 10

5

for the 24-, 19-, 15- and 8-puzzle,

resp ectiv ely .

The state-of-the-art systems solving sliding-tile puzzles use ID A* with transp osi-

tion tables and impro v ed Manhattan distance as the admissible heuristic. Impro v e-

men ts of the Manhattan heuristic are deriv ed from the fact that there migh t b e

con
icts among di�eren t tiles when trying to push them straigh t to their resp ectiv e

goals (linear con
icts) [HMY92]. T aking this idea ev en further, Culb erson and Sc ha-

e�er [CS96] suggest to use pattern databases that record the optimal n um b er of mo v es

required to push subsets of tiles to their goal p ositions. A uni�ed view on this issue

is that eac h of these approac hes allo ws more and more of the real constrain ts to b e

used in the lo w er-b ound calculation. Whereas the Manhattan distance assumes no

restrictions in the tile mo v emen ts, linear con
icts tak e the mo v emen ts of up to 4 tiles

in to accoun t and treat the rest as non-existen t. P attern databases consider ev en more

tiles (constrain ts).

Curren t state-of-the-art searc h tec hniques and computers allo w us to solv e an y

random instance of the 15 and 19-puzzles within a reasonable amoun t of time. The

24-puzzle is still presen ting a considerable c hallenge though.

2.6.2 Rubik's Cub e

Rubik's Cub e, the famous com binatorial puzzle in v en ted b y Erno Rubik in the late

1970s, is also used in the literature to in v estigate searc h algorithms and their en-

33

hancemen ts [Kor85b , FMS

+

89, Pri93 , Kor97].

Rubik's Cub e has a searc h-space complexit y of ab out 10

19

and a median solution

length of 18. The longest solution is b eliev ed to b e no longer than 20 mo v es [Kor97].

Edelk amp and Korf [EK98] calculate the asymptotic branc hing factor to b e 13.35,

if a mo v e can b e more than a 90 degree t wist. Programs to solv e Rubik's Cub e

problems are v ery similar to programs solving sliding-tile puzzles. ID A* is used as

the searc h algorithm and large pattern databases are used to ac hiev e a go o d lo w er-

b ound estimator. Korf rep orts solving 10 random instances of the Rubik's Cub e

optimally [Kor97].

2.6.3 Mazes

Rao, Kumar and Korf [RKK91] in tro duce another domain in to the literature: mazes.

The task is to �nd optimal routes b et w een t w o p oin ts in the maze. The complexit y

of mazes can b e adjusted arbitrarily b y scaling. T ransp ositions can b e sim ulated b y

allo wing mazes with a graph structure (holes in w alls). Whereas Rao, Kumar and

Korf [RKK91] used mazes of size 120 x 90, Kainz and Kaindl [KK96] used mazes of

size 2000 x 2000.

The domain of mazes is in teresting b ecause of the prop ert y of the lo w er b ound.

When the Manhattan distance is used, the ratio b et w een the correct distance h

�

and

the estimated distance h can b e large. ID A* p erforms rather p o orly , since man y

iterations are p erformed, without �nding a solution. A*, b ecause it k eeps the en tire

graph in memory , should b e a b etter c hoice.

2.7 Summary

There are a wide v ariet y of strategies for e�cien tly tra v ersing searc h spaces. Unin-

formed searc hes tra v erse the searc h space blindly in a systematic fashion. Informed

algorithms exploit kno wledge ab out the searc h space to searc h more e�cien tly . Searc h

strategies and algorithmic enhancemen ts are c hosen to exploit sp eci�c prop erties of

the underlying searc h tree or graph.

The NFL theorems pro vide us with the argumen ts as to wh y di�eren t searc h

strategies and enhancemen ts are needed for di�eren t problem domains. Th us, algo-

rithms should not b e judged b y obscure p erformance measures, that w ere pro v en not

to exist, but should b e quali�ed b y the searc h-space prop erties they dep end on. An

in teresting follo wup question then migh t b e, if these prop erties are common among

the domains w e are in terested in solving.

34

Chapter 3

Sok oban

3.1 The Game

He-Ge, Hd-Hc-Hd, F e-Ff, Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-R h-R g,

Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-R i,

Fc-Fd-F e-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh- Ph-Qh-Q g,

Ge-F e-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-R h ,

Hd-He-Ge-F e-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-Qi,

Ch-Dh-Eh-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh

Figure 3.1: Sok oban Problem #1 With One Solution

Sok oban is a p opular one-pla y er puzzle game. The rules and structure of the game

are simple. Figure 3.1 sho ws a sample Sok oban problem. The pla ying area consists of

ro oms and passagew a ys, laid out on a rectangular grid of size 20x20 or less. Littered

throughout the pla ying area are stones (sho wn as circular discs) and go als (shaded

squares). There is a man whose job it is to push eac h stone to a goal square. The

man m ust push from b ehind the stone and can only push one stone at a time. A t

an y time, a square can only b e o ccupied b y one of a w all, stone or man. The initial

c hallenge is to push all of the stones on to goal squares. T o increase the di�cult y

one can try to �nd more e�cien t solutions b y reducing the required n um b er of stone

pushes and man mo v es.

35

Figure 3.2: Sok oban Problem #39

T o refer to squares in a Sok oban problem, w e use a co ordinate notation. Assuming

the maxim um sized 20 � 20 problem, the horizon tal axis is lab eled from \A" to \T",

and the v ertical axis from \a" to \t", starting in the upp er left corner. In our notation

w e fo cus on stone pushes. F or example, in Figure 3.1 Fh-Eh pushes the stone on Fh

left one square. W e use Fh-Eh-Dh to indicate a sequence of pushes of the same

stone. A push, of course, is only legal if there is a v alid path b y whic h the man can

mo v e b ehind the stone and push it. Th us, although w e only indicate stone pushes

(suc h as Fh-Eh), implicit in this are the man's mo v es from its curren t p osition to the

appropriate square to do the push. F or example, for the mo v e Fh-Eh the man w ould

ha v e to mo v e from Li to Gh via the squares Lh,Kh,Jh,Ih, and Hh .

3.1.1 History and T est Suite

The game w as apparen tly in v en ted in the early 1980s b y Thinking R abbit , a computer

games compan y in the to wn of T ak arazuk a, Japan. The game design is said to ha v e

w on �rst prize in a computer games con test. Because of the simplicit y and elegance

of the rules, and the in tellectually c hallenging complexit y of the comp osed problems,

Sok oban quic kly b ecame a p opular pastime.

Sev eral v ersions of the game app eared o v er the y ears, among whic h are PC, Mac-

in tosh and Unix v ersions. XSokob an is a p opular v ersion for Unix running X windo ws

and can b e do wnloaded at h ttp://xsok oban.lcs.mit.edu/xsok oban.h tml. There exists

a quasi-standard set of 50 problems, ordered roughly easiest to hardest in di�cult y for

a h uman to solv e. According to Hiramatsu [Hir98], this set of 50 problems is deriv ed

from a PC v ersion b y Sp ectrum Holob yte from 1984. Similar problem con�gurations

can b e found in the problem collections \Sok oban 2" from 1984 and are no w included

in \Sok oban P erfect". Some of the problems ha v e b een altered sligh tly , probably to

�t in to a 19x16 format.

The test suite w e are using in this thesis consists of 90 problems including the 50

standard problems plus 40 more of v arying degree of di�cult y . These 90 problems

36

Figure 3.3: Examples of Deadlo c ks

w ere do wnloaded from the XSok oban w eb-site. Problem 1, sho wn in Figure 3.1, is the

easiest of the set of 90. Figure 3.2 sho ws maze #39. The shortest recorded solution to

date needs 674 stone pushes. Ho w ev er, the solution length is not a reliable indication

for ho w hard a problem is to solv e. One can easily think of problem con�gurations

that require ev en more pushes to solv e, but are conceptually simple.

An In ternet high-score �le is main tained that sho ws who has solv ed whic h prob-

lems and ho w e�cien t their solution is (h ttp://xsok oban.lcs.mit.edu/xsok oban.h tml).

Th us solving a problem is only part of the satisfaction; impro ving it is equally imp or-

tan t.

3.1.2 Deadlo c k

A pla y er new to the game will quic kly disco v er that the constrain ts giv en b y the

rules of Sok oban o�er some unique c hallenges. If a stone is pushed in to a corner, it is

p ermanen tly immobilized, and can nev er b e pushed to a goal. Therefore, the problem

b ecomes unsolv able.

Figure 3.3 sho ws a v ariet y of simple stone con�gurations that cannot b e solv ed.

F or example, the stone on Hm cannot reac h a goal despite ha ving legal mo v es, b ecause

it can nev er b e pushed o� the b ottom w all. New pla y ers will so on understand that

certain squares in the maze are tabu for stones. W e call these squares de ad squar es .

Stones that can nev er b e pushed to a goal are de ad , and a problem con�guration

con taining a dead stone is said to b e de ad lo cke d , or simply a de ad lo ck .

The t w o stones on Dh and Eg are also dead. Ev en though neither of the stones sits

on a dead square, they in teract in suc h a w a y that the man cannot push the stones to

the goals. The four-stone group (Ck, Cl, Dk, Dl) in the lo w er left part of the maze is

also a deadlo c k { the man can only push one stone at a time, but that is imp ossible

in this con�guration. The group of stones in the upp er righ t corner sho ws a more

complicated deadlo c k. None of the �v e legal mo v es allo ws the man to get \b ehind"

the stones to push them out.

In all the examples in Figure 3.3 the deadlo c ks are lo cal. In general, deadlo c ks

can b e arbitrarily complex and far reac hing. Figure 3.4 sho ws an example of ho w

37

Figure 3.4: A Large Deadlo c k in Maze #8

Figure 3.5: P osition of the Man Matters

large and in v olv ed these deadlo c ks can b ecome. They can p oten tially include all the

stones in the maze.

3.1.3 P osition of the Man

The preceding �v e-stone deadlo c k in Figure 3.3 iden ti�es an imp ortan t issue: the

p osition of the man. Figure 3.5 sho ws t w o iden tical constellations of stones with the

man in t w o di�eren t parts of the maze. The p osition on the left is a deadlo c k, whereas

the maze on the righ t is solv able.

F urthermore, the stone on Gd needs a di�eren t n um b er of mo v es to reac h a goal,

dep ending on the p osition of the man. If the man is on the righ t side of the stone,

the stone m ust b e pushed in to the left ro om �rst b efore the man can rep osition itself

b ehind the stone to push it to w ards the goal. Therefore, the p osition of the man

a�ects deadlo c ks as w ell as the n um b er of pushes required to reac h a solution.

The in teractions b et w een the stones and the man can b e quite complicated, and

a v oiding deadlo c ks b ecomes the main c hallenge of the game.

38

Figure 3.6: P arking

Figure 3.7: Sok oban Problem #50

3.1.4 High-Lev el Themes and Strategies

The b eginner will so on �nd that there are a few general principles and high-lev el

strategies for solving Sok oban problems. W e w an t to brie
y in tro duce some of them

here, to facilitate later discussions.

Most of the problems app ear cr owde d in the b eginning. Problem #39 in Figure 3.2

is an example. T o mak e progress, the stones ha v e to b e reorganized to simplify the

maneuv ering of stones in to the goal area. This reorganization often requires stones

to b e p acke d in to a small space without creating a deadlo c k. P ac king is an imp ortan t

skill that a Sok oban pla y er m ust acquire early on.

Often stones simply need to b e mo v ed out of the w a y safely un til other tasks are

accomplished. W e call this maneuv er p arking , and it is demonstrated in Figure 3.6.

Before an y of the stones can b e pushed to a goal square, one stone has to b e p arke d

at the square Gb . T o understand this, the reader should try to think ab out �lling in

b oth goal squares Ib and Id . These scenarios can b e arbitrarily complex. In problem

#50 (see Figure 3.7), man y stones ha v e to b e mo v ed through the goal area and then

park ed and pac k ed in a remote area of the maze b efore they can �nally b e pushed to

the goals.

Other problems in the standard suite in tro duce the pla y er to the imp ortan t con-

cept of go al-r o om p acking . There are sev eral p oten tial problems to consider. A p o orly

placed stone ma y cause other goal squares to b e inaccessible. It could also cause a

39

Figure 3.8: Sok oban Problem #38

Figure 3.9: Hiroshi Y amamoto's Masterpiece

deadlo c k b y cutting o� vital paths for the man, b ecause the goal area is needed for the

man to reac h certain parts of the maze. Problem #38 (see Figure 3.8) is an excellen t

example of these kinds of problems.

One can �nd sev eral problems that liv e or die on c ommunic ation channels for

the man b eing accessible to certain regions. Inaccessibilit y of areas can form subtle

deadlo c ks that require a lot of higher lev el reasoning b y the pla y er to b e a v oided.

3.1.5 Creativit y , Art and Challenge

Pla ying our test suite, one could easily get the impression that Sok oban can b e in-

ordinately b eautiful and in tellectually stim ulating. But it is m uc h more than that.

Sok oban is also an art. F or some p eople it is creativ e w ork and esp ecially in Japan

it is v ery serious fun. The results are w onderfully elab orate and c hallenging designs.

There are designs with only a few stones that shine with elegance and b eaut y b ecause

they com bine simplicit y and c hallenge. The game of Sok oban has so man y \lev els"

that there is no end to disco v ery . If solving problems should ev er b ecome monotonous,

there is alw a ys the p ossibilit y of creating new ones.

Figure 3.9 sho ws the winning design of the last Sok oban con test held in 1996. The

designer Hiroshi Y amamoto succeeded in putting man y of the complications of a go o d

Sok oban puzzle in to a small space.

F or some h umans simplicit y is not a necessary elemen t of b eaut y . Masato Hi-

ramatsu created the in tellectual monster sho wn in Figure 3.10. It is an excellen t

example of the lev el of reasoning that h umans are capable of. The understanding

40

Figure 3.10: Masato Hiramatsu's Creation

Figure 3.11: Mic hael Reinek e's Christmas T ree

of in tricate details and the abilit y to abstract them in to subproblems and in the end

com bine those subsolutions to solv e the en tire problem, taking all the in terrelated sp e-

cial cases in to accoun t, is the hallmark of h uman in telligence. Creating suc h problems

go es b ey ond...

The c hallenge in Sok oban can b e com bined with fun as w ell. An excellen t example

is Mic hael Reinek e's Christmas tree sho wn in Figure 3.11.

The examples sho wn here can only skim the surface of Sok oban, only pla ying the

game can giv e an indepth understanding of the b eaut y of the game.

3.2 Wh y Is Sok oban Challenging?

Man y of the academic applications used to illustrate single-agen t searc h, suc h as

sliding-tile puzzles and Rubik's Cub e, ha v e some or all of the follo wing prop erties:

� Giv en a solv able start state, ev ery mo v e preserv es solv abilit y .

� These domains also ha v e small branc hing factors and mo derate solution depths,

resulting in mo derate-sized searc h spaces.

41

Figure 3.12: Example of Necessary Irrev ersible Mo v es

� F urthermore, simple and e�ectiv e lo w er-b ound estimators are a v ailable to guide

the searc h.

Sok oban has none of these desirable prop erties, nor is a go o d lo w er-b ound function

kno wn. This section examines these di�erences in more detail.

3.2.1 Deadlo c k

In most of the single-agen t searc h problems studied in the literature, all state transi-

tions preserv e the solv abilit y of the problem, though not necessarily the optimalit y of

the solution. That is b ecause all state transitions (mo v es) are rev ersible { there exists

a mo v e sequence whic h can undo a mo v e. F or example, a tile just pushed in a sliding-

tile puzzle can b e pushed bac k, and an y rotation on a Rubik's Cub e can b e undone.

Sok oban has irrev ersible mo v es (e.g. pushing a stone in to a corner), and these mo v es

can lead to states that pro v ably ha v e no solution. In e�ect, a single mo v e can c hange

the lo w er b ound on the solution length to in�nit y . If the lo w er-b ound function do es

not re
ect this, then the searc h will sp end unnecessary e�ort exploring a subtree that

has no solution.

The presence of deadlo c k states in a searc h space creates a serious dilemma for

real-time searc h algorithms. While w e are searc hing, ev en irrev ersible mo v es are

rev ersible via bac ktrac king in the searc h space. This situation c hanges if w e ha v e to

commit to a mo v e in the real w orld b efore the searc h has found a solution, b ecause

of constrain ts on time or other resources. W e ma y inadv erten tly mo v e to a deadlo c k

state { a part of the searc h space without solution. Since man y of these deadlo c k

scenarios cannot b e determined without searc h, a real-time algorithm will ha v e a

di�cult time allo cating resources to guaran tee that a solution will b e found.

The simple problem in Figure 3.12 demonstrates that irrev ersible mo v es ma y b e

necessary to solv e a problem. Therefore, simply a v oiding irrev ersible mo v es is not

feasible.

The existence of irrev ersible mo v es rev eals an imp ortan t prop ert y of the underlying

searc h space: It is a dir e cte d gr aph . The traditional domains used to examine single-

agen t searc h map on to undirected graphs. This distinction leads to a rather signi�can t

di�erence. In a domain with an underlying undirected graph, a mo v e of cost c can

only c hange the distance to the goal b y at most c . In domains with a directed graph

searc h space, a legal mo v e can decrease the distance to a goal b y at most c , but can

increase it b y an arbitrary amoun t. In the extreme that is in�nit y , meaning deadlo c k.

42

3.2.2 Searc h-Space Size

The large size of the searc h space for Sok oban is due to p oten tially large branc hing

factors and long solution lengths compared to previously studied domains. The n um-

b er of stones ranges from 6 to 34 in the standard problem set. With 4 p oten tial mo v es

p er stone, the branc hing factor could b e o v er 100. The solution lengths range from

97 to o v er 650 stone pushes, ignoring man mo v es. The trees are bushier and deep er

than in previously studied problems, resulting in a searc h space that is man y orders

of magnitude larger.

Note that there are di�eren t de�nitions of an optimal solution to a Sok oban prob-

lem: minimizing the n um b er of stone pushes, minimizing the n um b er of man mo v es,

or minimizing some ratio b et w een pushes and mo v es. F or a few problems there is

one solution that optimizes b oth stone pushes and man mo v es, but in general they

con
ict.

Calculating an upp er b ound for the searc h-space complexit y for Sok oban rev eals

the startling size of the searc h task. F or simplicit y , let's restrict the size of the problem

con�gurations to mazes of size 20 x 20. Requiring w alls around the p erimeter lea v es

an in ternal area of at most 18 x 18 = 324 squares where stones can mo v e. Maximizing

the p ossible arrangemen ts of stones in this area requires (18 � 18) = 2 = 162 stones.

This leads to

324

162

!

=

324!

(324 � 162)! � 162!

� 10

96

p ossible stone con�gurations. Since the man can b e on an y of the empt y squares, w e

need to m ultiply this n um b er b y 162, resulting in a n um b er of the order 10

98

. When

considering equiv alen t man p ositions for the task of minimizing stone pushes, the size

of the searc h space is somewhere b et w een 10

96

and 10

98

.

In these calculations w e assume that there are no dead squares and that the maze

is as large as p ossible with no other w alls. In practice that is not the case. In our

test suite the a v erage n um b er of squares is 113, of whic h 77 squares are not dead, and

there are 16 stones on a v erage. T able 3.1 sho ws the searc h-space size for eac h maze

considering only the non-dead squares. This n um b er assumes that the searc h will not

generate mo v es on to dead squares, a reasonable assumption.

The median searc h-space size for all 90 problems using only non-dead squares is

roughly 10

18

{ far less then the initial estimate of 10

98

. Ho w ev er, the searc h-space

size is not necessarily a go o d indicator of the di�cult y of the problem, since it do es

not re
ect the de cision c omplexity [All94]. If a problem is o v er-constrained or under-

constrained, it migh t b e easy to solv e or pro v e that no solution exists, resp ectiv ely .

The hard problems can b e exp ected to b e in the middle zone. Since the problems

in the test sets are comp osed b y h umans for h umans, w e can assume that they are

generally c hallenging and ha v e a high decision complexit y . The prop ert y of a sudden

increase in di�cult y at certain constrain t lev els is called a phase tr ansition ([CKW91]

is an excellen t reference).

43

stones squares

non-

dead

squares

searc h

space

sizes

1 6 56 41 10

8

2 10 70 46 10

11

3 11 56 43 10

11

4 20 112 77 10

20

5 12 71 54 10

13

6 10 60 41 10

11

7 11 64 43 10

11

8 18 109 85 10

20

9 14 83 60 10

15

10 32 172 116 10

31

11 14 93 68 10

16

12 15 104 66 10

16

13 16 118 78 10

18

14 18 121 85 10

20

15 15 104 77 10

17

16 15 81 55 10

15

17 6 87 53 10

9

18 11 105 70 10

14

19 15 123 84 10

18

20 18 151 96 10

21

21 13 94 64 10

15

22 27 167 116 10

28

23 18 127 104 10

22

24 22 157 114 10

25

25 19 140 88 10

21

26 13 80 58 10

14

27 20 122 92 10

22

28 20 112 85 10

21

29 16 107 59 10

16

30 18 119 78 10

19

31 20 110 85 10

21

32 15 73 59 10

15

33 15 93 62 10

16

34 14 93 62 10

15

35 17 150 101 10

21

36 21 124 92 10

22

37 20 130 92 10

22

38 8 49 40 10

9

39 25 142 105 10

26

40 16 107 77 10

18

41 15 94 67 10

16

42 24 118 98 10

25

43 9 88 61 10

12

44 9 95 64 10

12

45 17 98 68 10

17

stones squares

non-

dead

squares

searc h

space

sizes

46 14 97 68 10

16

47 16 85 73 10

18

48 34 94 84 10

25

49 12 81 57 10

14

50 16 134 96 10

20

51 14 72 54 10

14

52 18 132 101 10

22

53 15 133 76 10

17

54 16 135 82 10

19

55 12 128 72 10

15

56 16 123 82 10

19

57 16 130 90 10

19

58 15 135 92 10

19

59 16 122 81 10

18

60 13 121 77 10

16

61 20 131 82 10

21

62 16 126 86 10

19

63 17 140 94 10

20

64 16 117 82 10

19

65 15 130 80 10

18

66 18 144 89 10

20

67 20 121 82 10

21

68 15 132 84 10

18

69 18 139 82 10

20

70 18 130 84 10

20

71 18 135 77 10

19

72 16 132 84 10

19

73 14 139 88 10

18

74 16 126 73 10

18

75 17 130 77 10

19

76 17 130 88 10

20

77 14 126 80 10

17

78 8 90 66 10

12

79 12 100 68 10

15

80 12 110 80 10

16

81 12 95 72 10

15

82 12 85 65 10

14

83 10 102 66 10

13

84 12 104 75 10

15

85 15 145 78 10

18

86 10 75 49 10

12

87 12 111 74 10

15

88 23 133 114 10

26

89 21 155 104 10

24

90 25 181 133 10

29

A V G: 16 113 77 10

18

T able 3.1: Searc h-Space Sizes for the T est Suite

44

3.2.3 Lo w er Bound

In general, it is hard to admissibly estimate the n um b er of stone pushes needed to

solv e a Sok oban problem.

1

The tigh ter the b ound, the more e�cien t a single-agen t

searc h algorithm can b e. The stones can ha v e complex in teractions with elab orate

maneuv ers often b eing required to rep osition stones. F or some problems, without a

deep understanding of the problem and its solution, it is di�cult to obtain a reason-

able b ound. F or example, in problem #50 (see App endix A), the solution requires

mo ving stones thr ough and away from the goal squares to mak e ro om for other stones.

Our b est lo w er-b ound function returns 100 stone pushes (see Section 4.3), whereas

the b est kno wn h uman solution requires 370 mo v es. This is clearly an enormous gap,

and an imp osing obstacle to an e�cien t ID A* searc h.

Sev eral ideas come to mind when trying to design a go o d lo w er-b ound function.

T rivially , one could use the n um b er of stones not on a goal; or, with a little more so-

phistication, one could compute the sum of the distances of eac h stone to its resp ectiv e

closest goal. Unfortunately , neither of these t w o heuristics is accurate.

Eac h goal can accept only one stone, so instead of using the goal closest to eac h

stone, w e can try to �nd a matching of stones to goals. Since w e are lo oking for a

lo w er b ound (i.e. an admissible heuristic) w e need to �nd a minim um cost matc hing

of stones to goals, where the cost is the n um b er of pushes required to get a stone from

its curren t p osition to a sp eci�c goal.

This lo w er-b ound heuristic is exp ensiv e to compute (O (n

3

)), whic h is y et another

distinction from simpler domains (for example the Manhattan distance used in the

sliding-tile puzzles). Despite the exp ense of computing this lo w er b ound, it is still of

rather p o or qualit y . None of the complex in teractions of stones that can increase so-

lution lengths dramatically are tak en in to accoun t. The resulting di�erences b et w een

h and h

�

can b e large, causing ID A* to fail since its e�ciency dep ends on reasonably

small errors. W e will discuss this lo w er-b ound estimator and p ossible enhancemen ts

for Sok oban in more detail in Section 4.3.

3.2.4 Conclusions

Sok oban is a di�cult searc h application for man y reasons:

1. the branc hing factor is large and v ariable (p oten tially o v er 100),

2. the solution ma y b e deep in the searc h tree (some problems require o v er 500

mo v es to solv e optimally),

3. solutions are inheren tly sequen tial, subgoals are often in terrelated and th us

cannot b e solv ed indep enden tly ,

4. it has a complex lo w er-b ound estimator, and

1

W e c hose to solv e problems minimizing stone pushes. Solving for man mo v es instead of stone

pushes w ould require a di�eren t lo w er-b ound estimator than w e are curren tly using. In our opinion,

it w ould b e harder to �nd and most lik ely of p o orer qualit y .

45

5. the searc h space is a directed graph that con tains states with no solution.

Ho w ev er, h umans can successfully solv e Sok oban problems. They apply higher-

lev el reasoning, pattern matc hing, detect exceptions and sp ecial cases, learn from

previous examples, com bine partial solutions, and are able to �nd the exact reason

for wh y a particular strategy failed. As a testb ed for arti�cial in telligence tec hniques,

Sok oban o�ers a signi�can t c hallenge to researc hers, since man y of the core problems

of arti�cial in telligence need to b e addressed to build a program that riv als the b est

h uman p erformance in solving Sok oban problems.

3.3 Related W ork

Un b ounded Sok oban has b een sho wn to b e NP-hard [DZ95] and P-SP A CE complete

[Cul97]. Dor and Zwic k [DZ95] sho w that Sok oban is an instance of a motion planning

problem, and compare the game to other motion planning problems in the literature.

F or example, Sok oban is similar to Wilfong's w ork with mo v able obstacles, where

the man is allo w ed to hold on to the obstacle and mo v e with it, as if they w ere one

ob ject [Wil88]. Sok oban can b e compared to the problem of ha ving a rob ot in a

w arehouse mo v e a n um b er of sp eci�ed go o ds from their curren t lo cation to their �nal

destination, sub ject to the top ology of the w arehouse and an y obstacles in the w a y .

When view ed in this con text, Sok oban is an excellen t example of using a game as an

exp erimen tal test-b ed for mainstream researc h in arti�cial in telligence.

There are a n um b er of other kno wn Sok oban solv ers in existence. It is in teresting

to see the di�eren t approac hes p eople ha v e tak en.

3.3.1 Mark James

In 1993, Mark James wrote his Master's thesis at the Univ ersit y of Calgary on the

automatic creation of macro mo v es [Jam93]. He used Sok oban to sho w the limitations

of his suggested metho ds whic h w ork ed w ell in other domains (see Section 2.3.4). His

Sok oban program w as able to solv e problem #1 using o v er 2 hours of CPU time. No

other problems where solv ed.

3.3.2 Andrew My ers

Andrew My ers' program app ears to b e an in teresting approac h, and it has solv ed nine

problems. My ers [My e97] writes that his:

. . . program uses a breadth-�rst A* searc h, with a simple heuristic to select

the next state to examine. A compact transp osition table stores the states.

When the solv er runs out of memory , it discards some states b elo w the

10th p ercen tile in mo v es made. This feature allo ws the program to handle

lev els [problems] lik e lev el 51. The solv er tries to minimize b oth mo v es

and pushes. It do es not supp ort macro mo v es.

46

The heuristic estimates b oth the n um b er of stone pushes and the n um b er

of man mo v emen ts needed to complete the puzzle. The n um b er of pushes

is estimated more quic kly but less accurately , taking adv an tage of the

usual clustering of the goal spaces in one area of the b oard. The estimate

has t w o parts: the n um b er of mo v es and pushes needed to push a ball

to the nearest goal square, and the n um b er of pushes needed to push a

ball to eac h goal square from the nearest non-go al square. In addition,

the estimator comp ensates for the ball that is optimal for the man to

push next. The estimate is summed quic kly , using appro ximately 700K of

precomputed tables. The estimate do es not consider linear con
icts, whic h

w ould probably help. The heuristic is not monotonic; a conserv ativ e,

monotonic estimate is used to discard sub optimal states.

Deadlo c ks are automatically iden ti�ed for 3x3 regions, and also for certain

goal lo cations that can nev er b e �lled. A goal lo cation can only b e �lled

if in one of the four directions, the t w o immediately adjacen t squares can

b e made empt y . If an immo v able ball is placed in either square, the state

is deadlo c k ed. An optional deadlo c k table allo ws easy sp eci�cation of

complex deadlo c k conditions b y hand. Ho w ev er, the program do es not

attempt to automatically �ll the deadlo c k table.

3.3.3 Stefan Edelk amp

Stefan Edelk amp, w orking on his PhD at the Univ ersit y of F reiburg in German y ,

has dev elop ed a program that can solv e 13 problems of our test suite [Ede98]. His

program attempts to solv e for minimal n um b er of stone pushes and uses a sophisti-

cated decomp osition algorithm to reason ab out the presence of static deadlo c ks with

minimal lo ok ahead. An elab orate data structure is used to store and matc h minimal

deadlo c k patterns.

3.3.4 Meiji Univ ersit y

A t Meiji Univ ersit y , Japan, A. Ueno, K. Nak a y ama and T. Hikita dev elop ed a strong

Sok oban solv er based on A*, but using non-admissible heuristics [UNH97, Hik99].

The program uses a heuristically driv en deadlo c k searc h; no con
icts of p oten tial

solutions are exploited. The solutions found are neither mo v e- nor push-optimal.

The program can solv e 25 of the 90 problems.

3.3.5 Sok oban Lab oratory

Sok oban Lab oratory is a program dev elop ed in Japan to facilitate the construction

of Sok oban problems. It also con tains a solv er, whic h solv es 55 problems of the test

suite, using a heuristically driv en b est-�rst searc h. Their solutions are non-optimal,

for either pushes or mo v es. The program is based in part on the Sok oban solv er

dev elop ed at Meiji Univ ersit y . It app ears to b e a team e�ort of sev eral p eople, either

47

con tributing directly , or making co de of their solv ers a v ailable: K. T ak ahashi, A. Ueno,

K. Nak a y ama, T. Hikita, Y. Murase, Y. Oki as w ell as deepgreen.

3.3.6 Deepgreen

The b est o v erall program w e ha v e heard ab out so far is b y an author who calls himself

or herself de ep gr e en . The program can solv e 62 of the 90 problems [dee99]. No details

are kno wn ab out this program at the momen t. Ho w ev er, deepgreen is in comm uni-

cation with the authors of the other strong Japanese programs and w e assume the

program builds on previous e�orts of the strong Japanese Sok oban comm unit y .

The collab orativ e approac h to solving Sok oban problems mak e the Japanese e�orts

unique. Eac h new program can build on o v er 10 y ears of team e�ort. Sharing source

co de and ideas accum ulates a w ealth of kno wledge that is unparalleled.

48

Chapter 4

Standard Single-Agen t Searc h

Metho ds

This c hapter in v estigates the p o w er and limitations of state-of-the-art single-agen t

searc h tec hniques. W e will consider the c hoice of algorithm and the plethora of searc h

enhancemen ts a v ailable to increase searc h e�ciency as giv en in arti�cial-in telligence

text b o oks. W e implemen ted those tec hniques in the program R ol ling Stone to obtain

exp erimen tal results that allo w us to ev aluate them for the domain of Sok oban.

The next section con tains a clari�cation of what the problem is that w e are trying

to solv e. Eac h of the follo wing sections is then dev oted to single-agen t searc h and its

enhancemen ts as discussed in Chapter 2. Starting with the c hoice of algorithm and

mo ving on to the lo w er-b ound function, transp osition table, mo v e ordering, dead-

lo c k tables and macro mo v es, this c hapter discusses and explains ho w the standard

tec hniques from the text b o oks can b e applied to the domain of Sok oban and, more

imp ortan tly , what their strengths and limitations are.

T o ev aluate these metho ds, one cen tral exp erimen t is used throughout this (as w ell

as the follo wing) c hapter(s). The program is giv en a �xed amoun t of searc h e�ort

p er problem { 20 million no des. The program tries to solv e eac h of the 90 problems

within the searc h constrain ts. With eac h enhancemen t discussed and added to the

program, more of the 90 problems can b e solv ed. This \ev olutionary" approac h to

p erformance ev aluation has its pitfalls. Therefore, a section is included that estimates

the v alue of eac h of the enhancemen ts in a di�eren t w a y .

The conclusion of this c hapter is that ev en though text b o oks stress the imp ortance

of c ho osing the correct algorithm, this is usually a trivial task. In con trast, �nding,

implemen ting and tuning the righ t com bination of searc h enhancemen ts is far more

di�cult and imp ortan t for p erformance. F urthermore, ev en though standard searc h

enhancemen ts can giv e some impressiv e searc h tree reductions, they are far from b eing

su�cien t to solv e ev en mo derately di�cult problems in the domain of Sok oban.

49

4.1 Problem De�nition

As discussed b efore, there are sev eral p ossible w a ys to solv e Sok oban problems. The

di�erence lies in what one tries to optimize: man mo v es, stone pushes or a (w eigh ted)

com bination of b oth. F or real-w orld domains, the optimization w ould try to minimize

cost. That cost is usually dep enden t on the actions p erformed: an airplane's op erating

cost, the time to load or unload a truc k { an y n um b er of costs can b e imagined. Since

Sok oban is a game, real costs do not exist and w e ha v e the c hoice of what costs w e

asso ciate with eac h action.

R ol ling Stone is designed to �nd solutions that optimize the n um b er of stone

pushes; the n um b er of man mo v es is not considered. Expressed in terms of cost, w e

asso ciate a cost of 1 with a stone push and a cost of 0 with a man mo v e. This c hoice

w as delib erate, b ecause w e felt that a go o d lo w er-b ound estimator for man mo v es w as

harder to design and implemen t than for stone pushes.

When comparing h uman solutions to those found b y R ol ling Stone , this b ecomes

immediately ob vious: the n um b er of man mo v es is usually higher. Those solutions

con tain sequences of pushes that can b e optimized for man mo v es b y simply rearrang-

ing the stone pushes. One could add a p ost-pro cessing phase that tak es a solution

and tries to reorganize the stone pushes to reduce the n um b er of man mo v es. This

p ost-pro cessor could b e compared to a sc heduler of tasks pro vided b y the planner

(R ol ling Stone) minimizing the resource \man mo v es".

Our initial attempts to solv e Sok oban optimally could solv e only a few small prob-

lems. Relaxing the optimalit y criterion allo ws us to use more aggressiv e approac hes

that enable us to solv e more problems. The tradeo� is b et w een solving a few problems

optimally and solving man y more problems nearly optimally . W e b eliev e strongly that

optimalit y is of little practical v alue if it means that only a small p ercen tage of the

p osed problems can b e solv ed. F or h umans, the satisfaction comes from �nding any

solution to a Sok oban problem; few are in terested in or capable of �nding optimal

solutions.

4.2 Searc h Algorithm

When c ho osing the algorithm to solv e problems from the Sok oban domain, w e consider

some of the crucial searc h-space prop erties:

� there are few goal no des, and they are lo cated deeply in the tree,

� heuristic information, in the form of a lo w er-b ound heuristic, is a v ailable and

� the searc h space is large.

These prop erties dictate an informed searc h that �nds sparsely distributed goals in

a h uge searc h space: ID A*. As discussed in Section 2.2.3, the c hoice of algorithm is

rather trivial.

50

Id

Cc

Hb

If

Ic

Bb

8
8

9
6

8

6

1

2

2

goalsstones

stones goals on

on Bb Ic If

Cc 2 6 9

Hb 6 1 1

Id 1 1 2

Figure 4.1: Minmatc hing Example

4.3 Lo w er Bound Heuristic

T o design a lo w er-b ound heuristic for Sok oban that estimates the n um b er of stone

pushes required to get all the stones to the goals, w e could ignore the distance to

goals and the stone-man in teractions. These simpli�cations result in a lo w er-b ound

estimator that coun ts the n um b er of stones that are not on goals. Let's call this

lo w er-b ound function Count . If w e still ignore stone-man in teractions, but tak e dis-

tances in to accoun t, w e get a computationally inexp ensiv e lo w er b ound summing

the distances of all the stones to their resp ectiv e closest goal. Let's call this function

Closest . Of course, these extreme simpli�cations are unlik ely to lead to a high-qualit y

lo w er-b ound estimator. Allo wing more of the constrain ts of the problem to b e tak en

in to accoun t results in a b etter lo w er-b ound estimator, alb eit at a p ossibly higher

computational cost.

4.3.1 Minim um Cost Matc hing

The fundamen tal observ ation leading to the lo w er-b ound heuristic used in R ol ling

Stone is the follo wing: Only one stone can go to an y one goal. F or eac h stone, there

is a minim um n um b er of pushes required to maneuv er that stone to a particular

goal. This distance (or cost) assumes no adv erse in teractions with other stones in the

maze, basically pretending the maze is empt y . The problem is to �nd the assignmen t

of stones to goals that minimizes the sum of these distances.

Since there are as man y stones as there are goals, and ev ery stone has to b e

assigned to a goal, w e are trying to �nd a minimum c ost (distance) p erfe ct matching

on a complete bipartite graph. Edges b et w een stones and goals are w eigh ted b y the

distance b et w een them, and assigned in�nit y if the stone cannot reac h a goal. W e

will call this heuristic Minmatching for short.

Figure 4.1 sho ws an example of the lo w er-b ound calculation. The table lists

the distances from the three stones to eac h of the three goals in the maze. The

b old en tries represen t a minim um cost matc hing. It is imp ortan t to note here that

the Minmatc hing solv es one imp ortan t problem. Ev en though the stone on Cc and

the stone on Id b oth ha v e goals close b y , they ha v e to b e pushed to a goal further

a w a y . While the functions Count and Closest w ould return 3 and 5 resp ectiv ely ,

51

Figure 4.2: Minmatc hing Detects Deadlo c k

Minmatc hing returns 14! This larger lo w er b ound allo ws the searc h to eliminate large

parts of the searc h space.

4.3.2 Deadlo c k Detection

Figure 4.2 sho ws an example where the Minmatc hing algorithm detects a deadlo c k.

None of the stones can reac h the goal on Fc , the goal on Db is o v er-committed.

This example sho ws ho w p o w erful this lo w er b ound is, compared to the more naiv e

approac hes.

4.3.3 Underlying Algorithms

Minim um cost p erfect matc hing for a bipartite graph can b e solv ed using minim um

cost augmen tation [Kuh55]. Giv en a graph with n no des and m edges, the cost

of computing the minimal cost matc hing is O (n � m � l og

(2+ m=n)

n). Since w e ha v e a

complete bipartite graph, m = n

2

= 4 and the complexit y is O (n

3

� l og

(2+ n= 4)

n). Clearly

this is an exp ensiv e computation, esp ecially if it has to b e p erformed for ev ery no de

in the searc h.

Ho w ev er, there are sev eral optimizations that can reduce the o v erall cost. First,

when w e �nd a matc hing that reduces the minim um cost b y the cost of the mo v e,

w e kno w w e can not do b etter and w e can ab ort immediately . Second, during the

searc h w e only need to up date the matc hing, b ecause eac h push results in only one

stone c hanging its distances to the goals. This requires �nding a negativ e-cost cycle

[Kle67] in v olving the stone pushed. Finally , w e are lo oking for a p erfect matc hing,

whic h considerably reduces the n um b er of suc h cycles to c hec k.

Ev en with these optimizations, the cost of main taining the lo w er b ound dominates

the execution time of our program.

4.3.4 En trance Impro v emen t

Ho w can w e b e more e�cien t in computing the Minmatc hing? Consider Figure 4.3:

Both stones need to go through the en trance square Ce to en ter the goal area. When-

ev er t w o stones (S

1

; S

2

) m ust go through one square (let's call that square E) to get to

their goals (G

1

; G

2

), the assignmen t of stones to goals do es not matter, since the sum

of the distances is a constan t (distance (S; G) denotes the distance from the square S

to the square G):

52

Figure 4.3: Both Stones Are F orced to P ass Through Ce

distance (S

1

; G

1

) + distance (S

2

; G

2

) = (distance (S

1

; E) + distance (E ; G

1

))

+(distance (S

2

; E) + distance (E ; G

2

))

= (distance (S

1

; E) + distance (E ; G

2

))

+(distance (S

2

; E) + distance (E ; G

1

))

= (distance (S

1

; G

2

) + distance (S

2

; G

1

))

Most of the problems that w e are in terested in solving follo w similar principles.

They ha v e goal areas with single en trances. This observ ation can lead to signi�can t

sp eedups when w ork ed in to �nding negativ e-cost cycles. Ho w ev er, ev en after this

impro v emen t, our lo w er-b ound estimator is still more exp ensiv e to compute than

most of the lo w er-b ound functions used in the single-agen t searc h literature (suc h as

the Manhattan distance used for sliding-tile puzzles). Note that the en trance tric k

only impro v es the e�ciency of the computation, but do es not impro v e the qualit y of

the lo w er-b ound estimate.

4.3.5 P osition of the Man

Simply using the distance of the stone to the goals ignores an imp ortan t issue: The

p osition of the man with resp ect to the stone to b e pushed.

What is the distance of a stone to a particular goal? One could assume the man

is able to tra v el from an ywhere in the maze to an ywhere else. Ho w ev er, the maze,

ev en with only one stone in it, restricts the man's mo v emen ts. If a stone's path leads

through an articulation p oin t

1

in the maze, the man's mo v emen t is restricted b y that

one stone.

Consider the maze in Figure 4.4. Ev en though the stone is only three squares

a w a y from the goal, the man is on the wrong side of the stone to b e able to push the

stone with three pushes to the goal. T o rep osition itself to the left side of the stone,

the man needs to push the stone t w o pushes a w a y from the goal, swing b ehind it, and

then push it to the goal. The capabilit y to detect this and impro v e the lo w er b ound

is called the b ackout c on
ict .

1

Articulation p oin ts (or squares) are squares that divide the maze in to at least t w o disjoin t parts.

53

Figure 4.4: Distance Dep ends on the P osition of the Man

Figure 4.5: The Stone Needs to Be Bac k ed Out

Figure 4.6: Bac k out Con
ict Impro v es Lo w er Bound for Problem #4

54

Figure 4.7: Example of Linear Con
icts

Figure 4.5 sho ws ho w this idea carries o v er to stones that are not on articulation

squares y et, but that are forced to mo v e through them. Problem #4 in Figure 4.6

is an excellen t example of the e�ectiv eness of this lo w er-b ound enhancemen t. F our

stones ha v e to b e bac k ed out of their curren t ro om to rep osition the man b ehind

them: Ge , Gg , Dh and El . F or eac h of these stones the lo w er b ound is o� b y 6. The

lo w er b ound is increased b y 24, from 331 to 355, resulting in a large reduction in

searc h-tree size.

As already discussed in Section 2.2.2, this impro v emen t is p ossible b ecause further

problem constrain ts are used in the lo w er-b ound calculation. Whereas previously ,

the man w as allo w ed to ignore the placemen t of the stones, with the bac k out-con
ict

enhancemen t the man cannot simply jump o v er stones an ymore. That results in

larger and more realistic distances that stones ha v e to tra v el b et w een squares and

therefore in an increased lo w er-b ound estimate.

4.3.6 Linear Con
icts

The line ar c on
icts enhancemen t is used to impro v e up on the Manhattan-distance

lo w er b ound in the sliding-tile puzzles. There, if t w o neigh b oring tiles are in eac h

other's w a y (their paths directly con
ict), an ev asiv e maneuv er of at least one of the

tiles is necessary to allo w the other to pass. This allo ws for an increase of the lo w er

b ound b y t w o.

Consider Figure 4.7: The minim um matc hing lo w er-b ound estimator w ould return

a v alue of 10. That assumes that b oth stones can use an optimal path from their

curren t lo cation to the goal they are targeted to. But can they? No. Similar to the

linear con
icts in the sliding-tile puzzles, one stone has to mo v e o� its optimal path to

allo w the second stone to pass or to allo w the man access, dep ending on whic h stone

gets pushed aside. Either the stone on Dc has to mo v e do wn one square to allo w the

man to push the stone on Ec or, alternativ ely , the stone on Ec has to b e pushed do wn

to allo w the stone on Dc to pass. In either case, t w o extra pushes are required.

2

That

means the minim um cost matc hing is o� b y at least t w o in this case. Whenev er t w o

stones are on these t w o squares, w e can increase the Minmatc hing lo w er b ound b y

t w o without violating admissibilit y . W e call this increase a p enalty of t w o.

2

Ho w ev er, if w e w ould tak e man mo v es in to accoun t, w e w ould ha v e to break the linear con
ict

suc h that w e minimize man mo v es as w ell. In that case, pushing Dc-Dd to break the con
ict tak es

the few est man mo v es with an equal n um b er of stone pushes. Since w e simpli�ed our ob jectiv e to

only minimize stone pushes, w e can ignore that issue in the program.

55

Figure 4.8: Complications With Linear Con
icts

All this is v ery w ell, but... there are t w o problems that w e w an t to dra w the

reader's atten tion to that sp oil the b eaut y

3

of the idea of linear con
icts and, unfor-

tunately , will come up in a later c hapter again.

First, consider the left maze in Figure 4.8. There are t w o linear con
icts of the kind

w e ha v e seen in Figure 4.7. Iden tifying t w o linear con
icts do es not automatically

p ermit us to increase the lo w er b ound b y 4. By pushing the stone on square Dc

do wn, only one non-optimal push is necessary to push all stones to goals. Ho w ev er,

if the middle stone w as blo c k ed, sa y b y a w all on square Dd , this maneuv er w ould

b e imp ossible and b oth end stones in the c hain of linear con
icts w ould ha v e to b e

pushed. The p enalt y of 4 w ould b e justi�ed.

The second problem is sho wn in the righ t maze of Figure 4.8. Note the additional

en trance. None of the linear-con
ict reasoning holds an ymore, b ecause the stone

mo ving do wn to allo w the others to pass can no w mo v e to w ards its goal using the

new en trance. It is therefore imp ortan t to kno w if a stone is forced to use one direction

from a square to reac h al l goals in the maze. T o mak e matters ev en more complicated

here, once a stone is pushed to w ards the lo w er en trance it can b e the only one mo ving

there without b eing p enalized. Only one stone can en ter through the lo w er en trance

b ecause there is only one goal to b e �lled that is reac hable from it. That means w e

still ha v e to break the linear con
ict with the middle stone, otherwise one non-optimal

push is required. But w e digress...

4

4.3.7 Dynamic Up dates

The distances used for the Minmatc hing are precomputed b efore the searc h starts.

They represen t the n um b er of stone pushes required to push a stone from an y square

in the maze to an y other square. These distances are optimistic distances in that

they assume no in terference with other stones. The only restrictions are the w alls in

the maze.

3

If the reader senses a little sarcasm here, she is righ t. It has b een a recurring theme while w orking

in the domain of Sok oban to �nd neat and b eautiful ideas that lo ok ed so inno cen tly promising {

on the surface. After in tense programming and debugging e�orts (b ecause the results where not

fa v orable or seemed otherwise wrong) exceptions or sp ecial cases where found that had to b e dealt

with.

4

If the reader feels sligh tly lost in all this discussion, that is understandable. Ev en after sev eral

y ears of activ e researc h w e are still not able to sa y that w e fully appreciate the depth and subtlet y

that Sok oban pro vides us with. W e could not resist the temptation to in tro duce the reader to some

of these w onderfully in tricate features here!

56

Figure 4.9: Example for Dynamic Distance Up dates

Figure 4.10: Limitations of the Lo w er Bound Estimator

When a stone is pushed in to a corner, it b ecomes �xed. If that corner square is

not a goal, the stone will nev er b e able to reac h a goal square and the p osition is a

deadlo c k. The lo w er b ound will detect this deadlo c k b ecause of the in�nite distance

from the corner square to all goal squares.

Ho w ev er, if the corner square is a goal, the p osition is not necessarily a deadlo c k.

Fixed stones on goal squares can b e treated as w alls. They p oten tially c hange dis-

tances, b ecause w alls are obstacles. Consider Figure 4.9. In the left maze, the stone

on Ed can b e pushed up. The distance from square Ed to square Eb is 2. Ho w ev er,

in the righ t maze, since the stone on square Ee is �xed, the distance from Ed to Eb

is no longer 2; it is 6.

R ol ling Stone therefore recalculates distances whenev er stones are pushed on to a

�xed goal square. Note also that after a stone is �xed, other squares b eside it can

p oten tially b ecome �xed.

4.3.8 Limitations

As the example of the linear con
icts sho ws, dynamic in teractions of groups of stones

(and p ossibly the man) are not re
ected in the lo w er-b ound estimator. While lin-

ear con
icts usually result in p enalties of t w o, larger p enalties resulting from other

stone in teractions are p ossible. This is dramatically illustrated with the deadlo c k

in Figure 4.10: The p osition of the stones and the man create a deadlo c k that the

lo w er-b ound estimator cannot detect. The searc h could p oten tially explore a large

tree exhaustiv ely just to pro v e that there is no solution to this problem. It w ould do

so without understanding wh y no solution exists.

57

MM +BO +LC ALL UB Di�

51 118 118 118 118 118 0

55 118 120 118 120 120 0

78 134 136 134 136 136 0

53 186 186 186 186 186 0

83 190 190 194 194 194 0

48 200 200 200 200 200 0

80 219 225 225 231 231 0

4 331 355 331 355 355 0

1 95 95 95 95 97 2

2 119 129 119 129 131 2

3 128 128 132 132 134 2

58 189 197 189 197 199 2

6 104 104 106 106 110 4

5 135 137 137 139 143 4

60 148 148 148 148 152 4

70 329 329 329 329 333 4

63 425 425 427 427 431 4

73 433 437 433 437 441 4

84 147 149 147 149 155 6

81 167 167 167 167 173 6

10 494 506 496 506 512 6

38 73 73 73 73 81 8

7 80 80 80 80 88 8

82 131 131 135 135 143 8

79 164 164 166 166 174 8

65 181 199 185 203 211 8

12 206 206 206 206 214 8

57 215 215 217 217 225 8

9 215 227 217 229 237 8

14 231 231 231 231 239 8

62 235 237 235 237 245 8

72 284 284 288 288 296 8

77 360 360 360 360 368 8

54 177 177 177 177 187 10

56 191 193 191 193 203 10

76 192 192 194 194 204 10

47 197 197 199 199 209 10

8 220 220 220 220 230 10

27 351 351 353 353 363 10

86 122 122 122 122 134 12

44 167 167 167 167 179 12

17 121 201 121 201 213 12

59 218 218 218 218 230 12

87 221 221 221 221 233 12

43 132 132 132 132 146 14

MM +BO +LC ALL UB Di�

34 152 152 154 154 168 14

71 290 290 294 294 308 14

40 310 310 310 310 324 14

35 362 362 364 364 378 14

36 501 501 507 507 521 14

41 201 219 203 221 237 16

45 274 282 276 284 300 16

19 278 282 280 286 302 16

22 306 306 308 308 324 16

20 302 444 304 446 462 16

18 90 106 90 106 124 18

21 123 127 127 131 149 18

13 220 220 220 220 238 18

31 228 228 232 232 250 18

64 331 367 331 367 385 18

25 326 364 330 368 386 18

90 436 442 436 442 460 18

49 96 104 96 104 124 20

42 208 208 208 208 228 20

61 241 241 243 243 263 20

28 284 284 286 286 308 22

68 317 319 319 321 343 22

39 650 650 652 652 674 22

46 219 223 219 223 247 24

67 367 375 369 377 401 24

23 286 424 286 424 448 24

32 111 111 113 113 139 26

16 160 160 162 162 188 26

85 303 303 303 303 329 26

89 345 349 349 353 379 26

24 442 516 442 518 544 26

15 94 94 96 96 124 28

33 140 150 140 150 180 30

26 149 163 149 163 195 32

11 197 201 201 207 241 34

75 261 261 263 263 297 34

29 124 122 124 122 164 42

74 158 172 158 172 214 42

37 220 242 220 242 290 48

88 306 334 308 336 390 54

52 365 365 367 367 423 56

30 357 357 359 359 465 106

66 185 185 187 187 325 138

69 207 217 209 219 443 224

50 96 96 96 100 370 270

T able 4.1: Lo w er Bounds

58

4.3.9 Results

T able 4.1 sho ws the e�ectiv eness of our lo w er-b ound estimate. The table sho ws the

lo w er b ound ac hiev ed b y minim um cost matc hing (MM), inclusion of the bac k out

enhancemen t (+BO), inclusion of the linear con
ict enhancemen t (+LC), and the

com bination of all three features (ALL). The upp er b ound (UB) is obtained from

the global Sok oban score �le. Since this �le represen ts the b est that h uman pla y ers

ha v e b een able to ac hiev e, it is an upp er b ound on the solution length. The table is

sorted according to the last column (Di�), whic h sho ws the di�erence b et w een the

lo w er b ound with all the enhancemen ts (ALL) and the upp er b ound (UB). Clearly ,

for some problems (notably problem #50) there is a h uge gap. Note that the real

gap migh t b e smaller, as it is lik ely that some of the hard problems ha v e b een non-

optimally solv ed b y h uman pla y ers. F urthermore, if the di�erence is 0, the optimal

solution lengh t is kno wn.

Using the ID A* framew ork and this sophisticated lo w er-b ound function, the searc h

cannot �nd ev en one solution to an y of the 90 problems with a limit of 20 million

searc h no des. Ev en increasing our e�ort limit 50 fold to 1 billion no des did not yield

a single solution.

Judging the n um b ers of T able 4.1, one should k eep in mind that the e�ciency

of the searc h dep ends on the o v erall qualit y of the lo w er-b ound estimator for the

en tire searc h tree, not just the ro ot no de as sho wn in the table. This is one of the

reasons wh y w e cannot solv e an y of the problems, ev en though for some problems the

lo w er b ound of the ro ot no de matc hes the upp er b ound giv en b y the h uman solution.

Usually this w ould represen t the ideal case in whic h the searc h should excel and easily

�nd the solution. Ho w ev er, ev en though our lo w er-b ound estimator seems to deliv er

reasonable results for the ro ot no des of the problems, the a v erage error throughout

the searc h tree is higher and leads to large and ine�cien tly searc hed trees. Examples

are deadlo c ks that are created b y the searc h, but not detected b y the lo w er b ound.

The searc h, led b y the p o or lo w er-b ound estimator, will explore large parts of the

searc h space where no solution can b e found.

4.4 T ransp osition T able

4.4.1 Implemen tation

T ransp osition tables are a standard to ol to accomplish t w o di�eren t tasks: to a v oid

cycles and duplicating w ork b y detecting no des previously visited. Our implemen ta-

tion uses unique 64 bit hash k eys that are used to create an index in to a large hash

table. The hash table used for the results rep orted here has 2

18

en tries. It is organized

as a t w o-lev el table.

5

The replacemen t sc heme k eeps the en try searc hed deep est in

the �rst lev el and stores the most recen t en try in the second lev el of the table.

The hash k eys incorp orate only the exact stone p ositions. T o matc h an en try , the

k eys m ust b e iden tical. Since the p osition of the man is of imp ortance, a second test

5

See [Bre98] for a description and ev aluation of t w o-lev el transp osition tables.

59

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

1 2 3 4 5

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1

1

10

100

1000

10000

100000

1e+06

1e+07

1 2 3 4 5

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1

Figure 4.11: Adding T ransp osition T ables (Linear and Log Scale)

is p erformed. The man squares of b oth p ositions m ust b e connected b y a legal man

path. This simpli�cation is p ossible b ecause w e only optimize stone pushes. If w e

insisted on iden tical man p ositions, w e w ould get few er successful matc hes from the

transp osition table.

The v alue of an en try in the transp osition table is comp osed of t w o things: the

matc hing frequency and the amoun t of w ork sa v ed when matc hed (the size of the tree

that is cut o�). The t w o-lev el strategy re
ects b oth. An en try that w as searc hed

deeply is most lik ely going to sa v e a lot of w ork if matc hed again. More recen t en tries

ha v e a m uc h b etter c hance to b e matc hed again. By k eeping b oth kinds of en tries, the

transp osition table is used more e�ectiv ely than using a single replacemen t sc heme in

a one-lev el transp osition table.

4.4.2 Results

Adding transp osition tables to ID A* allo ws the searc h to solv e 5 problems in our

test suite, when giv en a limit of 20 million no des. 20 million no des is roughly t w o to

four hours CPU time on curren t fast mac hines. Figure 4.11 sho ws the e�ort needed

to solv e those problems ordered b y searc h-tree size on a linear and a logarithmic

scale. The v ertical axis sho ws the n um b er of no des searc hed to solv e the problems.

The horizon tal axis sho ws the n um b er of problems solv ed. W e will use this kind of

graph throughout the thesis and refer to them as e�ort gr aphs . The k eys of the e�ort

graphs refer to di�eren t v ersions of R ol ling Stone . In Figure 4.11, \R0" refers to ID A*

plus Minmatc hing lo w er b ound including enhancemen ts. \R1" is a v ersion that adds

transp osition tables to \R0".

A second exp erimen t w as p erformed to ev aluate the p o w er of matc hing equiv alen t

man p ositions instead of exact man p ositions. Using exact man p ositions, the n um b er

of successful hits dropp ed b elo w 10% and with the same e�ort limit of 20 million

no des, only problem #1 could b e solv ed. The no de n um b ers for problem #1 increase

from 41,640 to 297,498, roughly 5-fold. Problem #78 w as solv ed with 66,309 no des

b efore. It cannot b e solv ed an ymore when matc hing exact stone p ositions. The

n um b er of no des increases b y at least 2 orders of magnitude.

60

0
1
2

5

10

15

20

0 20 40 60 80 100

nu
m

be
r

of
 m

ov
es

depth in percent

moves considered by search
position of solution move before move ordering

position of solution move after move ordering

0
1
2

5

10

15

20

0 20 40 60 80 100

nu
m

be
r

of
 m

ov
es

depth in percent

moves considered by search
position of solution move before move ordering

position of solution move after move ordering

Figure 4.12: The E�ect of Mo v e Ordering (Av eraged Ov er 1% and 5% Depth)

4.5 Mo v e Ordering

W e ha v e exp erimen ted with ordering the mo v es at in terior no des of the searc h. One

could argue that our inabilit y to solv e problem #51 is caused b y bad mo v e ordering.

F or this problem, w e ha v e the correct lo w er b ound { it is just a matter of �nding the

righ t sequence of mo v es.

4.5.1 Implemen tation

W e are using a mo v e ordering sc heme that w e call inertia . Lo oking at the solution

for problem #1 (Figure 3.1 on page 35), one can observ e long runs where the same

stone is rep eatedly pushed. Hence, mo v es are ordered to preserv e the inertia of the

previous mo v e in the follo wing w a y:

1. Inertia mo v es are considered �rst.

2. Then all the mo v es are tried that decrease the lo w er b ound (optimal mo v es),

sorted b y distance of the stone pushed to the goal it is targeted to, with close

stones �rst.

3. Then all the \non-optimal" mo v es are tried, sorted lik e the optimal mo v es.

Since the exact distance to the goals can b e arbitrary (see Section 4.3.4 \En trance

Impro v emen t"), the actual distance used for the sorting is the distance to the en trance,

except if the stone is already inside the goal area.

4.5.2 Results

Figure 4.12 sho ws the e�ect of mo v e ordering.

6

The v ertical axis sho ws the n um b er

of mo v es. The horizon tal axis sho ws the depth of the tree in p ercen t of the solution

6

The data w as compiled from all the p ositions on solution paths for all the solutions kno wn to

the b est v ersion of R ol ling Stone used in this thesis.

61

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

1 2 3 4 5

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

1

10

100

1000

10000

100000

1e+06

1e+07

1 2 3 4 5

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

Figure 4.13: Adding Mo v e Ordering (Linear and Log Scale)

length. The left and righ t graphs sho w the same data. The left graph clusters the

data p oin ts for eac h 1% of tree depth, the righ t graph a v erages 5% of the data p oin ts.

The upp er curv e indicates the a v erage n um b er of mo v es considered b y the program

plotted o v er the depth of the tree.

7

The e�ectiv e branc hing factor is c hanging with

the depth of the tree. In the b eginning, the problem is constrained b ecause most of

the stones are still outside the goal area. As stones are b eing pushed to goal squares,

more ro om b ecomes a v ailable for the man and other stones to maneuv er, hence the

increasing branc hing factor. Ev en tually , after more stones are pushed to the goal

squares where they are �xed, the n um b er of mo v es decreases, approac hing 1.

The middle curv e sho ws where the solution mo v e is lo cated in the mo v e list after

the mo v e generation and b efore the mo v e ordering. Not surprisingly , solution mo v es

are on a v erage in the middle of the mo v e list. The third and lo w est curv e sho ws that

after mo v e ordering solution mo v es are closer to the fron t of the mo v e list. The earlier

the solution mo v es are considered, the more e�cien t the searc h is. Sp eci�cally , the

last iteration will b e smaller. Mo v e ordering b ecomes more accurate with decreasing

distance to the goal. In fact, after ab out 20% in to the depth of the tree, the mo v e

ordering is close to p erfect. In the b eginning, with man y complications in the maze,

seemingly go o d mo v es migh t actually lead to deadlo c ks. Man y of the problems in

our test suite are designed in suc h a w a y that an initial \knot" has to b e solv ed b y

\adding space". This can most often only b e ac hiev ed with non-optimal mo v es. After

the knot is un tangled, a \mop-up phase" is en tered during whic h stones are simply

pushed to the goals. This is where our heuristic excels.

Figure 4.13 sho ws an additional curv e in the e�ort graph. It sho ws the e�ect of

adding mo v e ordering to the lo w er b ound and the transp osition tables (R2). Sur-

prisingly , one problem cannot b e solv ed an ymore and t w o others need more no des to

b e solv ed. This result is not fa v orable for mo v e ordering. Ho w ev er, w e will see later

that after other features are added, mo v e ordering is a v aluable con tribution. Our

mo v e ordering heuristic leads to \compression". Stones close to the goals are pushed

7

Some of the legal mo v es are discarded immediately b ecause they lead to trivially pro v able

deadlo c ks. These mo v es are not included in the graph. See Section 4.6 for more details!

62

closer and closer together, ev en though pushes a w a y from the goals are necessary

�rst. Compression mak es deadlo c ks more lik ely . With additional enhancemen ts that

w e will add later, these deadlo c ks b ecome less lik ely and the adv an tages of the mo v e

ordering can w ork to its full p oten tial.

4.6 Deadlo c k T ables

Man y trivial deadlo c ks o ccur in the searc h. Initially , w e hand-co ded tests for some

of the simple and common deadlo c k patterns in to the mo v e generation routine. This

quic kly pro v ed to b e of limited v alue, since it missed man y frequen tly o ccurring

patterns, and the cost of computing the deadlo c k test grew as eac h test w as added.

Instead, w e opted for a more \brute-force" approac h.

P attern databases are successfully used to impro v e lo w er b ounds in the sliding-tile

puzzles [CS98 , CS96] and Rubik's Cub e [Kor97]. W e implemen ted a sp ecial case of

pattern databases for Sok oban. In an o�-line computation, all deadlo c k patterns in

a 5x4 square w ere found and stored in a database whic h can b e queried during the

searc h. If a mo v e is considered for generation, the pattern of stones, w alls and empt y

squares that is ab out to b e created is lo ok ed up in the deadlo c k table. If the pattern

is a deadlo c k, the mo v e is not inserted in to the mo v e list.

4.6.1 Construction

An o�-line searc h w as used to en umerate all p ossible com binations of w alls, stones

and empt y squares for a �xed-size region. F or eac h com bination of squares and

their con ten ts, a searc h w as p erformed to determine whether or not a deadlo c k w as

presen t. This information w as stored in the deadlo c k tables. The deadlo c k tables

are implemen ted as decision trees. In terior no des represen t subpatterns, with links to

three successors. These successors represen t the paren t's subpattern plus one more

square's con ten t sp eci�ed as either empty , wal l or stone . Eac h lev el in the decision

tree con tains di�eren t subpatterns of the same shap e. The leaf no des in the tree

represen t the status of a pattern: deadlo c k or aliv e. F or implemen tation details see

App endix C.1.

F or our exp erimen ts, w e built t w o di�eren tly shap ed deadlo c k tables for regions

of roughly 5x4 squares (con taining appro ximately 22 million en tries). The t w o tables

di�er in the order the squares in the maze are queried. With t w o di�eren t w a ys

to create patterns, more p oten tial deadlo c ks can b e found, since con
icts with goal

squares can sometimes b e a v oided.

4.6.2 V eri�cation and Compression

Eac h of our deadlo c k tables w as v eri�ed b y a separate run with a di�eren t program

to ensure correctness.

Since the information in the tree is enco ded in its structure and leaf no de v al-

ues, iden tical subtrees can b e collapsed in to one. Compression ratios of almost 5:1

63

Figure 4.14: Example Co v erage of the Deadlo c k T ables

are ac hiev ed using this subtree collapse. This t yp e of compression do es not create

run time o v erhead during the searc h, since the lo okup is still on a non-compressed

structure. With this more compact data structure, cac he coherence ma y ev en b e

impro v ed b ecause less memory is used.

4.6.3 Usage of the Deadlo c k T ables

When a push Xx-Yy is considered for generation, the destination square Yy is used

as a base square in the deadlo c k table and the direction of the stone push is used to

rotate the region, suc h that it is orien ted correctly . If the push Fh-Fg is made in the

maze of Figure 4.14, then a deadlo c k table could co v er the 5x4 region b ounded b y the

squares Hh , Hd , Ed and Eh . Note that the table can b e used to co v er other regions as

w ell. T o maximize the usage of the tables, re
ections of asymmetric patterns along

the direction the stone w as pushed are considered as w ell.

4.6.4 Limitations and Op en Problems

A 5x4 region ma y sound lik e a signi�can t p ortion of the 20x20 pla ying area. Ho w ev er,

man y deadlo c ks encoun tered in the test suite extend w ell b ey ond the area co v ered b y

our tables. Unfortunately , it is not practical to build larger tables.

Most of the e�ectiv eness of the deadlo c k table is lost if a deadlo c k-table pattern

co v ers a p ortion of the b oard con taining a goal no de. Once a stone is on a goal

square, it nev er needs to mo v e again. Hence, the normal conditions for deadlo c k do

not apply .

F urthermore, for a deadlo c k to b e in the table, all the conditions for the deadlo c k

m ust b e presen t within the region co v ered b y the deadlo c k table. In the example

of the push Fh-Fg in the maze of Figure 4.14 this is not giv en; conditions (suc h

as connectivit y and reac habilit y for stones and man) extend b ey ond the area of the

deadlo c k table. That is b y far the most limiting factor of precomputed tables that

are restricted to a certain area.

F or the game of Go, Cazena v e suggests [Caz99] using external conditions for pat-

terns to impro v e their e�ectiv eness dramatically . It remains to b e in v estigated whic h

64

0
1
2

5

10

15

20

0 20 40 60 80 100

nu
m

be
r

of
 m

ov
es

depth in percent

all legal moves
legal moves less dead squares

legal moves less deadlock table

0
1
2

5

10

15

20

0 20 40 60 80 100

nu
m

be
r

of
 m

ov
es

depth in percent

all legal moves
legal moves less dead squares

legal moves less deadlock table

Figure 4.15: E�ect of Deadlo c k T ables (Av eraged Ov er 1% and 5% Depth)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

1 2 3 4 5

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3

1

10

100

1000

10000

100000

1e+06

1e+07

1 2 3 4 5

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3

Figure 4.16: Adding Deadlo c k T ables (Linear and Log Scale)

conditions can express the prop erties of Sok oban mazes su�cien tly w ell to generalize

deadlo c k patterns.

4.6.5 Results

Figure 4.15 sho ws the n um b er of mo v es in the mo v e list o v er the depth of the tree.

P ositions on paths to solutions w ere c hosen to a v oid pathological cases. The top curv e

sho ws ho w man y legal mo v es those p ositions ha v e, a v eraged o v er all test p ositions at

certain depths in the tree (1% and 5% clusters as b efore). The second curv e sho ws

ho w man y legal mo v es exist that are not directly pushing stones on to dead squares.

Note that this simple test reduces the e�ectiv e branc hing factor b y ab out 20%. The

third curv e sho ws ho w man y mo v es are actually considered after screening mo v es with

the deadlo c k tables. The sa vings are similar to the simple dead-square c hec king. On

a v erage, w e can sa v e ab out t w o mo v es p er no de that the searc h do es not need to

consider. That is equiv alen t to decreasing the branc hing factor b y 2. These curv es

also sho w that the a v erage n um b er of mo v es v aries considerably with the depth of

the tree.

In Figure 4.16, w e add another en try to the e�ort graph to indicate the e�ect of

65

Figure 4.17: A One-W a y T unnel

adding deadlo c k tables to the program (R3). No w, w e can solv e 5 problems again,

regaining the one lost with mo v e ordering, reducing the searc h-tree size b y orders of

magnitude. It is rather illuminating to see that suc h an impressiv e reduction in the

branc hing factor do es not allo w us to solv e more problems.

4.7 Macro Mo v es

Macros are a p oten tially p o w erful to ol to reduce searc h spaces b y com bining sev eral

actions in to one sup er-action { a macro. The b ene�ts can b e dramatic. T o ac hiev e

maximal sa vings with macro mo v es, they cannot simply b e added to the mo v e list. In

that case, all iterations but the last w ould increase in no de coun t since the branc hing

factor is increased. Adding a macro mo v e reduces the searc h tree only if at least one

other atomic (non-macro) mo v e is deleted from the mo v e list. This w a y the e�ectiv e

branc hing factor is essen tially the same (or less if more than one mo v e is deleted),

but the depth of the tree is reduced. Here w e are discussing the sp eci�c macros used

in our implemen tation.

4.7.1 T unnel Macros

A tunnel is the part of a maze where the maneuv erabilit y of the man is restricted

to a width of one. Figure 4.17 sho ws one suc h construct: The squares Ec to Ic are

part of a tunnel. Since there can only b e one stone in a tunnel without creating an

immediate deadlo c k, tunnels cannot b e used to store more than one stone.

One-W a y T unnel Macros

If a tunnel is comp osed of articulation squares, as in Figure 4.17, w e call the tunnel a

one-way tunnel . If a stone is pushed in to a one-w a y tunnel, it is forced to mo v e all the

w a y through to the other side. There is no reason wh y one w ould dela y those mo v es;

the man cannot get to the other side of the tunnel since the stone in the tunnel cuts

the man o�.

When the mo v e generator creates a mo v e in to the tunnel, in our example the push

Dc-Ec , this push is substituted with the macro Dc-Kc . Note that the end square is

not just Jc , but Kc { pushing the stone through and out a w a y from the en trance of

the tunnel. Of course, the push Jc-Ic is equally substituted with the macro Jc-Cc .

66

Figure 4.18: Tw o-W a y T unnels

Before substituting a mo v e with a tunnel macro, w e ha v e to c hec k if the tunnel

is empt y , otherwise the tunnel-macro mo v e is illegal. If this test fails, not only is the

substitution not executed, but the initial mo v e is deleted from the mo v e list, b ecause

it w ould create a deadlo c k and should not b e considered b y the searc h. Th us, the

tunnel-macro substitution is also prev en ting some deadlo c ks.

Tw o-W a y T unnel Macros

One-w a y tunnels cannot b e used as \storage" for stones. Once the stone is inside,

it has to b e pushed all the w a y . What if the man can come bac k from the other

side and push the stone out again? That means the tunnel cannot b e a one-w a y

tunnel; the end p oin ts of the tunnel m ust b e connected b y at least one more path

(the tunnel squares are not articulation p oin ts). Figure 4.18 sho ws t w o suc h tunnels.

The follo wing discussion uses the upp er tunnel b ecause the lo w er one is comp osed of

dead squares.

The upp er t w o-w a y tunnel in Figure 4.18 consists of 5 squares: Ec,Fc,Gc,Hc, and

Ic . Since a t w o-w a y tunnel could b e used to park a stone (pushing it in, making other

mo v es in other areas of the maze and later coming bac k to push it out), w e ha v e

to allo w for at least one stop of the stone inside the tunnel. Since w e are in terested

in solutions with the few est stone pushes, parking the stone at the en trance it w as

pushed in is the most sensible strategy if, for example, w e just w an t to push the stone

out of the w a y . Therefore, the push Dc-Ec in to the tunnel is not c hanged, b ecause it

is v alid if w e w an t to park the stone. Ho w ev er, if w e w an t to con tin ue pushing the

stone through the tunnel, the only purp ose could b e to push it all the w a y out the

other side. Th us, the push Ec-Fc is substituted with Ec-Jc . Note that this time w e

ha v e to stop directly outside the tunnel, since the man could go around a di�eren t

path to c hange the stone's direction righ t after it lea v es the tunnel.

The substitution of mo v es with tunnel macros do es not a�ect an y other mo v e that

w as generated. Ho w ev er, since another stone migh t b e park ed in the t w o-w a y tunnel

already , b efore adding a macro, w e ha v e to v erify the v alidit y of the macro mo v e. If

it is not v alid, w e not only cancel the substitution, but also the mo v e itself (it leads

to deadlo c k) { thereb y cutting do wn on the e�ectiv e branc hing factor.

67

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

1 2 3 4 5 6

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

1

10

100

1000

10000

100000

1e+06

1e+07

1 2 3 4 5 6

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

Figure 4.19: Adding T unnel Macros (Linear and Log Scale)

Results

In Figure 4.19 the e�ect of tunnel macros is visible: 6 problems can no w b e solv ed

(R4), one more than in the previous v ersion. The sa vings for previously solv ed prob-

lems are not as large as for the addition of deadlo c k tables.

4.7.2 Goal Macros

Precomputation

Man y of the Sok oban problems ha v e the goal squares cro wded together in ro oms.

These go al ar e as are accessible through a few squares whic h w e call entr anc es . One

can decomp ose the problem of solving a maze in to

� ho w to get all the stones to the en trances, and

� ho w to pac k them in to the goal areas.

Most of the time these t w o parts can b e solv ed indep enden tly , th us reducing the

searc h space enormously . Problem #1 is a go o d example. As so on as a stone reac hes

the goal area at the righ t side of the maze, the stone should b e pushed directly to its

�nal destination.

W e ac hiev e this in principle b y

1. de�ning the goal area and marking its en trances,

2. precomputing the order in whic h goal squares are �lled without in tro ducing

deadlo c k in the goal area and

3. creating a structure to hold that information to b e retriev ed during the actual

(ID A*) searc h.

The details of the implemen tation used in R ol ling Stone can b e found in Ap-

p endix C.

68

c c c c c c c c cfcff fffffff

d c c ac f

ac

ad

a

e

b

be

b bc c c bbfff ce e ee e ef

e b b f

b

b

d

e

feed

f

c c

a-b-c

a-b-c

f

e

a-b-c

ff

e

d

da-b-c

f

e

f

e

d

a-b-c

No Macros Tunnel Macro
a-b-c As a-b-c As

Goal Macro

Figure 4.20: Comparing T unnel and Goal Macro E�ects

Ec-Fc-Gc-Hc-Hb-Gb, Ed-Ec-Fc-Gc-Hc-Ic-Id, Gb-Hb-Ib, Cc-Dc-Ec-Fc-Gc-Hc,

Dd-Dc-Ec-Fc-Gc, Hc-Hd Gc-Hc-Ic, Cd-Cc-Dc-Ec-Fc-Gc-Hc

Figure 4.21: P arking in a Goal Area

Mo v e Substitution

During the searc h, if a mo v e is generated that pushes a stone in to the en trance of

a goal area, that mo v e is substituted with the goal-macro mo v e. Dep ending on the

precomputation, this could b e one or man y goal macros. All other mo v es are deleted

from the mo v e list; only the goal-macro mo v es are considered. If w e can put a stone

\a w a y", nothing else should matter at the momen t. That is di�eren t from the tunnel

macros, where no other mo v e w as a�ected.

By cutting alternativ e pushes, the e�ect of goal macros is ev en more dramatic than

the e�ect of tunnel macros. Figure 4.20 sho ws the di�erence in tree-size reduction.

While tunnel macros yield large sa vings on their o wn, if w e can in tro duce a goal

macro, the sa vings are larger.

Limitations and Op en Problems

The goal macros in their curren t implemen tation ha v e limitations. One underlying

assumption is that no stone will lea v e the goal area once inside. Problems lik e #50

cannot b e solv ed without pushing stones through the goal area. A second, ev en

stricter assumption is that once a stone is inside the goal area, it will nev er mo v e

again. This do es not allo w for parking inside goal areas. Sometimes it is necessary

69

to park a stone in a k ey p osition inside the goal area un til later in the solution when

it can �nally b e pushed to its �nal goal square. Figure 4.21 sho ws one suc h problem

(assume Fc is the en trance square). Before an y other stone can b e pushed on to a

goal square, a stone has to b e park ed at Gb . The stone on Gb can b e pushed to its

goal square only after the square Id con tains a stone. These in teractions violate the

assumption that a stone will nev er mo v e again after b eing pushed in to the goal area

and on to a goal square.

The problem of goal-macro generation in Figure 4.21 is handled correctly in our

implemen tation. The goal-macro generation fails and goal macros are disabled. That

allo ws the searc h to solv e the problem, ho w ev er without the b ene�ts of goal macros.

Note that w e could not solv e the goal-macro generation for this problem with

the curren t algorithms, ev en with a di�eren t goal area that w as smaller, sa y only

con taining goal squares. In that case the �rst stone w ould ha v e to lea v e the goal area

after en tering it, violating the assumption of a stone nev er lea ving the goal area after

it en ters.

Another limitation, unrelated to the problem just describ ed, is that a goal area

con taining sev eral man en trances is often a tra�c area for the man; certain parts of

the maze need to sta y connected to allo w the man to push stones in a certain w a y

outside the goal area. Ev en though w e can solv e the problem of pac king stones inside

the goal area, they migh t obstruct the man from other areas of the maze. Problem

#38 is an example of suc h a case.

Ho w ev er, the toughest problem is when stones ha v e to tra v el through the goal

area to en ter again later from a di�eren t en trance. Problem #50 is one suc h problem.

Since only a limited n um b er of stones can b e en tered through the lo w er en trance,

stones ha v e to b e pushed through the goal area to the other side, park ed in the lo w er

righ t part of the maze un til w e can �nally push them bac k in to the goal area.

These op en problems sho w that the goal macro creation is still far from b eing

solv ed satisfactorily . In teractions b et w een the goal area and the outside parts of the

maze mak e it di�cult to create go o d goal macros. Ho w ev er, their p ositiv e impact in

the problems where they w ork is so large that an y high p erformance Sok oban program

needs to implemen t them in one form or another.

Results

Figure 4.22 sho ws the dramatic e�ects of goal macros (R5). Instead of solving 6

problems, w e can no w solv e 17! The sa vings for individual problems are again sev eral

orders of magnitude. F or example, the searc h no des for problem #55 drop from o v er

20 million do wn to a mere 333 { almost 5 orders of magnitude! On a v erage, the

searc hes are a factor of 20 smaller with the goal macros. These are lo w er b ounds,

since unsuccessful searc hes are stopp ed at 20 million no des.

4.7.3 Goal Cuts

W e are cutting all alternativ e mo v es when w e substitute goal macros. The reason

b eing that if w e can push a stone to its �nal destination, it will not a�ect other mo v es

70

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

5 10 15

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5

1

10

100

1000

10000

100000

1e+06

1e+07

5 10 15

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5

Figure 4.22: Adding Goal Macros (Linear and Log Scale)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 5 10 15 20 25

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

Figure 4.23: Adding Goal Cuts (Linear and Log Scale)

and w e can ignore them. Could w e not apply the same reasoning to the mo v e that

pushed the stone to the square from whic h it will b e \macro"-pushed to the goal

square? Goal cuts do exactly that recursiv ely further up the tree: if a stone is pushed

to a goal with a goal macro at the end without in terlea ving other stone pushes, all

alternativ es to pushing that stone are deleted from the mo v e list.

Curren tly , w e ha v e implemen ted a sc heme that will cut mo v es only after a stone

push to w ards its macro mo v e w as explored. The searc h bac ks up the cut information,

instead of statically trying to deduce that suc h a mo v e exists in a certain p osition.

This could p oten tially lead to missed opp ortunities for additional cuts if other mo v es

are explored b efore the one that leads to the goal cut. Since the mo v e ordering will

sort mo v es that are close to goals to w ards the fron t of the mo v e list, lead-o� mo v es

to goal macros are lik ely considered early in the mo v e list.

Results

Figure 4.23 sho ws sa vings of around one to t w o orders of magnitude in searc h-tree

size for the v ersion using goal cuts (R6). No w, 24 problems can b e solv ed with a

searc h no de limit of 20 million. Problem #65 w as not solv ed without goal cuts. No w

71

it is solv ed with just o v er 600 no des { the searc h tree is o v er 4 orders of magnitude

smaller. On a v erage, the searc h trees are at least a factor of 6 smaller.

4.7.4 Correctness, Completeness and Optimalit y

T unnel macros preserv e correctness, completeness and optimalit y of the original ID A*

algorithm. A solution with goal macros is still correct, but migh t not b e optimal. F or

all the reasons discussed in 4.7.2, extra mo v es migh t ha v e b een necessary to �nd a

solution. F or the same reasons, completeness is not guaran teed.

4.8 Exp erimen tal Results

T able 4.2 sho ws the n um b ers for the e�ort graphs that where presen ted throughout

this c hapter. There are a few en tries w orth p oin ting out. Enabling all searc h en-

hancemen ts allo ws problem #1 to b e solv ed with few er no des than the length of the

solution. Macro mo v es and go o d mo v e ordering allo w this e�cien t searc h. F or exam-

ple problem #4, enabling goal macros allo ws the searc h to solv e it with just under

600 no des. Previously , it w as not p ossible to �nd a solution with 20 million no des.

That is an e�ciency gain of at least 6 orders of magnitude.

Eac h searc h enhancemen t is able to p oten tially sa v e orders of magnitude in searc h-

tree size. Ho w ev er, some searc h enhancemen ts yield o v erlapping sa vings. That means

that if t w o features can eac h sa v e 50 p ercen t of the searc h tree, together they ma y

reduce the searc h tree b y less than 75 p ercen t. Sa vings of individual searc h enhance-

men ts are rarely additiv e.

Comparing searc h enhancemen ts the w a y w e did throughout this c hapter ma y

b e misleading. If a searc h enhancemen t is in tro duced late, when others are already

presen t, it is harder to sa v e on top of an already trimmed do wn tree. Therefore,

comparing the impact of searc h enhancemen ts w ould b e unfair to the ones in tro duced

at a later p oin t. T o exclude this e�ect, w e ran an exp erimen t where w e turned o� one

feature at a time. All the other searc h enhancemen ts w ere enabled. The results will

tell us ho w unique the sa vings are that a certain searc h enhancemen t can ac hiev e.

Figure 4.24 sho ws that goal macros are indeed the most v aluable searc h enhance-

men t that w e ha v e for Sok oban; without goal macros only 6 problems can b e solv ed.

That is a loss of 18 problems! Note that if w e turn o� goal macros, goal cuts are

also disabled. The next most imp ortan t searc h enhancemen t is the transp osition

table. T urning it o� allo ws us to solv e only 9 problems. With either of these t w o

features missing alone, the searc h e�ciency go es do wn dramatically and other searc h

enhancemen ts cannot substitute for the loss.

The v ersion with goal cuts disabled solv es 7 problems less, and the a v erage tree size

is ab out 6 times larger. T urning o� mo v e ordering reduces the n um b er of problems

solv ed to 20, losing 4. The trees gro w an a v erage of 4 times and all the problems

need more no des to solv e. This sho ws that despite the �ndings in Section 4.5.2 mo v e

ordering is a v aluable enhancemen t. These sa vings come only from reducing the last

iteration. Surprisingly , turning tunnel macros o� is not a great loss { w e can still solv e

72

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 5 10 15 20 25

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R6, goal macros (cuts) disabled
R6, transposition tables disabled

R6, goal cuts disabled
R6, move ordering disabled

R6, deadlock tables disabled
R6, tunnel macros disabled

R6, all enhancements enabled

1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R6, goal macros (cuts) disabled
R6, transposition tables disabled

R6, goal cuts disabled
R6, move ordering disabled

R6, deadlock tables disabled
R6, tunnel macros disabled

R6, all enhancements enabled

Figure 4.24: T urning One Searc h Enhancemen t O� at a Time

22 problems, 2 less than the full v ersion. The trees are ab out t wice the size without

tunnel macros. T urning o� deadlo c k tables loses one problem and most problems are

b et w een 2 and 50 times more exp ensiv e to solv e. T able 4.3 sho ws all the n um b ers for

this exp erimen t.

4.9 Summary and Conclusions

Sok oban is a hard problem; ev en �xed-size Sok oban sho ws exp onen tial b eha vior. Eac h

additional problem b ecomes exp onen tially harder for the searc h to solv e. T o solv e one

or t w o more problems with the same amoun t of e�ort (searc h no des), large p ortions of

the searc h tree ha v e to b e pruned. Reducing the searc h tree b y 50 p ercen t is usually

not enough to solv e more problems; one to t w o orders of magnitude are needed to

mak e signi�can t progress.

In man y searc h domains, an increase in searc h e�ciency b y 25% migh t b e an

in teresting result. In Sok oban, ev en p erformance impro v emen ts of 50% are irrelev an t.

The researc h in single-agen t searc h has so far fo cused on \simple" domains. Sok oban

sho ws that more p o w erful searc h tec hniques are needed.

The basic text-b o ok approac h of ID A*, ev en equipp ed with a go o d lo w er-b ound

estimator, cannot ev en solv e one problem. Using state-of-the-art tec hniques, suc h as

transp osition tables, mo v e ordering and deadlo c k tables pro duces a program that can

solv e 5 problems of the standard 90 problem test suite. Simple tunnel macros can

increase the n um b er of solv ed problems to 6.

T o mak e signi�can t progress b ey ond the �rst 6 problems solv ed, the idea of macros

has to b e carried to its extreme. Goal macros represen t the solution to the subproblem

of ho w to arrange the stones in goal areas. The success of goal macros, the immense

reduction of the searc h tree, can b e attributed to successfully splitting the solution to

a Sok oban problem in to t w o parts: Ho w to get the stones to the goal-area en trances

and ho w to push them from there to their �nal goal square. Despite the short-

comings of the curren t implemen tation of goal macros, their impact on the program's

p erformance is the largest of all the searc h enhancemen ts in tro duced in to our program.

73

ID A*

+ MM

ID A*

+ MM + TT

ID A*

+ MM + TT

+ MO

ID A*

+ MM + TT

+ MO + DT

ID A*

+ MM + TT

+ MO + DT

+ TM

ID A*

+ MM + TT

+ MO + DT

+ TM + GM

ID A*

+ MM + TT

+ MO + DT

+ TM + GM

+ GC

1 > 20,000,000 41,640 319 261 223 53 53

2 > 20,000,000 > 20,000,000 > 20,000,000 640,680 620,030 2,176 316

3 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 29,148 2,493

4 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 597 597

5 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 1,275,146

6 > 20,000,000 10,214,381 12,061,182 10,294,734 10,107,621 4,546 283

7 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 126,023 48,209

9 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 659,972

17 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,672,805 120,747 11,910

21 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,643,971

38 > 20,000,000 2,311,000 2,500,678 460,089 415,485 33,812 19,083

43 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,369

49 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 8,895,883 5,189,494

51 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 390,690 80,504

55 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 333 144

62 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,337

65 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 604

78 > 20,000,000 66,309 2,555 1,408 871 480 465

79 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 156,203 5,964

80 > 20,000,000 6,500,890 > 20,000,000 > 20,000,000 > 20,000,000 115,574 114,930

81 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 853,607 221,690

82 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 971,093 99,236

83 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 31,096 20,847

84 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 354,295

> 480,000,000 > 399,134,220 > 414,564,734 > 391,397,172 > 381,817,035 > 151,732,061 24,840,912

MM { Minim um Matc hing, TT { T ransp osition T able, MO { Mo v e Ordering,

DT { Deadlo c k T ables, TM { T unnel Macros, GM { Goal Macros, GC { Goal Cuts

T
able

4.2:
E�ort

Graph
Data

74

GM (GC) O� TT O� GC O� MO O� TM O� DT O� All On

1 223 53 53 291 63 63 53

17 10,672,805 > 20,000,000 120,747 85,367 2,979,182 13,796 11,910

2 620,030 1,093 2,176 833 337 1,076 316

21 > 20,000,000 > 20,000,000 > 20,000,000 8,927,624 > 20,000,000 > 20,000,000 10,643,971

3 > 20,000,000 165,274 29,148 12,050 2,493 7,992 2,493

38 415,485 > 20,000,000 33,812 19,582 22,559 49,657 19,083

4 > 20,000,000 2,369 597 1,791,400 1,025 1,686 597

43 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,369 18,216,241 6,084,369

49 > 20,000,000 > 20,000,000 8,895,883 > 20,000,000 > 20,000,000 7,482,856 5,189,494

5 > 20,000,000 > 20,000,000 > 20,000,000 3,112,231 1,275,146 1,901,783 1,275,146

51 > 20,000,000 > 20,000,000 390,690 46,493 89,038 144,393 80,504

55 > 20,000,000 166 333 920 144 180 144

6 10,107,621 799 4,546 455 286 1,296 283

62 > 20,000,000 52,076 > 20,000,000 595,161 7,391 104,691 6,337

65 > 20,000,000 2,179 > 20,000,000 > 20,000,000 667 932 604

7 > 20,000,000 > 20,000,000 126,023 44,486 63,857 133,389 48,209

78 871 38,951 480 594 984 1,011 465

79 > 20,000,000 > 20,000,000 156,203 142,828 6,061 9,630 5,964

80 > 20,000,000 > 20,000,000 115,574 85,633 228,536 178,001 114,930

81 > 20,000,000 > 20,000,000 853,607 127,657 443,344 588,833 221,690

82 > 20,000,000 > 20,000,000 971,093 487,011 101,712 5,797,306 99,236

83 > 20,000,000 > 20,000,000 31,096 14,694 39,993 39,666 20,847

84 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 466,263 397,257 354,295

9 > 20,000,000 > 20,000,000 > 20,000,000 3,431,973 1,503,297 5,797,980 659,972

> 381,817,035 > 300,262,960 > 151,732,061 > 98,927,283 > 53,316,747 > 60,869,715 24,840,912

MM { Minim um Matc hing, TT { T ransp osition T able, MO { Mo v e Ordering,

DT { Deadlo c k T ables, TM { T unnel Macros, GM { Goal Macros, GC { Goal Cuts

T
able

4.3:
T

urning
One

F
eature

O�
at

a
Time

75

They allo w 11 more problems to b e solv ed, for a total of 17. Goal cuts extend the

idea of the goal macro and can push the n um b er of solv ed problems to 24.

Ev en though the reductions in searc h-tree sizes are impressiv e and result in an

increase in the n um b er of problems solv ed from 0 to 24, w e should not forget that

the b est v ersion of the program can still only solv e 24 of the 90 problems. Ev en

though this set is c hallenging for h umans, man y problems not y et solv ed should b e

w ell within reac h of a computer program.

W e ha v e seen that rather impressiv e searc h-tree size reductions result in small

increases in the n um b er of problems solv ed. If w e w an t to increase the n um b er of

problems solv ed signi�can tly , w e will ha v e to trim the searc h trees radically .

W e can iden tify t w o main ine�ciencies in the program:

� The lo w er b ound do es not capture dynamic in teractions of stones that blo c k

eac h other and/or the man. If w e could �nd a w a y to capture this information

and b e able to impro v e the lo w er b ound with it, the searc h should impro v e

dramatically .

� The mazes are large and often con tain parts that are virtually non-in teracting.

Ho w ev er, the searc h will consider mo v es in an y of those separate parts in an y

order. Had the program kno wledge ab out whic h mo v es are not in
uencing the

curren tly attempted subgoal, legal, but irrelev an t, mo v es could b e ignored. This

could lead to a reduction in the branc hing factor that can p oten tially remo v e

large p ortions of the searc h tree.

W e will discuss metho ds that address these p oin ts in the next t w o c hapters.

76

Chapter 5

P attern Searc h

5.1 In tro duction

In the previous c hapter, w e concluded that the standard tec hniques are insu�cien t to

mak e further progress in the domain of Sok oban. Additional searc h enhancemen ts are

needed to enable us to solv e signi�can tly more problems from the test set. Since large

p ortions of the searc h are w asted searc hing problem con�gurations with deadlo c ks

presen t, w e sp eculated that the detection of these deadlo c ks could lead to signi�can t

e�ciency gains. The tec hniques suggested in this c hapter are a direct attempt to

rectify this problem.

In this c hapter, w e in tro duce a new searc h enhancemen t that dynamically �nds

deadlo c ks and impro v es lo w er b ounds. Pattern se ar ch is a real-time learning algorithm

that iden ti�es the minimal conditions necessary for a deadlo c k, and applies that

kno wledge to eliminate pro v ably irrelev an t parts of the searc h tree. By sp eculativ ely

dev oting a p ortion of the searc h e�ort to learning prop erties ab out the searc h space,

the program trades o� searc h-tree size versus acquired kno wledge.

In the game of Sok oban, the additional kno wledge gained b y the pattern searc hes

impro v es the program's searc h e�ciency . The a v erage gro wth rate of the tree is

roughly a factor of 600 times smaller p er ID A* iteration. This results in 48 solv ed

Sok oban problems, and signi�can t progress to w ards solving man y more.

W e start b y in tro ducing the general concepts b y lo oking at deadlo c k detection

and later in this c hapter sho w ho w to generalize these concepts and metho ds to the

more general case of lo w er-b ound impro v emen ts.

5.2 Basic Idea

After making a mo v e, establishing the presence of a deadlo c k can b e quite in v olv ed.

The deadlo c k ma y consist of as few as one or as man y as all the stones in the maze.

W e will describ e ho w to pro v e the presence of deadlo c k b y sho wing that the conditions

needed to prev en t deadlo c k are not presen t.

In general, pro ving that a subset of stones in a maze (a p attern) of stones creates

a deadlo c k requires a searc h to v erify that no p ossible solution path exists. A p attern

77

PatternSearch(From, To) f

clear TestMaze;

StonePath = f To g ;

FOR(i = 1; i < = MAX PATTERN SIZE AND NOT EffortLimit(); i ++) f

IF(stone s on a square in StonePath)

add closest s to TestMaze

ELSE IF(stone s on a square in ManPath)

add closest s to TestMaze

ELSE BREAK;

solution = PIDA*(TestMaze, SolLength, ManPath, StonePath);

/* Test for a deadlock */

IF(solution == NO AND NOT EffortLimit()) f

GeneralizeAndAddPattern(TestMaze, infinity);

BREAK;

g

/* Test for a lower bound increase */

IF(solution == YES) f

lb = LowerBound(TestMaze);

IF(SolLength > lb)

GeneralizeAndAddPattern(TestMaze, SolLength - lb);

g

g

g

Figure 5.1: Pseudo Co de for P attern Searc hes

se ar ch consists of rep eated ID A* searc hes of patterns with more and more stones.

A pattern searc h ma y result in the disco v ery of a deadlo c k pattern whic h can b e

used throughout the searc h to assign the correct lo w er b ound of in�nit y to an y state

con taining that deadlo c k. F or maximal reusabilit y it is of in terest to �nd the minimal

pattern of stones that causes the deadlo c k.

Detecting deadlo c ks is only a sp ecial case of a more general problem. Stones

are in teracting in suc h a w a y that the total n um b er of pushes required to get them

to goals is more than the lo w er-b ound function estimates. Whereas deadlo c ks are

corrections of the lo w er b ound to in�nit y , the general case is smaller increases of the

lo w er b ound, so called p enalties .

5.3 Basic Algorithm

In the follo wing, w e will refer to t w o di�eren t mazes:

� the original maze , whic h is the maze with all the stones of the curren t ID A*

p osition, and

� the test maze whic h will b e used for the pattern searc hes.

78

The pattern searc h will p erform small searc hes in the test maze with a subset of

stones from the original maze to determine if the last mo v e in tro duced a deadlo c k.

In principal, the algorithm p erforms the follo wing 4 steps:

1. Start b y putting only the last stone mo v ed in to the test maze.

2. T ry to solv e the problem.

3. If no solution is found a deadlo c k is detected, exit.

4. If a solution is found add a stone that is on a square that is needed for the

solution.

5. Goto 2.

More sp eci�cally , a pattern searc h iterates on the n um b er of stones in the test

maze. If w e mak e a mo v e A-B , w e migh t in tro duce a deadlo c k. If this deadlo c k w as

not presen t b efore the mo v e, then the mo v ed stone, no w on square B , m ust b e part of

the deadlo c k pattern. This is the initial stone included in the test maze and PID A*

1

is called to solv e it. PID A* either returns with failure (no solution, hence deadlo c k),

or it �nds a solution. In the latter case, w e are in terested in the set of squares that are

used b y the stone and the man during the solution. W e call these sets of squares the

StonePath and the ManPath , resp ectiv ely . These sets of squares are preconditions

for the solution to w ork. The ManP ath and the StoneP ath are used to determine

whic h stone from the original maze to include next in the test maze. Stones in the

original maze that are on one of the squares in ManP ath or StoneP ath con
ict with

the test-maze solution. The stone in StoneP ath closest to square B (the square the

stone w as mo v ed to in the original maze) is added next to the test maze. If suc h a

stone do es not exist, the stone that is on ManP ath closest

2

to square A is used. If no

suc h square exists, the pattern searc h returns without �nding a deadlo c k.

After including the next stone, PID A* is called again. It returns with a solution

and the t w o con
ict sets. If no deadlo c k w as found, then the con
ict sets are used

again to add another stone to the test maze. The pattern searc h terminates in either

of three cases:

� the e�ort limit is reac hed (usually a predetermined n um b er of no des),

� a deadlo c k w as detected (all fron tier no des ha v e a heuristic v alue of in�nit y or

ha v e no mo v es), or

� no more stones con
ict with the solution found.

See Figure 5.1 for the pseudo co de describing the pattern searc h.

1

PID A* is a sp ecial v ersion of ID A*. See App endix C.3 for details.

2

Closest is alw a ys with resp ect to the distance of either the stone or the man to the con
icting

stone. These distance measures are p ossibly di�eren t due to the more restricted mo v emen ts of the

stones.

79

Figure 5.2: Deadlo c k Example

Figure 5.3: Sequence of T est Mazes as P assed to PID A* (a, b, c, and d)

5.4 Example

Figure 5.2 sho ws a simple p osition, b efore and after the mo v e Gd-Fd . The question

is whether or not this mo v e in tro duces a deadlo c k. Figure 5.3 sho ws ho w the test

maze is built. Since the last mo v e ended up on square Fd , the test maze is initialized

with a single stone on Fd (Figure 5.3a). A PID A* searc h �nds a 5-push solution,

and returns a ManP ath (Gd-Ge-F e-Fd-Gd-Gc-Fc-Ec-Dc-Cc) and a StoneP ath (Fd-

Fc-Ec-Dc-Cc-Bc). Since a solution w as found, w e con tin ue the pattern searc h.

The original maze has a stone on one of the squares (Ec) that the stone mo v ed

o v er. No w this stone is included in the test maze (Figure 5.3b). PID A* will solv e the

test maze with the t w o stones and again return a ManP ath (Gd-Gc-Fc-Ec-Dc-Dd-Cd-

Cc-Dc-Ec-Fc-Gc-Gd-Ge-F e-Fd-Gd-Gc-Fc-Ec-Dc-Cc) and a StoneP ath (Ec-Dc-Cc-Cb

Fd-Fc-Ec-Dc-Cc-Bc). This time, there are no stones in con
ict with the StoneP ath.

Ho w ev er, there is a con
ict with the ManP ath on square Ge . Therefore, the stone on

Ge is added to the test maze (Figure 5.3c) and another searc h is started. A solution

will b e found, requiring a fourth stone to b e added (Figure 5.3d).

The fourth call to PID A* will return no solution and announce a deadlo c k with

this pattern of four stones. Iden tifying the critical stones has b een driv en b y whether

or not they con
ict with a p oten tial solution. The irrelev an t parts of the maze (suc h

as the stone on Hc) are ignored.

80

Figure 5.4: P enalt y Example

5.5 Minimizing P atterns

The few er stones in a deadlo c k pattern, the more lik ely it will matc h an arbitrary

p osition and b e used to eliminate futile branc hes of the searc h. A minimal de ad lo ck

p attern is a deadlo c k pattern from whic h no stone can b e remo v ed without making

the remaining pattern solv able. The atten tiv e reader will ha v e noticed that only

three stones are needed to guaran tee the deadlo c k in Figure 5.3; the stone on Ec

is unnecessary . Before sa ving the deadlo c k pattern, our program will attempt to

minimize the n um b er of stones in it.

The deadlo c k minimization routine tak es an N -stone pattern and considers eac h of

the p ossible (N-1) -stone subpatterns. Eac h of the (N-1) -stone subpatterns is searc hed

to v erify whether remo ving the other stone preserv es the deadlo c k. If the deadlo c k

still exists, the remo v ed stone w as not part of a minimal deadlo c k set and is remo v ed

from the deadlo c k pattern.

In general, there migh t b e sev eral di�eren t minimal deadlo c k sets. W e exp er-

imen ted with di�eren t w a ys of minimizing deadlo c k sets, but concluded that the

greedy and straigh tforw ard remo v al of stones is the most cost-e�ectiv e w a y . Often

the cost of minimization is greater than the cost of �nding the deadlo c k pattern itself.

5.6 Deadlo c ks and P enalties

The presence of a deadlo c k pattern in a p osition means that the lo w er b ound increases

to in�nit y . Can w e �nd patterns that allo w us to increase the lo w er b ound b y an

amoun t less than in�nit y?

Assume there are three stones in the test maze and PID A* starts its �rst iteration

but fails to �nd a solution. Hence PID A* pro v ed that this pattern cannot b e solv ed

with the n um b er of mo v es that the heuristic lo w er b ound indicated. In other w ords,

the lo w er b ound is wrong.

A pattern searc h will fail to �nd a deadlo c k after the push Hd-Gd in Figure 5.4.

Ho w ev er, this pattern searc h will disco v er that it requires 2 iterations (4 mo v es) more

to solv e this problem. Hence the lo w er b ound is o� b y 4. The pattern just disco v ered

can b e minimized and used throughout the ID A* searc h to impro v e the lo w er-b ound

calculations.

81

5.7 Sp ecializing P attern Searc hes

Our program R ol ling Stone uses three sp ecialized pattern searc hes. Sp ecialization

is a means of impro ving the e�ciency of pattern searc hes, ev en though they migh t

miss a few patterns. By decreasing the cost of the individual pattern searc h, more

pattern searc hes can b e executed. All three pattern searc hes are designed to �nd

di�eren t t yp es of deadlo c ks and/or p enalties. Whereas deadlo c k searc hes are geared

to w ards �nding deadlo c ks in v olving man y stones, p enalt y searc hes are designed to

�nd p enalties with few er stones. Area searc hes are aimed at c heaply �nding deadlo c ks

caused b y inaccessible areas. W e b eliev e that our attempts at sp ecialization are only

a start. F urther progress is certainly p ossible. F or more details see App endix C.3.

Deadlo c k Searc h: The deadlo c k searc h follo ws the generic outline of a pattern

searc h as describ ed ab o v e. Ho w ev er, a deadlo c k PID A* searc h is allo w ed to

tak e a few shortcuts. F or instance, the de�nition of a goal no de is more lib eral.

A p osition where the man can reac h all squares in the maze (the stones do not

blo c k parts of the maze) is considered unlik ely to con tain a deadlo c k. These

shortcuts reduce the cost of the deadlo c k searc hes and allo w them to include

more stones. Ho w ev er, deadlo c k searc hes are less lik ely to �nd increases in lo w er

b ounds.

P enalt y Searc h: After a deadlo c k searc h fails to pro duce a cuto� (either b y pro v-

ing deadlo c k or �nding a large enough p enalt y), a p enalt y searc h is executed.

P enalt y searc hes are not allo w ed to tak e shortcuts. Therefore, they ha v e a

c hance to �nd p enalt y patterns that the deadlo c k searc h missed. P enalt y

searc hes are more exp ensiv e (no shortcuts) and usually include less stones with

the same e�ort limit.

Area Searc h: If ev en the p enalt y searc h fails to disco v er a large enough p enalt y to

cause a cuto�, a third and �nal pattern searc h is executed. Instead of using the

solution con
icts to �nd the next stone to include, area searc hes use heuristics

to determine the stone(s) most lik ely to b e in v olv ed in a p enalt y pattern. They

try to pro v e that an area inaccessible to the man and adjacen t to the last stone

mo v ed is enclosed b y a deadlo c k pattern. T o that end, prior to calling the

PID A* searc h, all the stones are included that are surrounding the area that is

inaccessible to the man. The area PID A* searc hes are as lib eral as the deadlo c k

PID A* searc hes. If the searc h cannot �nd a large enough p enalt y to cause a

cuto�, more stones are included that surround other inaccessible areas, this

time not directly b eside the man.

5.8 P arameters and Con trol F unction

P attern searc hes can b e costly . There are three main factors in v olv ed in their cost:

the frequency of the pattern searc hes, the b ound on the size of a pattern searc h (the

e�ort limit), and the b ound on the deadlo c k-pattern size (n um b er of stones allo w ed).

82

Figure 5.5: Example for Con trol F unction

F requency of P attern Searc hes: W e cannot a�ord to do a pattern searc h at ev-

ery no de in the ID A* searc h. W e use some non-trivial heuristics (the con trol

function) to decide when to in v est in a pattern searc h. A pattern searc h is exe-

cuted if an y of the three fron t and t w o side squares of the stone pushed con tains

either a stone or area the man cannot reac h. The directions are with resp ect to

the orien tation of the last mo v e. Otherwise it is unlik ely w e ha v e in tro duced a

p enalt y or deadlo c k.

Figure 5.5 sho ws an example. Assume the mo v e Cd-Cc w as the last, then none

of the squares ahead (Bb, Cb , and Db), nor the side squares are o ccupied b y

stones or are inaccessible to the man. The mo v e Cd-Cc is unlik ely to ha v e

in tro duced a deadlo c k. No w, assume Cd-Dd w as the last mo v e (instead of Cd-

Cc). Ed , the square ahead of the stone mo v ed to square Dd , is not accessible

to the man. F urthermore, there is a stone on De , just to the side of the stone

mo v ed on to square Dd . Either of these t w o conditions is su�cien t to trigger a

pattern searc h.

The transp osition table stores whether or not a pattern searc h w as p erformed

to a v oid m ultiple pattern searc hes at the same no de.

Size of the P attern Searc h: P attern searc hes are restricted to a maxim um e�ort

of 1000 no des. If this limit is reac hed, the searc h is ab orted. Ho w ev er, whenev er

a pattern searc h is successful in �nding a p enalt y , it is allo w ed to con tin ue

searc hing for another 1000 no des.

1000 no des p er pattern searc h seemed to ac hiev e most of the b ene�ts for a

still reasonable o v erhead. Increasing the e�ort limit did decrease the n um b er

of ID A* no des, but the additional o v erhead out w eighs the b ene�ts. Smaller

pattern searc hes cannot �nd large enough p enalties.

3

P attern Size: P attern searc hes are stopp ed once they ha v e included all but t w o

4

stones from the original maze. This is an arti�cial limitation, but w e ha v e

3

Ho w ev er, the n um b er 1000 is still c hosen quite arbitrarily . W e will see this kind of \magic"

n um b er man y times. They are the result of educated guesses and sometimes tuned b y exp erimen ts.

Ho w ev er, the tuning dep ends on man y other v ariable searc h parameters and the test suite used.

T ruly optimizing these \magic" n um b ers is at least computationally prohibitiv ely exp ensiv e, if not

imp ossible. W e will get bac k to the issue of tuning in a little more depth in Section 8.6.

4

This is another one of these magic n um b ers.

83

not fully explored the tradeo�s of �nding larger deadlo c k patterns versus the

e�ort required to �nd them. Because large patterns are also less lik ely to matc h

again later in the searc h, the b ene�ts of large patterns are small. F urthermore,

the searc hes b ecome exp onen tially more exp ensiv e the more stones are presen t.

Therefore, it seemed pruden t to limit the pattern size.

Con trolling these three parameters is vital for the success of the pattern searc hes.

T o o man y and to o exp ensiv e pattern searc hes can quic kly create a large o v erhead,

easily o�setting the sa vings ac hiev ed with the pattern kno wledge.

5.9 Storage and Matc hing

T o incorp orate the deadlo c k and p enalt y patterns in to the regular ID A* searc h, w e

need to sa v e the patterns found and use them to matc h p ositions in the searc h. The

pattern matc hing is complicated b y the fact that one needs to matc h not only the

stones, but also the man p osition. With eac h pattern of stones, the squares whic h

the man in the test maze cannot reac h (non-reac hable squares) are stored. T o matc h

a pattern, the curren t p osition m ust ha v e stones in the same places as the pattern

and the man m ust not b e on an y one of the non-reac hable squares stored with the

pattern.

As seen with the linear con
icts, patterns can o v erlap. T o ensure admissibilit y ,

eac h stone can only b e used once for a pattern that is included in the total p enalt y .

Therefore, w e ha v e to optimize whic h of the o v erlapping patterns to include to maxi-

mize the total p enalt y . First, all p enalt y patterns are collected that are o v erlapping.

Then, for eac h of these sets of con
icting patterns a searc h is used to �nd the subset

of patterns that maximizes the p enalt y that can b e ac hiev ed.

Consider Figure 5.6. F our p enalt y patterns are matc hed for the p osition sho wn at

the top. The p enalties for the patterns from left to righ t (a to d) are: 2, 2, 8, and 4.

What is the maximal p enalt y that can admissibly b e giv en to that p osition? Since all

patterns o v erlap with pattern c , none can b e included if pattern c is. Ho w ev er, the

patterns a, b , and d could not all b e included at the same time either, b ecause the

patterns a and b o v erlap as w ell. Including pattern d and either one of a or b could

only lead to a p enalt y of 6. Therefore, only using pattern c results in the largest

admissible p enalt y: 8.

The p enalties of non-o v erlapping patterns are simply added. W e are using a

second impro v emen t in R ol ling Stone to sp eed up the pattern matc hing whic h w e

call lazy maximization . The searc h passes a parameter to the matc hing algorithm

that indicates the minim um (or target) p enalt y needed to cause a cuto�. When

the matc hing algorithm has pro duced at least the target p enalt y , it can prematurely

return, thereb y sa ving further matc hing e�ort.

Figure 5.7 sho ws maze #30 with a stone con�guration that arises during the

searc h. Tw o p enalt y patterns are successfully matc hed, resulting in a lo w er-b ound of

38 (14+24).

84

Figure 5.6: Maximizing the T otal P enalt y (a to d)

5.10 Cuto�s and Bac k-Jumping

Matc hing a deadlo c k pattern alw a ys causes a cuto�. Matc hing a p enalt y pattern

ma y allo w an increase in the lo w er b ound. A cuto� happ ens only when the matc hed

p enalt y patterns increase the lo w er b ound su�cien tly (ab o v e the curren t threshold).

Ho w ev er, these direct cuto�s are only part of the b ene�ts of the patterns. The

pattern searc hes migh t unco v er a pattern that w asn't created b y the last mo v e. In

that case, when the last mo v e is unmade, the pattern is still presen t. In fact, the

lo w er b ound of a state can c hange during the searc h of a subtree. Therefore, when

the searc h returns from a recursiv e call, the searc h has to c hec k if the lo w er b ound

is no w su�cien t to cause a cuto�. In that resp ect, suc h a pattern leads to a kind

of dep endency-directed bac ktrac king, as kno wn from constrain t-satisfaction problems

[SS77, Gas79]. As long as the pattern exists in the maze, the searc h con tin ues to

bac kup. When the mo v e that created that pattern is unmade, the asso ciated p enalt y

disapp ears and the searc h pro ceeds normally .

5.11 Scan Searc h

The accuracy of the ev aluation at the ro ot no de determines ho w man y iterations are

needed to �nd a solution. The larger the gap b et w een the lo w er b ound of the ro ot

no de and the correct solution length, the more iterations ha v e to b e searc hed.

R ol ling Stone runs one p enalt y searc h for eac h of the stones in the initial p osition to

�nd preexisting p enalt y patterns { the sc an se ar ch . Finding suc h preexisting patterns

85

Figure 5.7: Maze #30 With a P enalt y of 38 (24+14)

86

increases the lo w er b ound of the ro ot no de and reduces the total n um b er of iterations

of the ID A* searc h.

Ho w ev er, increasing the lo w er b ound at the ro ot no de will only help to sa v e the

early , small iterations, not the latter, large iterations. Since these early iterations

help explore and �nd patterns, cutting early iterations migh t b e detrimen tal to the

o v erall p erformance of the program. F urthermore, executing scan searc hes comes

with a signi�can t o v erhead, usually o v er 20,000 no des and as m uc h as 58,000 no des.

Esp ecially for searc hes that are small, this o v erhead can b e signi�can t.

5.12 Utilit y Considerations

Con trolling the n um b er of pattern searc hes and their individual costs is only part

of the cost of the pattern kno wledge. Whenev er a lo w er b ound is calculated, all

the patterns in the database ha v e to b e tested to �nd whic h ones matc h. This can

quic kly lead to Min ton's utilit y problem [Min88]: The costs of matc hing patterns

slo ws the program do wn to the p oin t where the b ene�ts in no de sa vings are o�set b y

the additional cost of pattern matc hing. T o reduce this cost, a limit can b e imp osed

on the total n um b er of patterns. But, whic h of the patterns should b e k ept and whic h

should b e deleted?

W e c hose to limit the n um b er of patterns to 800

5

. When this pattern limit is

reac hed, w e remo v e the w orst pattern b efore inserting a new one. \W orst" is de�ned

as le ast r e c ently use d . T o a v oid deleting patterns b efore they ha v e had time to sho w

their w orth, patterns are giv en a grace p erio d of 50,000

6

no des from the time they

are created during whic h they are not remo v ed. Also, once a pattern w as used more

than 800

7

times, it will nev er b e remo v ed. Th us, the pattern limit of 800 is a soft

limit, it is p ossible that more patterns are stored.

With this limit in place, on a v erage ab out half of the patterns are eliminated.

The remo v al heuristic seems to w ork w ell, b ecause patterns that are remo v ed w ould

rarely b e matc hed. One problem is an exception: #19. Without the pattern limit,

R ol ling Stone can solv e problem #19 with 17 million no des. With the pattern limit

in place, the n um b er of no des needed increases b ey ond 20 million. Because of the

\softness" of the pattern limit, further decreasing the pattern limit results only in

small further decrease in the n um b er of patterns stored. Note that in man y problems

the pattern limit is nev er reac hed. In other problems, this limit is exceeded exces-

siv ely and massiv e run time sa vings are p ossible when large amoun ts of patterns are

deleted. Problem #22 is suc h an example. Without a pattern limit, 13,458 patterns

are collected. With the soft pattern limit of 800, only 1,742 patterns are stored,

signi�can tly reducing the cost of pattern matc hing.

5

Y et Another Magic Num b er (Y AMN).

6

Y AMN.

7

Y AMN.

87

Figure 5.8: No P enalt y

5.13 Related W ork

The idea of storing minimal patterns is similar to Ginsb erg's P artition Searc h [Gin96],

where the en tries of a hash table are generalized to hold information ab out sets of

problem states. In R ol ling Stone a pattern con tains the information ab out the lo w er-

b ound increase of the set of problem states in whic h this pattern is presen t.

The notion of bit (stone) patterns can b e compared to the Metho d of Analogies

[A V AD75]. P attern searc hes are a con
ict-driv en top-do wn pro of of correctness, while

the Metho d of Analogies is a b ottom-up heuristic appro ximation.

5.14 Limitations and Op en Problems

There are complications when reasoning ab out p enalties as w e ha v e seen in Sec-

tion 4.3.6. P attern searc hes assume that a stone will go to its closest goal. If the

optimal path to that goal cannot b e used b ecause it is obstructed, a di�eren t, p oten-

tially longer path has to b e tak en. A p enalt y is the result.

But what if the Minmatc hing lo w er b ound has already targeted the stone to w ards

a goal further a w a y? Consider Figure 5.8. Ev en though w e ha v e a stone con�guration

that migh t lo ok lik e a linear con
ict, it is not. One of the stones has to b e pushed to

the goal further a w a y . This kno wledge is implicit in the lo w er b ound. But b ecause

the pattern searc h assumes that eac h stone will go to w ards the closest goal, it will

�nd a p enalt y of 2 in this p osition. Ev en though w e ha v e so far treated the p enalties

resulting from pattern searc hes as admissible, there are rare cases in whic h they are

not.

This problem arises from the discrepancy b et w een the pattern searc h's assumption

and the realit y of where the Minmatc hing is targeting the stones to. Unfortunately ,

there is no general w a y of solving this problem, without conditioning the p enalties.

These conditions w ould ha v e to accoun t for the assumptions of the pattern searc h

and eac h pattern matc hing w ould ha v e to v erify that the curren t Minmatc hing is not

violating these assumptions (e.g. whic h goals a stone can/cannot mo v e to.) It is an

op en problem ho w to enco de these conditions e�cien tly . In the v ersion of R ol ling

Stone describ ed here, this problem is completely ignored, resulting in the o ccasional

wrong p enalt y (and p ossibly non-optimal solution).

An observ ation that w e ha v e not b een able to exploit is the hidden p attern . Assume

that at a no de all successors are searc hed without �nding a solution. That means

88

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

5 10 15 20 25 30 35 40 45

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R6
R6 + deadlock search

R6 + area search
R6 + penalty search

1

10

100

1000

10000

100000

1e+06

1e+07

5 10 15 20 25 30 35 40 45

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R6
R6 + deadlock search

R6 + area search
R6 + penalty search

Figure 5.9: Enabling One P attern Searc h (Linear and Log Scale)

the searc h has just pro v en that there is no solution for the curren t threshold in this

subtree. Ho w ev er, the lo w er b ound did not cause a cuto� when w e started searc hing

this subtree. A t this p oin t, w e kno w that our lo w er b ound is o�. A p enalt y pattern

remains undetected in the curren t p osition. The searc h has no kno wledge ab out wh y

it failed. Bac k-jumping is imp ossible. Just executing a pattern searc h to �nd the

hidden pattern has t w o dra w-bac ks:

� Presumably w e did a pattern searc h when w e created this no de, starting with

the stone last pushed. With whic h stone should w e start no w?

� If w e �nd a solution b efore w e revisit this no de, then this sp eculativ e searc h

e�ort w ould b e w asted.

It seems ob vious that the kno wledge ab out the existence of a hidden pattern should

b e used, but w e don't kno w ho w to do so e�cien tly .

A fundamen tal limitation of the curren t implemen tation of the p enalt y patterns

and p enalt y searc hes is that stones on goals cannot b e part of a pattern. The n um b er

and kind of p enalt y anomalies increases dramatically when stones on goals are allo w ed

in patterns. This limits the patterns in the kinds of p enalties that they can express.

W e exp erimen ted with stones that where �xed on goals, but found that the dynamic

distances capture most of the b ene�ts already .

5.15 Exp erimen tal Results

R ol ling Stone can solv e 24 Sok oban problems without pattern searc hes. T able 5.1 and

Figure 5.9 sho w the e�ect of adding eac h of the pattern searc hes alone: area searc h

(AR), deadlo c k searc h (DL) and p enalt y searc h (PN). P enalt y searc hes outp erform

the rest of the searc hes clearly , solving 48 problems, that is an increase of 24! Area

searc hes solv e 6 problems less, a total of 42. Deadlo c k searc hes, the initial idea, can

solv e only 6 more problems than a v ersion without an y pattern searc hes: 30. Note

the en tries for problem #54. While the program enhanced with the area searc h can

89

-AR -DL -PN +AR -DL -PN -AR +DL -PN -AR -DL +PN

ID A* ID A* ID A*+PID A* ID A* ID A*+PID A* ID A* ID A*+PID A*

1 53 50 728 53 633 53 573

2 316 85 4,640 82 5,077 82 4,347

3 2,493 166 4,711 119 11,872 107 13,530

4 597 187 45,652 187 47,480 187 49,562

5 1,275,146 57,723 429,175 2,484 135,636 488 50,711

6 283 160 4,110 85 3,954 160 3,982

7 48,209 3,998 21,752 3,504 102,281 1,376 21,645

8 > 20,000,000 23,729 273,954 > 106,657 > 20,000,000 426 408,708

9 659,972 8,460 117,093 3,098 355,472 841 126,353

10 > 20,000,000 > 4,589,251 > 20,000,000 > 63,766 > 20,000,000 2,419 1,429,198

11 > 20,000,000 > 2,186,237 > 20,000,000 > 310,567 > 20,000,000 44,357 7,818,164

12 > 20,000,000 3,613,901 9,394,754 > 565,536 > 20,000,000 300,828 5,852,854

17 11,910 7,470 35,424 3,830 17,332 7,838 27,063

19 > 20,000,000 > 2,308,996 > 20,000,000 > 133,139 > 20,000,000 61,500 12,365,851

21 10,643,971 15,306 168,209 202,317 10,206,666 1,906 145,409

25 > 20,000,000 > 2,282,812 > 20,000,000 > 130,791 > 20,000,000 1,396 373,552

33 > 20,000,000 > 10,349,835 > 20,000,000 > 195,637 > 20,000,000 5,520 639,635

34 > 20,000,000 73,999 697,988 150,281 18,350,039 511 267,401

38 19,083 10,166 41,411 11,971 111,629 9,031 53,341

43 6,084,369 45,373 421,089 > 385,422 > 20,000,000 17,825 935,196

45 > 20,000,000 > 5,363,550 > 20,000,000 > 116,217 > 20,000,000 1,439 467,809

49 5,189,494 228,985 851,493 600,506 5,550,628 195,260 357,651

51 80,504 145 5,720 2,194 38,390 137 8,531

53 > 20,000,000 159 21,334 9,921 597,100 159 24,004

54 > 20,000,000 114,481 336,415 > 2,509,932 > 20,000,000 > 3,896,911 > 20,000,000

55 144 104 2,072 136 3,803 97 2,393

56 > 20,000,000 15,233 99,878 123,173 2,147,733 376 51,996

57 > 20,000,000 75,612 339,663 84,591 4,897,724 265 114,407

58 > 20,000,000 3,386 85,637 > 154,522 > 20,000,000 723 195,767

59 > 20,000,000 1,106,457 2,730,849 > 244,323 > 20,000,000 1,223 499,466

60 > 20,000,000 1,111,060 1,584,426 216,622 1,395,471 205 20,372

61 > 20,000,000 > 10,696,415 > 20,000,000 > 330,504 > 20,000,000 325 110,862

62 6,337 1,996 42,355 18,268 2,519,713 167 56,024

63 > 20,000,000 8,836 139,172 > 156,097 > 20,000,000 437 150,211

64 > 20,000,000 193,037 2,610,202 > 81,434 > 20,000,000 379 234,400

65 604 221 17,899 228 18,343 196 18,747

67 > 20,000,000 773,199 7,828,791 > 197,121 > 20,000,000 54,963 654,594

68 > 20,000,000 26,908 521,170 > 392,557 > 20,000,000 1,119 229,055

70 > 20,000,000 217,772 1,530,250 > 235,488 > 20,000,000 415 118,595

72 > 20,000,000 348 26,524 898 257,112 134 39,038

73 > 20,000,000 424 23,896 6,389 567,742 205 58,459

76 > 20,000,000 1,098,753 4,037,793 > 95,223 > 20,000,000 191,703 4,521,473

78 465 64 2,680 75 2,513 64 2,387

79 5,964 149 9,032 143 11,715 131 12,660

80 114,930 830 30,684 123 19,419 155 24,063

81 221,690 25,943 74,914 9,095 536,209 21,505 147,737

82 99,236 2,126 59,223 15,362 1,266,520 86 34,698

83 20,847 262 5,055 164 8,155 166 9,451

84 354,295 142 4,816 227 23,768 95 8,325

> 524,840,912 > 47,644,501 > 174,682,633 > 7,871,059 > 429,210,129 > 4,825,891 > 58,760,250

T able 5.1: Enabling One P attern Searc h

90

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

5 10 15 20 25 30 35 40 45

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7

1

10

100

1000

10000

100000

1e+06

1e+07

5 10 15 20 25 30 35 40 45

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7

Figure 5.10: E�ort Graph Including P attern Searc h (Linear and Log Scale)

solv e problem #54, the program with the p enalt y searc hes cannot. Area searc hes and

p enalt y searc hes are �nding di�eren t kinds of p enalties.

Figure 5.10 sho ws the e�ort graph, no w including the v ersion of R ol ling Stone using

all pattern searc hes. T urning all the pattern searc hes on, w e can solv e 48 problems,

24 more than the previous b est v ersion! The last column of T able 5.2 sho ws the exact

n um b ers.

Since p enalt y searc hes alone can solv e 48 problems, wh y is it b ene�cial to include

deadlo c k and area searc hes? First, small reductions in searc h e�ort are ac hiev ed. More

imp ortan tly ho w ev er, b y allo wing di�eren t kinds of pattern searc hes to b e executed,

w e ha v e some insurance against missing some t yp es of patterns that could prev en t us

from �nding solutions to new, unseen problems. As can b e seen in T able 5.2, di�eren t

com binations of pattern searc hes solv e di�eren t problems.

Except for the small searc hes (< 20,000 no des), the cost of p erforming the addi-

tional PID A* searc hes is o�set b y the reduction in the ID A* searc h no des. Problem

#53 is an example. The sa vings for the ID A* tree are dramatic. Previously , with

20,000,000 no des the searc h w as unable to solv e this problem. No w the searc h suc-

ceeds with only 159 ID A* no des and a total of 22,310 no des (21,081 of those are

scan-searc h no des). Clearly , the pattern searc hes dominate the searc h cost, but the

kno wledge unco v ered allo ws us to solv e the problem where w e failed previously . In

this example, R ol ling Stone searc hes few er ID A* no des than the length of the solution!

The searc h bac ktrac ks a mere 13 times for a solution of 186 pushes.

T able 5.2 and Figure 5.11 sho w the v ersion of R ol ling Stone that uses all pattern

searc hes and what happ ens when one of the pattern searc hes is disabled at a time. The

smallest loss comes from disabling area searc h; 48 problems are still solv ed. Disabling

p enalt y searc hes loses a total of 11 problems. T urning o� the deadlo c k searc h loses

one problem, but gains one, problem #19!

Problem #19 is an in teresting case. Adding p enalt y searc hes alone allo ws R ol ling

Stone to solv e the problem with o v er 12 million no des. F urther enabling area searc hes

increases the n um b er of no des needed to close to 16 million. When all the pattern

searc hes are enabled, the problem cannot b e solv ed an ymore; the o v erhead b ecomes

to o high.

91

-AR +DL +PN +AR -DL +PN +AR +DL -PN +AR +DL +PN

ID A* ID A*+PID A* ID A* ID A*+PID A* ID A* ID A*+PID A* ID A* ID A*+PID A*

1 53 826 50 864 50 934 50 1,042

2 82 6,122 82 5,790 82 6,468 82 7,532

3 94 13,846 107 13,472 110 10,347 94 13,445

4 187 49,324 187 49,386 187 48,527 187 50,369

5 436 60,141 478 50,071 2,031 138,172 436 59,249

6 85 4,691 160 5,120 85 4,603 85 5,119

7 1,704 26,633 1,376 23,612 2,814 67,350 1,704 28,561

8 408 550,814 328 279,027 10,890 2,141,491 317 339,255

9 810 184,307 745 125,123 1,658 210,090 704 168,412

10 2,127 2,002,162 1,926 999,098 > 80,071 > 20,000,000 1,909 1,480,115

11 14,704 4,429,873 21,985 4,778,984 > 366,200 > 20,000,000 14,048 4,691,929

12 162,263 4,233,053 300,669 6,136,043 > 720,970 > 20,000,000 162,129 4,373,802

17 3,077 25,702 6,767 44,135 3,045 29,532 2,473 30,111

19 > 63,223 > 20,000,000 75,007 15,793,144 > 96,292 > 20,000,000 > 59,433 > 20,000,000

21 1,889 190,935 1,904 125,511 32,571 2,655,175 1,853 154,593

25 1,351 568,490 1,346 417,736 > 126,416 > 20,000,000 1,239 553,900

33 5,009 838,878 5,319 649,862 > 298,642 > 20,000,000 5,035 866,085

34 582 401,802 591 299,695 52,733 5,556,437 542 298,674

38 7,576 72,264 9,031 75,401 3,363 38,608 2,539 51,276

43 16,566 1,417,432 6,758 558,133 17,389 1,205,589 5,308 690,426

45 1,086 439,895 1,799 492,574 > 123,327 > 20,000,000 1,685 508,124

49 371,153 1,246,597 > 7,229,739 > 20,000,000 403,401 2,459,295 375,293 1,670,236

51 137 9,618 137 7,760 145 10,839 137 8,825

53 159 24,008 159 22,306 159 22,310 159 22,310

54 106,663 788,320 > 2,459,627 > 20,000,000 111,832 981,285 106,663 910,532

55 97 2,651 97 2,735 104 3,074 97 2,993

56 452 62,281 381 49,590 8,495 209,164 353 57,785

57 256 122,994 265 112,900 51,777 1,860,321 256 121,384

58 716 315,546 433 170,709 2,382 383,630 426 268,713

59 1,198 668,701 812 240,794 > 391,840 > 20,000,000 795 348,214

60 205 28,124 223 29,016 2,547 127,104 223 41,310

61 290 93,241 325 111,873 > 562,852 > 20,000,000 314 106,206

62 167 60,329 211 64,446 1,865 230,463 211 70,478

63 437 198,790 567 192,649 123,280 12,431,967 567 259,537

64 370 302,697 387 238,103 > 92,640 > 20,000,000 378 300,684

65 196 19,885 196 20,433 221 20,486 196 21,442

67 52,987 905,298 18,571 620,139 > 205,793 > 20,000,000 18,107 601,178

68 1,721 336,291 2,297 359,463 21,054 2,682,015 2,278 541,080

70 413 148,995 412 104,721 556 96,670 412 125,454

72 134 46,411 134 38,519 348 50,085 134 44,908

73 201 87,068 205 58,308 363 84,811 201 87,019

76 192,230 6,726,931 334,655 5,046,214 > 300,026 > 20,000,000 185,633 6,236,656

78 64 3,219 64 3,646 64 3,702 64 4,451

79 125 14,464 131 14,065 141 13,567 125 15,833

80 100 19,640 155 22,986 102 13,849 100 16,114

81 21,501 221,154 21,505 161,099 25,269 467,708 21,501 234,235

82 86 38,450 86 33,506 1,980 183,123 86 33,445

83 91 7,867 97 7,879 91 5,759 91 7,294

84 94 5,578 95 5,944 137 21,304 94 5,960

> 1,035,555 > 48,022,338 > 10,508,581 > 78,662,584 > 4,248,390 > 274,475,854 > 976,746 > 46,536,295

T able 5.2: Disabling One P attern Searc h

92

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

5 10 15 20 25 30 35 40 45

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R7, penalty search disabled
R7, deadlock search disabled

R7, area search disabled
R6 + area/deadlock/penalty search = R7

1

10

100

1000

10000

100000

1e+06

1e+07

5 10 15 20 25 30 35 40 45

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R7, penalty search disabled
R7, deadlock search disabled

R7, area search disabled
R6 + area/deadlock/penalty search = R7

Figure 5.11: Disabling One P attern Searc h (Linear and Log Scale)

Analysis of the data sho ws that the a v erage gro wth rate of the searc h tree from

iteration to iteration in an ID A* searc h decreased b y a factor of o v er 600. Although

this represen ts a signi�can t reduction in searc h e�ort, it demonstrates ho w resistan t

the problem is to searc h. Decreasing the gro wth rate of the searc h-tree size generally

increases the n um b er of iterations that the main ID A* searc h can p erform in the same

time.

P attern searc hes are a gam ble: w e in v est searc h e�ort (PID A* no des) exp ecting

to �nd useful kno wledge. Problem #78 is one example of where the gam ble do es not

pa y o�. Ev en though the tree size (ID A*) is reduced ab out 50 fold, including the

PID A* no des triples the total n um b er of no des searc hed.

No de n um b ers and success rates v ary for the di�eren t pattern searc hes. An un-

pro ductiv e pattern searc h costs b et w een roughly 50 and 600 no des. A pro ductiv e

pattern searc h t ypically costs b et w een 600 and 3,200 no des. While p enalt y searc hes

are exp ensiv e, they are successful ab out 10% of the time. On the other hand, area

searc hes are c heap, but their success rate is only ab out 1%. Although this sounds

lo w, the results sho w the v alue of the disco v ered kno wledge.

The results rep orted here are not the b est n um b ers that can b e ac hiev ed. In

T able 5.2, the PID A* no des dominate the cost of the searc h for some problems.

Some additional heuristics for deciding when to execute pattern searc hes could result

in further impro v emen ts in the searc h e�ciency . There are n umerous parameters in

the searc h, eac h of whic h can b e tuned for maximal p erformance. F or example:

� the e�ort limit in n um b er of no des,

� the pattern-size limit,

� the e�ort limit after �nding a pattern,

� the con trol function, and

� whic h of the m ultiple con
icting stones to include next.

93

Figure 5.12: Example of C of In�nit y

Building the pattern searc hes w as easy . All the e�ort w as sp en t in tuning the param-

eters for b est p erformance.

5.16 Theoretical Considerations

The question arises as to whether or not pattern searc hes can b e used in domains

other than Sok oban. What fundamen tal prop erties of the domain and its heuristics

are needed for pattern searc hes to b e applicable and to pro duce admissible lo w er

b ounds?

5.16.1 State Description Prop erties

First, w e will examine the domain prop erties. Let us assume that a state in a domain

can b e describ ed b y a set of descriptors S = f c

1

; :::; c

n

g . These c

i

could relate to

ob jects and their prop erties, suc h as lo cation or v alue. F or the domain of Sok oban

one could imagine a c

i

to describ e the lo cation of a stone. A subset S

k

� S is a state

with few er or the same n um b er of suc h descriptors than S , for the Sok oban example,

stones. A state description is r e ducible , if the solution for an y state S

k

is at most as

long as the solution for an y S :

j sol (S

k

) j � j sol (S) j : (5.1)

The term j sol (S) j stands for the length of an optimal solution for S . It is non-negativ e

(j sol (;) j = 0).

A state description is called splitable , if for an y t w o disjoin t subsets S

1

and S

2

of

S (S

1

; S

2

� S and S

1

\ S

2

= ;) the follo wing holds:

j sol (S) j = j sol (S

1

) j + j sol (S

2

) j + j sol (S � (S

1

[S

2

)) j + C (5.2)

This means that the solution of S is at least as long as b oth subsolutions added.

The third term accoun ts for additional steps that migh t b e needed for conditions c

i

that are neither in S

1

nor S

2

. The term C stands for subsolution in teractions. These

subsolution in teractions can only increase the solution length of S (C � 0).

The example Sok oban-state description is reducible, b ecause whenev er a stone (or

ev en a w all) is remo v ed, the solution is not getting more complicated, but p oten tially

94

simpler. This state description is also splitable. In Sok oban, the term C can b ecome

as large as in�nit y . Consider Figure 5.12 as an example. The t w o linear con
icts,

sho wn in the left (S

1

) and middle maze (S

2

), com bine to form a deadlo c k when added

in the righ t maze (S). The third term in Equation 5.2 (j sol (S � (S

1

[S

2

)) j) is 0,

b ecause S � (S

1

[S

2

) = ; . Adding the solution to the subproblems S

1

and S

2

leads

to an in�nitely smaller sum than the actual solution length of the righ t maze.

5.16.2 Heuristic Prop erties

No w, let us consider the prop erties of the admissible heuristic h used for the applica-

tion domain. A heuristic is r e ducible , if the follo wing holds:

h (S

k

) � h (S) ; (5.3)

giv en that S

k

� S . A heuristic is splitable , if the follo wing holds:

h (S) = h (S

1

) + h (S

2

) + h (S � (S

1

[S

2

)) ; (5.4)

giv en that S

1

; S

2

� S and S

1

\ S

2

= ; .

The Minmatc hing heuristic in Sok oban is reducible but not splitable, b ecause

Minmatc hing do es tak e stone-goal in teractions in to accoun t. This is one reason wh y

the pattern searc hes use the simpler heuristic Closest . The lo w er b ound is the sum of

the distances of eac h stone to their resp ectiv e closest goals. This heuristic is reducible

and splitable.

5.16.3 P enalties

The pattern searc h can start with solving an y S

k

� S and adding new conditions

c

i

will only monotonically increase the solution lengths, as de�ned in Equation 5.1.

A p enalt y pattern S

k

is disco v ered, when there is a di�erence b et w een j sol (S

k

) j and

h (S

k

). Since h is admissible, the follo wing m ust b e true:

j sol (S

k

) j � h (S

k

) � 0 : (5.5)

W e will de�ne the p enalty of S

k

as

pen (S

k

) = j sol (S

k

) j � h (S

k

) : (5.6)

The sum h (S

k

) + pen (S

k

) is therefore b y de�nition admissible.

What happ ens with m ultiple p enalt y patterns that matc h in one state? When

these patterns o v erlap, only one can b e used, as previous considerations in Sec-

tion 4.3.6 with the m ultiple linear con
icts ha v e sho wn. What ab out non-o v erlapping

patterns? W ould the sum of the lo w er-b ound function and all their p enalties still b e

admissible?

Let S

1

and S

2

b e t w o non-o v erlapping subproblems of S , with the usual conditions

S

1

; S

2

� S and S

1

\ S

2

= ; . F or h (S) + pen (S

1

) + pen (S

2

) to b e admissible (j sol (S) j �

h (S) + pen (S

1

) + pen (S

2

)), the follo wing m ust hold:

pen (S) � pen (S

1

) + pen (S

2

) : (5.7)

95

Using Equations 5.1 to 5.6 this is easy to sho w.

pen (S) = j sol (S) j � h (S)

= j sol (S

1

) j + j sol (S

2

) j + j sol (S � (S

1

[S

2

)) j + C

� (h (S

1

) + h (S

2

) + h (S � (S

1

[S

2

)))

= j sol (S

1

) j � h (S

1

) + j sol (S

2

) j � h (S

2

)

+ j sol (S � (S

1

[S

2

)) j � h (S � (S

1

[S

2

))

+ C

= pen (S

1

) + pen (S

2

) + pen (S � (S

1

[S

2

)) + C

| {z }

� 0

� pen (S

1

) + pen (S

2

) (5.8)

Th us, giv en the prop erties outlined ab o v e for the domain and the heuristic, the p enal-

ties of non-o v erlapping patterns can b e added and the resulting heuristic remains

admissible.

5.16.4 Conclusions

W e w ere able to sho w the su�cien t prop erties of the state description and the lo w er

b ound that ensure the theoretical applicabilit y of pattern searc hes. If the state de-

scriptions and the heuristic lo w er b ound for a domain ha v e b oth the prop erties of

reducibilit y and splitabilit y , pattern searc hes are p ossible. Starting with small prob-

lems (patterns), pattern searc hes can iterativ ely increase the pattern size un til a

p enalt y pattern is detected. F or Sok oban, w e used the con
ict heuristic to determine

the next c

i

(stone) to include, but an y other heuristic could b e used. It w as also sho wn

that the p enalties of non-o v erlapping patterns can b e added to the lo w er b ound of a

p osition without losing admissibilit y . Ho w ev er, in practice it migh t not b e wise to use

pattern searc hes. Their use comes with a considerable o v erhead and the cost-b ene�t

ratio will determine if pattern searc hes are b ene�cial.

W e previously discussed a few inconsistencies b et w een the pattern kno wledge and

the admissibilit y of the resulting ev aluation in Sok oban. No w, w e ha v e the theoretical

to ols to see where these issues arise from. The pattern searc hes ha v e to use a di�eren t

heuristic than the main ID A* searc h. Therefore, the admissibilit y of a pattern do es

not necessarily carry o v er from the pattern searc h in to the main ID A* searc h. Sok oban

pro v es to b e di�cult, again.

What ab out other domains? Ho w common are the prop erties of reducibilit y and

splitabilit y? The sliding-tile puzzles and Rubik's Cub e ha v e these prop erties. The

Manhattan distance used as a lo w er-b ound function for the sliding-tile puzzles is

reducible and splitable as w ell. W e will see in the next section, ho w the ideas dev elop ed

for Sok oban can easily b e transferred in to the di�eren t domain of the 15-puzzle.

96

5.17 P attern Searc hes in the 15-Puzzle

The 15-puzzle is reducible. Remo ving tiles in tro duces more blanks and they allo w

the problem to b e solv ed faster. It is also splitable. T raditionally , the Manhattan

distance is used as a lo w er b ound. The Manhattan distance has b oth prop erties:

reducibilit y and splitabilit y . Therefore, the sliding-tile puzzles are p erfect candidates

for pattern searc hes from a theoretical p oin t of view.

Practically , ho w ev er, there are a n um b er of dra wbac ks to this domain when trying

to impro v e run time with pattern searc hes.

� P attern searc hes excel at �nding lo cal con
icts b y ignoring irrelev an t parts of the

problem. Because of the limited ph ysical dimensions of the 15-puzzle, almost

ev erything is lo cal. Th us, one of the main adv an tages of the pattern searc h is

diminished considerably .

� The sliding-tile puzzle programs ha v e v ery little o v erhead p er no de. Mo v e gener-

ation and lo w er-b ound functions reduce to table lo okups of small constan t time.

On to da y's fast PCs (P en tium I I I 450MHz) they easily searc h up to 8 million

no des p er second. Adding an y kind of o v erhead will slo w do wn the program

considerably , and that slo wdo wn is hard to o�set with no de sa vings. P attern

searc hes will create considerable o v erhead, b ecause they ha v e to b e executed

and the patterns ha v e to b e matc hed.

� There are enhancemen ts to the lo w er b ound, suc h as the linear con
icts [HMY92],

that can e�cien tly impro v e the Manhattan distance.

� While in Sok oban a mo v e could increase the distance to the goal b y an arbitrary

amoun t, in the sliding-tile puzzles, eac h mo v e can increase the distance to the

goal b y at most 2, b ecause ev ery mo v e is rev ersible. Therefore, the p enalties

that can b e found will b e smaller for the 15-puzzle and th us the b ene�ts (the

lik eliho o d of cuto�s) will b e less.

Despite these obstacles, a signi�can t reduction in no de coun t could sho w the

feasibilit y of pattern searc hes b ey ond the domain of Sok oban.

5.17.1 Implemen tation

W e started with Korf 's original implemen tation of a 15-puzzle solv er [Kor85a].

8

It

con tains nothing but the Manhattan distance as lo w er b ound, ID A* as the searc h al-

gorithm and an enhancemen t to prev en t cycles of length 2. There are no transp osition

tables, linear con
icts, macro mo v es and pattern databases.

P attern Searc hes

Our implemen tation of the pattern searc h starts with a designated tile that is assumed

to b e part of a p enalt y pattern. The pattern searc h tries to solv e the problem with

8

W e used Korf 's original source co de to implemen t our ideas.

97

the single tile; ev erything else is assumed to b e blanks. The searc h returns a solution

and a con
ict set consisting of all the squares the tile mo v ed o v er. The next tile

included is the one in the con
ict set whic h is closest to the �rst tile, and so forth.

Closest in our implemen tation is a mo di�ed Manhattan distance. Ev ery tile in the

same ro w or column has the normal Manhattan distance. All other tiles are assigned

the Manhattan distance plus 2. This ensures that all tiles in the same columns or

ro ws are included �rst, in order to facilitate the detection of linear con
icts.

P atterns are restricted to 4 tiles, and eac h pattern searc h is giv en a limit of 50

no des. If a pattern is found, the searc h con tin ues, but the limit is increased to 250.

P attern searc hes are only executed to a searc h-tree depth of ab out half the ID A*

threshold (i.e. are restricted to the top of the tree).

A t the b eginning of an ID A* searc h, the equiv alen t of a Scan Searc h is p erformed.

F or eac h tile a pattern searc h is called. During the ID A* searc h, a pattern searc h is

executed if the tile that w as mo v ed is not part of a pattern that w as included in the

p enalt y for the curren t p osition. This reduces the n um b er of unpro ductiv e pattern

searc hes, ev en at the risk of missing a small p ercen tage of the patterns.

P attern Storage and Matc hing

T o sp eed things up, eac h pattern is stored in a n um b er of dynamic arra ys. There

are 16 � 16 suc h arra ys, one for eac h tile-square com bination. Eac h of these arra ys

con tains all the patterns that ha v e a sp eci�c tile on a sp eci�c square in the puzzle grid.

Th us, a linear con
ict with t w o tiles w ould b e stored t wice, once for eac h tile-square

com bination in the pattern.

T o reduce the run-time o v erhead, w e use a greedy approac h when trying to deter-

mine the p enalt y of a p osition. F or eac h tile in the puzzle w e try to �nd the maximal

p enalt y a v ailable for this tile using a minimal n um b er of tiles. W e commit to using

this p enalt y . The tiles used b y committed p enalties are mark ed and excluded from

further matc hes to ensure only non-o v erlapping patterns are used. This routine is not

guaran teed to �nd the maximal p enalt y , but w as a compromise to obtain most of the

b ene�ts of the patterns with the least amoun t of o v erhead.

5.17.2 Exp erimen tal Results

The parameters giv en ab o v e w ere tuned only a little, but impro v emen ts are certainly

p ossible. W e use the 100 problems from Korf 's original test suite [Kor85a].

Figure 5.13 sho ws no de n um b ers corresp onding to Korf 's original co de (upp er

line), the corresp onding no de n um b ers for the pattern-searc h v ersion (dots), and the

same n um b ers sorted b y increasing size (sho wn as the lo w er line). Sa vings of ab out

66% are p ossible with our curren t implemen tation. The no des searc hed split ab out

equally among the top-lev el no des and pattern-searc h no des.

98

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

7e+09

0 20 40 60 80 100

no
de

s
to

 s
ol

ve

problems with increasing difficulty

korf's version
pattern search, no reuse

pattern search, no reuse, sorted

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 20 40 60 80 100

no
de

s
to

 s
ol

ve

problems with increasing difficulty

korf's version
pattern search, no reuse

pattern search, no reuse, sorted

Figure 5.13: P attern Searc hes in the 15-Puzzle (Linear and Log Scale)

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

0 20 40 60 80 100

no
de

s
to

 s
ol

ve

problems with increasing difficulty

korf's version
pattern search, with reuse

pattern search, with reuse, sorted

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 20 40 60 80 100

no
de

s
to

 s
ol

ve

problems with increasing difficulty

korf's version
pattern search, with reuse

pattern search, with reuse, sorted

Figure 5.14: P attern Searc hes in the 15-Puzzle Reusing P atterns (Linear and Log

Scale)

99

Reusing P atterns

In Sok oban, the patterns found in one problem are not generally usable in another

problem, b ecause the la y out of the maze and the lo cation of the goals c hange. Since

the 15-puzzle do es not c hange its la y out or the goal state, patterns found once are

reusable for future problems. A test w as run that retains the patterns from problem

to problem. An additional 10% sa vings are p ossible, reducing the n um b er of no des

required to roughly 24%. Figure 5.14 sho ws the results. T ables 5.3 and 5.4 con tains

the n um b ers for b oth exp erimen ts.

Run Time

Ev en though w e could sho w wins with resp ect to no de n um b ers, the o v erall run time

increases. The o v erhead of matc hing the patterns is not o�set b y the no de sa vings.

The sa vings are lo w er b ecause the p enalties that can b e found are smaller than in

Sok oban, b ecause all mo v es are rev ersible. Th us, the lik eliho o d of them b eing able

to cause a cuto� is smaller as w ell. The matc hing increases the time sp en t p er no de

ab out 35-fold. That is not surprising, since the original co de has an extremely lo w

o v erhead.

5.17.3 Conclusions

The sliding-tile puzzles are quite di�eren t when compared to the Sok oban domain.

Ho w ev er, they ha v e similar prop erties that allo w pattern searc hes to w ork. Ev en

though the pattern searc hes result in signi�can t no de sa vings, the matc hing o v erhead

is larger, b ecause the 15-puzzle is a lo w-o v erhead domain, with an e�cien t and e�ec-

tiv e lo w er-b ound function, rev ersible mo v es and high lo calit y . The cost-b ene�t ratio

is not in fa v or of pattern searc hes for the 15-puzzle.

The lo w er-b ound impro v emen t of linear con
icts can reduce the no de n um b ers

m uc h more, but that kno wledge is static and is hand co ded. P attern searc hes can

detect m uc h more general con
icts of tiles and are not restricted b y our understanding

of the domain. The main ob jectiv e of this section, to sho w that pattern searc hes ha v e

p oten tial b ey ond the domain of Sok oban, w as realized.

5.18 Conclusions

The prop ert y of deadlo c ks in a searc h space adds considerable complexit y to the

searc h. Deadlo c k tables are b ene�cial for lo cal deadlo c k detection, but inadequate to

handle non-trivial situations. P attern searc hes can detect global deadlo c k scenarios

and are able to impro v e the lo w er b ound considerably , resulting in a substan tial

impro v emen t in searc h e�ciency .

P atterns giv e the searc h kno wledge ab out ho w the stones and the man in teract.

This additional kno wledge allo ws the searc h to a v oid parts of the searc h space that

ha v e no solutions and/or only solutions that are longer than the curren t threshold.

100

Plain ID A* Plus P attern Searc hes Plus P attern Searc hes with Reuse of P atterns

ID A*+PID A* ID A* PID A* ID A*+PID A* ID A* PID A*

1 540,859 239,547 142,508 97,039 239,547 142,508 97,039

2 546,343 276,468 198,862 77,606 267,188 193,074 74,114

3 877,822 289,709 201,934 87,775 256,627 182,675 73,952

4 927,211 463,991 283,028 180,963 399,477 253,956 145,521

5 1,002,926 437,631 274,859 162,772 347,658 229,040 118,618

6 1,280,494 794,419 430,652 363,767 674,873 372,343 302,530

7 1,337,339 949,669 543,679 405,990 753,357 437,515 315,842

8 1,411,293 750,560 480,549 270,011 524,327 347,662 176,665

9 1,599,908 718,377 430,931 287,446 534,140 340,121 194,019

10 1,650,695 898,062 500,979 397,083 705,983 407,199 298,784

11 1,897,727 894,044 578,177 315,867 700,093 471,535 228,558

12 1,905,022 696,823 412,605 284,218 496,921 296,423 200,498

13 2,196,592 959,296 654,233 305,063 671,943 489,194 182,749

14 2,304,425 900,628 562,093 338,535 599,977 400,609 199,368

15 2,351,810 823,599 512,078 311,521 556,369 379,907 176,462

16 2,725,455 1,566,132 855,726 710,406 1,200,524 664,060 536,464

17 3,222,275 1,976,483 1,188,101 788,382 1,511,135 935,646 575,489

18 5,934,441 2,611,918 1,734,902 877,016 1,993,995 1,362,206 631,789

19 6,158,732 2,454,218 1,666,046 788,172 1,593,941 1,142,821 451,120

20 7,096,849 1,387,873 843,966 543,907 900,469 579,749 320,720

21 7,115,966 3,535,755 1,963,898 1,571,857 2,798,760 1,557,218 1,241,542

22 7,171,136 2,282,133 1,485,085 797,048 1,633,121 1,088,971 544,150

23 8,841,526 4,945,501 2,670,870 2,274,631 4,338,745 2,376,398 1,962,347

24 8,885,971 1,855,272 1,093,178 762,094 1,179,823 733,615 446,208

25 9,982,568 3,576,460 2,262,624 1,313,836 2,406,177 1,565,450 840,727

26 10,907,149 4,965,290 3,073,845 1,891,445 3,689,342 2,341,576 1,347,766

27 11,020,324 6,196,510 3,496,018 2,700,492 4,692,929 2,702,278 1,990,651

28 11,861,704 3,136,569 1,915,277 1,221,292 2,082,440 1,287,875 794,565

29 12,808,563 2,587,918 1,532,363 1,055,555 1,587,803 958,001 629,802

30 12,955,403 6,900,357 3,904,078 2,996,279 5,689,404 3,244,098 2,445,306

31 15,300,441 6,393,789 3,547,776 2,846,013 5,302,386 2,984,188 2,318,198

32 15,971,318 3,811,782 2,242,701 1,569,081 2,805,897 1,621,794 1,184,103

33 17,954,869 7,914,991 4,198,511 3,716,480 6,326,621 3,375,560 2,951,061

34 17,984,050 3,973,317 2,133,762 1,839,555 2,978,373 1,606,509 1,371,864

35 18,918,268 8,437,534 4,807,670 3,629,864 6,255,292 3,679,995 2,575,297

36 18,997,680 3,756,295 2,417,514 1,338,781 2,380,043 1,602,348 777,695

37 19,355,805 6,671,833 3,570,891 3,100,942 4,590,206 2,501,976 2,088,230

38 20,671,551 5,313,551 2,954,753 2,358,798 3,859,176 2,248,633 1,610,543

39 22,119,319 4,100,671 2,554,452 1,546,219 2,486,509 1,640,228 846,281

40 23,540,412 13,843,415 7,789,833 6,053,582 11,430,164 6,424,676 5,005,488

41 23,711,066 11,348,938 6,333,195 5,015,743 9,004,498 5,067,043 3,937,455

42 24,492,851 6,775,014 4,358,482 2,416,532 4,987,035 3,223,251 1,763,784

43 26,622,862 12,666,910 6,667,429 5,999,481 7,827,761 4,443,516 3,384,245

44 32,201,659 9,579,153 5,226,829 4,352,324 6,865,400 3,866,877 2,998,523

45 39,118,936 8,677,734 5,182,695 3,495,039 5,759,803 3,499,410 2,260,393

46 41,124,766 15,859,652 9,256,714 6,602,938 10,856,777 6,696,506 4,160,271

47 42,693,208 18,962,035 10,458,390 8,503,645 15,720,595 8,760,179 6,960,416

48 42,772,588 8,786,352 4,544,081 4,242,271 6,769,114 3,553,502 3,215,612

49 47,506,055 14,785,232 8,744,593 6,040,639 10,364,124 6,382,613 3,981,511

50 51,501,543 25,153,931 13,156,713 11,997,218 20,651,664 10,892,728 9,758,936

T able 5.3: Exp erimen tal Results for the 15 Puzzle (I)

101

Plain ID A* Plus P attern Searc hes Plus P attern Searc hes with Reuse of P atterns

ID A*+PID A* ID A* PID A* ID A*+PID A* ID A* PID A*

51 59,802,601 12,074,808 7,129,909 4,944,899 7,198,419 4,642,938 2,555,481

52 62,643,178 18,193,320 10,275,974 7,917,346 14,344,342 8,275,975 6,068,367

53 63,036,421 20,635,688 12,069,795 8,565,893 14,248,474 8,790,770 5,457,704

54 63,276,187 25,257,298 13,569,322 11,687,976 21,132,597 11,433,740 9,698,857

55 64,367,798 12,986,228 7,853,068 5,133,160 9,633,860 6,022,843 3,611,017

56 64,926,493 14,115,956 7,803,041 6,312,915 10,480,885 5,924,554 4,556,331

57 65,533,431 5,740,186 3,704,815 2,035,371 3,885,367 2,573,896 1,311,471

58 67,880,055 35,223,825 17,184,643 18,039,182 30,288,769 14,792,560 15,496,209

59 83,477,693 30,115,905 18,253,002 11,862,903 23,599,128 14,608,924 8,990,204

60 95,733,124 13,243,348 6,998,780 6,244,568 9,588,006 5,208,168 4,379,838

61 100,734,843 34,617,503 17,763,516 16,853,987 29,281,463 14,983,111 14,298,352

62 106,074,302 26,373,781 15,994,142 10,379,639 18,261,302 11,288,695 6,972,607

63 109,562,358 25,511,033 14,047,076 11,463,957 19,080,166 10,744,264 8,335,902

64 117,076,110 41,217,374 20,879,485 20,337,889 31,983,878 16,701,461 15,282,417

65 126,638,416 62,396,258 31,005,988 31,390,270 53,339,225 26,754,479 26,584,746

66 132,945,855 68,225,185 34,463,403 33,761,782 57,658,610 29,456,218 28,202,392

67 150,346,071 63,446,995 34,816,085 28,630,910 52,569,497 29,576,740 22,992,757

68 151,042,570 46,491,721 24,539,442 21,952,279 37,919,076 20,271,548 17,647,528

69 166,571,020 77,540,544 40,375,099 37,165,445 66,931,919 34,669,581 32,262,338

70 183,526,882 69,997,313 34,168,994 35,828,319 63,421,285 31,048,124 32,373,161

71 198,758,702 87,766,281 42,008,873 45,757,408 76,176,289 36,961,403 39,214,886

72 220,374,384 53,558,763 27,602,309 25,956,454 46,973,422 24,213,232 22,760,190

73 226,668,644 89,537,891 45,389,557 44,148,334 75,627,138 39,075,879 36,551,259

74 252,783,877 62,831,732 33,492,626 29,339,106 56,096,209 30,155,218 25,940,991

75 257,064,809 86,979,437 45,004,537 41,974,900 77,236,295 40,110,310 37,125,985

76 260,054,151 104,589,901 53,261,229 51,328,672 93,056,576 47,351,110 45,705,466

77 276,361,932 81,643,020 42,051,951 39,591,069 63,776,719 32,769,750 31,006,969

78 280,078,790 87,685,598 43,861,039 43,824,559 66,929,943 34,529,085 32,400,858

79 306,123,420 49,255,148 27,457,411 21,797,737 39,012,336 22,198,724 16,813,612

80 377,141,880 79,935,949 38,767,275 41,168,674 65,789,788 32,312,648 33,477,140

81 387,138,093 129,453,081 66,898,520 62,554,561 107,124,954 54,052,442 53,072,512

82 465,225,697 208,661,165 101,646,975 107,014,190 174,073,215 85,885,772 88,187,443

83 480,637,866 134,867,828 73,184,295 61,683,533 108,870,176 59,592,195 49,277,981

84 543,598,066 214,335,023 111,301,616 103,033,407 187,555,926 97,691,048 89,864,878

85 565,994,202 287,160,880 137,981,294 149,179,586 261,971,051 125,619,342 136,351,709

86 602,886,857 192,918,480 94,363,487 98,554,993 174,974,578 85,013,556 89,961,022

87 607,399,559 221,127,539 133,786,893 87,340,646 189,874,898 115,809,263 74,065,635

88 661,041,935 286,235,800 139,080,450 147,155,350 255,709,707 125,105,040 130,604,667

89 750,745,754 204,800,942 105,361,957 99,438,985 178,697,814 92,261,405 86,436,409

90 995,472,711 121,031,679 60,948,602 60,083,077 99,164,337 51,023,344 48,140,993

91 1,031,641,139 123,558,336 67,093,299 56,465,037 101,684,685 55,108,784 46,575,901

92 1,101,072,540 200,479,934 101,685,292 98,794,642 147,986,726 76,928,139 71,058,587

93 1,199,487,995 351,686,002 175,182,845 176,503,157 316,488,886 159,031,174 157,457,712

94 1,207,520,463 327,199,700 170,091,890 157,107,810 286,948,657 149,565,191 137,383,466

95 1,369,596,777 212,473,752 120,284,300 92,189,452 178,676,839 103,461,995 75,214,844

96 1,809,933,697 484,738,238 253,644,380 231,093,858 439,595,890 231,180,827 208,415,063

97 1,957,191,377 712,647,322 349,499,366 363,147,956 661,802,397 325,793,021 336,009,376

98 3,337,690,330 1,269,110,078 586,394,155 682,715,923 1,059,849,206 491,356,136 568,493,070

99 5,506,801,122 1,034,169,009 480,236,703 553,932,306 928,186,443 434,107,129 494,079,314

100 6,320,047,979 1,633,097,516 774,048,263 859,049,253 1,516,183,963 721,815,799 794,368,164

36,302,807,931 10,093,823,634 5,020,547,096 5,073,276,538 8,803,189,857 4,399,402,805 4,403,787,052

T able 5.4: Exp erimen tal Results for the 15 Puzzle (I I)

102

This kno wledge comes at a price: executing the sp eculativ e pattern searc hes.

Ho w ev er, the o v erhead of pattern searc hes is w ell w orth the e�ort in the domain of

Sok oban. The kno wledge gained allo ws dramatic impro v emen ts in e�ciency and leads

to t wice the n um b er of problems solv ed. Giv en 20 million no des of searc h e�ort, our

program can no w solv e 48 problems of the 90 problem test suite.

P attern searc hes can b e used in other domains, if reducable and splitable state

descriptions and heuristics can b e found. The 15-puzzle is suc h a domain. Ho w ev er,

to b e of practical b ene�ts, the sa vings of the pattern searc hes m ust out w eigh t their

considerable o v erhead. While this is true for Sok oban, the 15-puzzle did not b ene�t

from pattern searc hes in our implemen tation.

103

Chapter 6

Relev ance Cuts

6.1 In tro duction and Motiv ation

It is commonly ac kno wledged that a h uman's abilit y to successfully na vigate through

large searc h spaces is due to their meta-lev el reasoning [Gin93b]. The relev ance of

di�eren t actions when comp osing a plan is an imp ortan t notion in that pro cess. Eac h

next action is view ed as one logically follo wing in a series of steps to accomplish a

(sub-)goal. An action judged as irrelev an t is not considered.

When searc hing small searc h spaces, the computer's sp eed at base-lev el reasoning

can e�ectiv ely o v ercome the lac k of meta-lev el reasoning b y simply en umerating large

p ortions of the searc h space. Ho w ev er, it is easy to iden tify a problem that is simple

for a h uman to solv e (using reasoning) but is exp onen tially large for a computer to

solv e using standard searc h algorithms. The pigeonhole problem is an example: �t

N + 1 stones in to N pigeonholes. W e need to enhance searc h algorithms to b e able to

reason at the meta-lev el if they are to successfully tac kle these larger searc h tasks. In

the w orld of computer games (t w o-pla y er searc h), a n um b er of meta-lev el reasoning

algorithmic enhancemen ts are w ell kno wn, suc h as n ull-mo v e searc hes [GC90] and

futilit y cuto�s [Sc h86]. F or single-agen t searc h, macro mo v es [Kor85b] are an example.

In this c hapter, w e in tro duce r elevanc e cuts , a meta-lev el reasoning enhancemen t

for single-agen t searc h. The searc h is restricted in the w a y it c ho oses its next action.

Only actions that are related to previous actions can b e p erformed, with a limited

n um b er of exceptions b eing allo w ed. The exact de�nition of relev ance is application

dep enden t.

Consider an artist dra wing a picture of a wildlife scene. One w a y of dra wing

the picture is to dra w the b ear, then the lak e, then the moun tains, and �nally the

v egetation. An alternate w a y is to dra w a small part of the b ear, then dra w a

part of the moun tains, dra w a single plan t, w ork on the b ear again, another plan t,

ma yb e a bit of lak e, etc . The former corresp onds to ho w a h uman w ould dra w the

picture: concen trate on an iden ti�able comp onen t and w ork on it un til a desired lev el

of completeness has b een ac hiev ed. The latter corresp onds to a t ypical computer

metho d: the order in whic h the lines are dra wn do es not matter, as long as the �nal

result is ac hiev ed.

104

Unfortunately , most searc h algorithms do not follo w the h uman example. A t eac h

no de in the searc h, the algorithm will consider all legal mo v es regardless of their

relev ance to the preceding pla y . F or example, in c hess, consider a passed \a" pa wn

and a passed \h" pa wn. The h uman will analyze the sequence of mo v es to, sa y , push

the \a" pa wn forw ard to queen. The computer will consider dubious (but legal) lines

suc h as push the \a" pa wn one square, push the \h" pa wn one square, push the \a"

pa wn one square, etc . Clearly , considering alternativ es lik e this is not cost-e�ectiv e.

What is missing in the ab o v e examples is a notion of r elevanc e . In the c hess

example, ha ving pushed the \a" pa wn and then decided to push the \h" pa wn, it

seems silly to no w return to considering the \a" pa wn. If it really w as necessary to

push the \a" pa wn a second time, wh y w eren't b oth \a" pa wn mo v es considered b efor e

switc hing to the \h" pa wn? Usually this switc hing bac k and forth (or \ping-p onging")

do es not mak e sense but, of course, exceptions can b e constructed.

In other w ell-studied single-agen t searc h domains, suc h as the N -puzzle and Ru-

bik's Cub e, the notion of relev ance is not imp ortan t. In b oth of these problems, the

geographic space of mo v es is limited, i.e. all legal mo v es in one p osition are \close"

(or lo cal) to eac h other. F or t w o-pla y er games, the e�ect of a mo v e ma y b e global in

scop e and therefore mo v es almost alw a ys in
uence eac h other (this is most prominen t

in Othello, and less so in c hess). In con trast, a mo v e in the game of Go is almost

alw a ys lo cal. In non-trivial, real-w orld problems, the geographic space migh t b e large,

allo wing for mo v es with lo cal and non-lo cal implications.

This c hapter in tro duces relev ance cuts and demonstrates their e�ectiv eness in

Sok oban. F or Sok oban, w e use a new in
uence metric that re
ects the structure of

the maze. A mo v e is considered relev an t only if the previous m mo v es in
uence it.

The searc h is only allo w ed to mak e relev an t mo v es with resp ect to previous mo v es

and only a limited n um b er of exceptions are p ermitted. With these restrictions in

place, the searc h is forced to sp end its e�ort lo cally , since random jumps within the

searc h space are discouraged. In the meta-reasoning sense, forcing the program to

consider lo cal mo v es is making it adopt a pseudo-plan; an exception corresp onds to

a decision to c hange plans.

The searc h-tree size, and th us the searc h e�ort exp ended in solving a problem,

dep ends on the depth of the searc h tree and the e�ectiv e branc hing factor. Relev ance

cuts aim at reducing the e�ectiv e branc hing factor. F or R ol ling Stone , relev ance

cuts result in a large reduction of the searc h space. On the standard set of 90 test

problems, relev ance cuts allo w R ol ling Stone to increase the n um b er of problems it

can solv e from 48 to 50. Giv en that the problems increase exp onen tially in di�cult y ,

this relativ ely small increase in the n um b er of problems solv ed represen ts a signi�can t

increase in searc h e�ciency .

6.2 Relev ance Cuts

Analyzing the trees built b y an ID A* searc h quic kly rev eals that the searc h algorithm

considers mo v e sequences that no h uman w ould ev er consider. Ev en completely un-

related mo v es are tested in ev ery legal com bination|all in an e�ort to pro v e that

105

Figure 6.1: The Num b er of Alternativ es Changes the In
uence

Figure 6.2: The Lo cation of the Goals Matters

there is no solution for the curren t threshold. Ho w can a program mimic an \un-

derstanding" of relev ance? W e suggest that a reasonable appro ximation of relev ance

is in
uenc e . If t w o mo v es do not in
uence eac h other, then it is unlik ely that they

are relev an t to eac h other. If a program had a go o d \sense" of in
uence, it could

assume that in a giv en p osition all previous mo v es b elong to a (unkno wn) plan of

whic h a con tin uation can only b e a mo v e that is relev an t|in our appro ximation, is

in
uencing whatev er w as pla y ed previously .

6.2.1 In
uence

An in
uence metric can b e ac hiev ed in di�eren t, domain-sp eci�c w a ys. The follo wing

sho ws one implemen tation for Sok oban. Ev en though the sp eci�cs aren't necessarily

applicable to other domains, the basic philosoph y of the approac h is.

W e appro ximate the in
uence of t w o mo v es on eac h other b y the in
uence b et w een

the mo v e's fr om squares. The in
uence b et w een t w o squares is determined using the

notion of a \most in
uen tial path" b et w een the squares. This can b e though t of as a

least-cost path, except that in
uence is used as the cost metric.

When judging ho w t w o squares in a Sok oban maze in
uence eac h other, using the

Euclidean distance is not adequate. T aking the structure of the maze in to accoun t

w ould lead to a simple geographic distance whic h is not prop ortional to in
uence

either. F or example, consider t w o squares connected b y a tunnel; the squares are

equally in
uencing eac h other, no matter ho w long the tunnel is. Elongating the

tunnel without c hanging the general top ology of the problem w ould c hange the geo-

graphic distance, but not the in
uence.

The follo wing is a list of prop erties w e w ould lik e the in
uence measure to re
ect:

Alternativ es: The more alternativ es exist on a path b et w een t w o squares, the less

the squares in
uence eac h other. That is, squares in the middle of a ro om where

stones can go in all 4 directions should decrease in
uence more than squares

106

Figure 6.3: T unnels and In
uence

in a tunnel, where no alternativ es exist. See Figure 6.1 for an example. The

squares A and B in
uence one another less than the squares C and D . There

are more p ossible w a ys to get from A to B than from C to D . Squares C and D

are more restricted b ecause they are situated on a w all.

Goal-Sk ew: F or a giv en square sq , an y squares on the optimal path from sq to a goal

should ha v e stronger in
uence than squares o� the optimal path. F or example,

square B in Figure 6.2 is in
uenced b y C more than it is b y A . The lo cation of

the goals is imp ortan t.

Connection: Tw o neigh b oring squares connected suc h that a stone can mo v e b e-

t w een them should in
uence eac h other more than t w o squares connected suc h

that only the man can mo v e b et w een them. In Figure 6.1, square A in
uences

C less than C in
uences A , b ecause stones can only mo v e to w ards C , and not

to w ards A .

T unnel: In a tunnel, in
uence remains the same: It do es not matter ho w long the

tunnel is (one could, for example, collapse a tunnel in to one square). Figure 6.3

sho ws suc h an example: t w o problem mazes that are iden tical, except for the

length of the tunnel. In
uence v alues should not c hange b ecause of the length

of the tunnel.

Our implemen tation of relev ance cuts uses small o�-line searc hes to statically

precompute a (20 � 20) � (20 � 20) table (I nf l uenceT abl e) con taining the in
uence

v alues for eac h square of the maze to ev ery other square in the maze. Bet w een ev ery

pair of squares, a breadth-�rst searc h is used to �nd the path(s) with the largest

in
uence. The algorithm is similar to a shortest-path �nding algorithm, except that

w e are using in
uence here and not geographic distance. The smaller the in
uence

n um b er, the more t w o squares in
uence eac h other. See App endix C.4 for details.

Note that in
uence is not necessarily symmetric.

I nf l uenceT abl e [a; b] 6= I nf l uenceT abl e [b; a]

A square close to a goal in
uences squares further a w a y more than it is in
uenced

b y them. F urthermore, I nf l uenceT abl e [a; a] is not necessarily 0. A square in the

middle of a ro om will b e less in
uenced b y eac h of its man y neigh b ors than a square

in a tunnel. T o re
ect that, squares in the middle of a ro om receiv e a larger bias than

more restricted squares.

107

Our approac h is quite simple and can undoubtedly b e impro v ed. F or example,

in
uence is statically computed. A dynamic measure, one that tak es the curren t

p ositions of the stones in to accoun t, w ould certainly b e more e�ectiv e.

6.2.2 Relev ance Cut Rules

Giv en the ab o v e in
uence measure, w e can no w pro ceed to explain ho w to use that

information to cut do wn on the n um b er of mo v es considered in eac h p osition. T o do

this, w e need to de�ne distant moves . Giv en t w o mo v es, m 1 and m 2, mo v e m 2 is said

to b e distan t with resp ect to mo v e m 1 if the from squares of the mo v es (m 1 :f r om

and m 2 :f r om) do not in
uence eac h other. More precisely , t w o mo v es in
uence eac h

other if

In
uenc eT able [m 1 :f r om; m 2 :f r om] < = infthr eshold

where infthr eshold is a tunable threshold.

Relev ance cuts eliminate some mo v es that are distan t from the previous mo v es

pla y ed (i.e. do not in
uence), and therefore are considered not relev an t to the searc h.

There are t w o w a ys that a mo v e can b e cut o�:

1. If within the last m mo v es more than k distan t mo v es w ere made. This cut will

discourage arbitrary switc hes b et w een non-related areas of the maze.

2. A mo v e that is distan t with resp ect to the previous mo v e, but not distan t to

a mo v e in the past m mo v es. This will not allo w switc hes bac k in to an area

previously w ork ed on and abandoned just brie
y .

In our exp erimen ts, w e set k to 1. This w a y , the �rst cut criterion will en tail the

second.

T o re
ect di�erences in mazes, the parameters inf thr eshol d and m are set at

the b eginning of the searc h, taking the a v erage v alues in the I nf l uenceT abl e in to

accoun t. By v arying inf thr eshol d and m in the de�nition of relev ance, the cutting

in the searc h tree can b e made more or less aggressiv e. The desired aggressiv eness is

application dep enden t, and should b e c hosen relativ e to the qualit y of the relev ance

metric used.

6.2.3 Example

Figure 6.4 sho ws an example where h umans immediately iden tify that solving this

problem in v olv es considering t w o separate subproblems. The solution to the left and

righ t sides of the problem are completely indep enden t of eac h other. An optimal

solution needs 82 pushes; R ol ling Stone 's lo w er b ound estimator returns a v alue of

70. Standard ID A* will need 7 iterations to �nd a solution (our lo w er-b ound estimator

preserv es the o dd/ev en parit y of the solution length, meaning it iterates b y 2 at a

time). ID A* will try ev ery p ossible (legal) mo v e com bination, in termixing mo v es from

b oth sides of the problem. This w a y , ID A* pro v es for eac h of the �rst 6 iterations

108

Figure 6.4: Example Maze With Lo calit y

(i = 0 :: 5) that the problem cannot b e solv ed with 70 + 2 � i mo v es, regardless of the

order of the considered mo v es. Clearly , this is unnecessary and ine�cien t. Solving

one of the subproblems requires only 4 iterations, since the lo w er b ound is o� b y

only 6. Considering this p osition as t w o separate problems will result in an enormous

reduction in the searc h complexit y .

Our implemen tation considers all mo v es on the left side as distan t from those on

the righ t, and vic e versa . This w a y only a limited n um b er of switc hes is considered

during the searc h. Our parameter settings allo w for only one non-lo cal mo v e p er

9-mo v e sequence. F or this con triv ed problem, relev ance cuts decrease the n um b er of

no des searc hed from 32,803 no des to 24,748 no des while still returning an optimal so-

lution (the pattern searc hes w ere turned o� for simplicit y). The sa vings (25%) app ear

relativ ely small b ecause the transp osition table catc hes rep eated p ositions (man y of

whic h ma y b e the result of irrelev an t mo v es) and eliminates them from the searc h.

Although the relev ance cuts pro vide a w elcome reduction in the searc h e�ort required,

it is only a small step to w ards ac hieving all the p ossible sa vings. F or example, eac h

of the subproblems can b e solv ed b y itself in only 329 no des! The di�erence b et w een

329 � 2 and 32,803 illustrates wh y ID A* in its curren t form is inadequate for solv-

ing large, non-trivial real-w orld problems. Clearly , more sophisticated metho ds are

needed.

6.2.4 Discussion

F urther re�nemen t of the parameters used are certainly p ossible and necessary if the

full p oten tial of relev ance cuts is to b e ac hiev ed. Some ideas with regards to this issue

will b e discussed in Section 6.5.

The o v erhead of the relev ance cuts is negligible, at least for our curren t imple-

men tation. The in
uence of t w o mo v es can b e established b y a simple table lo okup.

This is in stark con trast to the pattern searc hes, where the o v erhead dominates the

cost of the searc h for most problems.

109

6.3 A Closer Lo ok at Relev ance Cuts

The goal of using relev ance cuts is to reduce the searc h-tree size. This is ac hiev ed

b y eliminating legal mo v es from the searc h, thereb y reducing the e�ectiv e branc hing

factor of the tree. As with man y other (unsafe) forw ard pruning tec hniques, this

could p oten tially remo v e solutions or p ostp one their disco v ery . Therefore, aggressiv e

pruning can increase the searc h e�ort b y requiring additional searc h to �nd a non-

pruned solution. A solution could b e found in the same ID A* iteration, or could

result in an additional iteration b eing started. A go o d heuristic for relev ance is the

k ey to �nding the righ t balance b et w een tree reduction and the risk of eliminating

solutions.

6.3.1 Relev ance Cuts in Theory

T o b etter understand the implications of relev ance cuts, w e will no w try to apply

Korf 's theoretical mo del [Kor97] to our algorithm.

1

Section 6.4.2 discusses ho w w ell

the mo del predicts the practical p erformance of our algorithm.

The n um b er of no des considered in a standard ID A* searc h is giv en b y the fol-

lo wing form ula, whic h is a generalization of Korf 's mo del.

n �

d � 1

X

i = h (r oot)

b

i � e

| {z }

compl ete iter ations

+

b

d � e

1 + s

d

| {z }

l ast (par tial) iter ation

(6.1)

where

n is the total n um b er of no des;

d is the length of optimal solutions;

h (r oot) is the heuristic v alue of the ro ot no de (< = d);

b is the e�ectiv e branc hing factor;

e is the a v erage heuristic v alue of the in terior no des in the tree; and

s

d

is the n um b er of solutions with (optimal) length d .

In this form ula, the v ariable-depth searc h tree is appro ximated as a �xed-depth

tree. With no lo w er-b ound information (h (position) = 0), the searc h tree w ould b e

of size O (b

d

). An a v erage lo w er b ound of e reduces this exp onen t to d � e .

The �rst part of the form ula represen ts the sum of the sizes of all the iterations

that ha v e no solution in them. The second part is the size of the last iteration. It

1

Korf and Reid re�ne this mo del in [KR98]. The irregularit y of the searc h space (irrev ersible

mo v es and searc h enhancemen ts suc h as transp osition tables) and heuristic function (caused b y the

n umerous lo w er-b ound enhancemen ts) for Sok oban and R ol ling Stone render this mo del less suitable

than the one in [Kor97].

110

assumes that the solutions are uniformly distributed throughout the leaf no des. Th us,

if there is only one unique solution path, that solution will b e found, on a v erage, half

w a y through the searc h of the last (d) iteration.

Relev ance cuts mo dify the equation in t w o w a ys. First, the iterations without

solutions are reduced in size. This is ac hiev ed b y eliminating mo v es from consider-

ation, in e�ect reducing the branc hing factor. Second, there is the p ossibilit y that

additional searc h will b e needed if the �rst solution happ ens to b e eliminated b y a

relev ance cut. Th us, on iterations > = d the sa vings from the reduced branc hing

factor can b e (partially) o�set b y ha ving to do extra w ork. If all solutions at depth d

happ en to b e cut o�, then at least one more iteration is required (and p ossibly more).

Equation 6.1 is mo di�ed to re
ect b oth w a ys that relev ance cuts a�ect the searc h:

n �

d � 1

X

i = h (r oot)

(b � r (x))

i � e

| {z }

compl ete iter ations

+

d + a (x) � 1

X

i = d

(b � r (x))

i � e

| {z }

additional f ul l iter ations

+

(b � r (x))

d + a (x) � e

1 + (1 � p (x)) � s

d + a (x)

| {z }

l ast (par tial) iter ation

(6.2)

�

d + a (x) � 1

X

i = h (r oot)

(b � r (x))

i � e

| {z }

compl ete iter ations

+

(b � r (x))

d + a (x) � e

1 + (1 � p (x)) � s

d + a (x)

| {z }

l ast (par tial) iter ation

(6.3)

where

x is the aggressiv eness of the cuts (in our relev ance metric, this corresp onds to c hang-

ing m or infthr eshold);

r (x) is the a v erage branc hing-factor reduction as a function of the aggressiv eness;

p (x) is the probabilit y that a solution is cut from the searc h tree, assuming these

probabilities are indep enden t. This probabilit y also dep ends on the aggressiv e-

ness x of the relev ance cuts;

a (x) is the exp ected n um b er of additional iterations. This n um b er dep ends on the

aggressiv eness x of the cuts, and the probabilit y that these cuts will eliminate

al l solutions in an iteration; and

s

d + a (x)

is the n um b er of solutions at lev el d + a (x).

The e�ectiv eness of relev ance cuts in reducing the searc h-tree size dep ends solely

on the aggressiv eness of the cuts, whic h con trols the branc hing-factor reduction and

the p enalt y incurred for missing a solution. Increasing the aggressiv eness of the cuts

will decrease the n um b er of no des searc hed in the complete iterations (iterations < d),

but will increase the risk of solutions b eing cut o�. When solutions are cut o�, not only

can the last iteration p oten tially gro w, but w e migh t actually in tro duce new iterations

when all the solutions con tained in an iteration are pruned. Hence, relev ance cuts

can in tro duce non-optimal solutions, or p ostp one the disco v ery of solutions b ey ond

the resource limits.

111

The p erformance tuning e�ort m ust therefore b e directed to w ards �nding the righ t

balance b et w een sa vings (reduced searc h-tree size) and cost (the o v erhead of ha ving

to searc h further than should b e needed).

6.3.2 Randomizing Relev ance Cuts

In a deterministic en vironmen t, where relev ance cuts follo w the exact same rules

for the same situation, the searc h will alw a ys cut o� solutions that dep end on a

maneuv er mistak enly considered \irrelev an t". Giv en that relev ance cuts will mak e

mistak es (alb eit, hop efully , at a v ery lo w rate), some mec hanism m ust b e in tro duced

to a v oid w orst-case scenarios, suc h as eliminating al l solutions.

A solution is to in tro duce randomness in to the relev ance cut decision. If a branc h

is to b e pruned b y a relev ance cut, a random n um b er can b e generated to decide

whether or not to go ahead with the cut. The randomness re
ects our con�dence

in the relev ance cuts. F or example, the random decision can b e used to appro v e

100% of all p ossible relev ance cuts (corresp onding to the sc heme outlined th us far,

con�den t that not all solutions will b e eliminated), do wn to 0% (whic h implies no

con�dence|relev ance cuts will nev er b e used). Somewhere b et w een these t w o ex-

tremes is a p ercen tage of cuts that balances the reductions in the searc h-tree size

with the o v erhead of p ostp oning when a solution is found.

6.4 Exp erimen tal Results

Our previous b est v ersion of R ol ling Stone (R6) w as capable of solving 48 of the

test problems within the tree-size limit of 20 million no des. With the addition of

relev ance cuts (no random cutting), the n um b er of problems solv ed has increased to

50. T able 6.1 sho ws a comparison of R ol ling Stone with and without relev ance cuts

for eac h of the 50 solv ed problems.

2

The tree size for eac h program v ersion giv en in T able 6.1 is again brok en in to

t w o n um b ers: ID A* no des and total no des, including pattern-searc h no des. The

third column giv es the n um b er of ID A* iterations that the program to ok to solv e

the problem. Note that problems #9, #11, #12, #21, #25, #34 and #38 are no w

solv ed non-optimally , taking at least one iteration longer than the program without

relev ance cuts. This con�rms the unsafe nature of the cuts. Ho w ev er, since none

of the problems solv ed b efore is lost and 2 more are solv ed within the 20,000,000

no de limit, the gam ble paid o�. The size of the searc h space dictates radical pruning

measures if w e w an t to ha v e an y c hance of solving some of the tougher problems.

T able 6.1 sho ws that relev ance cuts impro v e searc h e�ciency b y at least a factor

of 2 in ID A* no des. The sa vings in terms of total no des are less with ab out 25%.

Clearly , the n um b ers are dominated b y a few problems, suc h as #19 and #40.

2

The n um b ers rep orted in [JS98a , JS99b] di�er sligh tly from the ones presen ted here. Since these

publications, R ol ling Stone w as signi�can tly impro v ed, sp eci�cally the pattern searc hes, allo wing for

a m uc h more e�cien t searc h. The resulting smaller searc hes allo w ed less ro om for impro v emen t.

112

without relev ance cuts with relev ance cuts

ID A* no des total no des iterations ID A* no des total no des iterations

1 50 1,042 2 50 1,042 2

2 82 7,532 1 80 7,530 1

3 94 13,445 1 87 12,902 1

4 187 50,369 1 187 50,369 1

5 436 59,249 2 202 43,298 2

6 85 5,119 1 84 5,118 1

7 1,704 28,561 2 1,392 28,460 2

8 317 339,255 3 291 311,609 3

9 704 168,412 2 1,884 435,388 5

10 1,909 1,480,115 1 1,810 1,713,429 1

11 14,048 4,691,929 10 5,679 2,994,297 11

12 162,129 4,373,802 3 4,912 559,184 8

17 2,473 30,111 7 2,038 29,116 7

19 59,433 > 20,000,000 9 16,606 7,269,595 9

21 1,853 154,593 6 1,177 179,734 7

25 1,239 553,900 6 21,536 5,784,086 7

33 5,035 866,085 3 2,765 586,684 3

34 542 298,674 2 11,431 1,981,993 3

38 2,539 51,276 5 7,011 154,969 6

40 41,131 > 20,000,000 6 23,274 17,004,253 7

43 5,308 690,426 7 1,729 421,483 7

45 1,685 508,124 2 339 181,566 2

49 375,293 1,670,236 9 53,113 327,643 9

51 137 8,825 1 256 21,491 1

53 159 22,310 1 157 22,308 1

54 106,663 910,532 2 163,757 2,031,577 2

55 97 2,993 1 97 2,993 1

56 353 57,785 3 377 61,189 3

57 256 121,384 2 234 114,416 2

58 426 268,713 2 211 130,474 2

59 795 348,214 4 1,420 775,753 4

60 223 41,310 1 160 27,386 1

61 314 106,206 5 309 105,411 5

62 211 70,478 3 195 101,934 3

63 567 259,537 1 703 312,546 1

64 378 300,684 4 405 332,402 4

65 196 21,442 2 196 21,442 2

67 18,107 601,178 6 12,669 512,488 6

68 2,278 541,080 6 1,953 538,509 6

70 412 125,454 3 431 140,765 3

72 134 44,908 2 134 44,908 2

73 201 87,019 1 214 94,568 1

76 185,633 6,236,656 4 74,315 3,775,394 4

78 64 4,451 1 64 4,913 1

79 125 15,833 2 122 15,527 2

80 100 16,114 1 165 26,943 1

81 21,501 234,235 1 2,662 42,445 1

82 86 33,445 2 86 33,445 2

83 91 7,294 1 80 5,631 1

84 94 5,960 1 106 7,938 1

1,017,877 > 66,536,295 419,155 49,388,544

T able 6.1: Exp erimen tal Data

113

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 5 10 15 20 25 30 35 40 45 50

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without relevance cuts
with relevance cuts

1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30 35 40 45 50

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without relevance cuts
with relevance cuts

Figure 6.5: The E�ect of Relev ance Cuts

Comparing no de n um b ers of individual searc hes is di�cult b ecause of man y v olatile

factors in the searc h. F or example, a relev ance cut migh t eliminate a branc h from the

searc h justi�ably . Ho w ev er, b y doing so a pattern searc h migh t no w not b e done that

could ha v e unco v ered v aluable information that migh t ha v e b een useful for reducing

the searc h in other parts of the tree. Problem #80 is one suc h example: despite the

relev ance cuts the no de coun t go es up from 100 to 165; an imp ortan t disco v ery w as

not made and the rest of the searc h increases. Ho w ev er, the o v erall trend is in fa v or

of the relev ance cuts. An excellen t example is problem #49: the total no des are cut

b y roughly a factor of 5.

In Figure 6.5, the amoun t of e�ort to solv e a problem, with and without relev ance

cuts, is plotted. The n um b ers from T able 6.1 are used, sorted b y the n um b er of no des

searc hed b y the v ersion without relev ance cuts. The �gure sho ws that the exp onen tial

gro wth in di�cult y with eac h additional problem solv ed is b eing damp ened b y rele-

v ance cuts, allo wing for more problems b eing solv ed with the same searc h constrain ts.

F or the 25 to 30 \easiest" problems, there is v ery little di�erence in e�ort required; the

relev ance cuts do not sa v e signi�can t p ortions of small searc h trees. As the searc hes

b ecome larger, the success of relev ance cuts gets more pronounced. Ho w ev er, there

are t w o problems where relev ance cuts result in a large increase in no de n um b ers:

#25 and #34. Their n um b ers increase roughly 10 and 6 fold, resp ectiv ely .

Figure 6.6 sho ws the e�ort graph, no w including the relev ance cuts. Only the last

problems sho w that relev ance cuts are b ene�cial.

6.4.1 Randomizing Relev ance Cuts

The n um b ers presen ted so far deal with a v ersion of R ol ling Stone that executes 100%

of the relev ance cuts. A v ersion of R ol ling Stone w as instrumen ted to sim ulate the

e�ects of di�eren t degrees of randomization, v arying from 0% (all relev ance cuts are

ignored) to 100% (all relev ance cuts are used). Th us, the lev el of, for example, 80%

corresp onds to randomly accepting 80% of the cuts, while rejecting 20% of them.

Figure 6.7 illustrates the relev ance cuts' p oten tial for sa vings in the searc h tree.

The graph presen ts for v arious degrees of randomness (from 0% to 100% in 10%

114

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 5 10 15 20 25 30 35 40 45 50

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8

1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30 35 40 45 50

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8

Figure 6.6: E�ort Graph Including Relev ance Cuts (Linear and Log Scale)

0

20

40

60

80

100

0 20 40 60 80 100

sa
vi

ng
s

in
 p

er
ce

nt
 to

 fi
rs

t s
ol

ut
io

n

percent of relevance cuts

average percent savings
percent savings

Figure 6.7: Relev ance Cuts Sa vings

incremen ts) the p ercen t of the searc h tree that can b e sa v ed b y the relev ance cuts.

F or eac h searc h, the relativ e sa vings are plotted. Only searc hes where the 0% v ersion

required at least 500 no des and the 100% v ersion found a solution w ere included. The

small searc h trees (< 500 no des) w ere excluded from this and subsequen t graphs, since

these trees tend to ha v e v ery few opp ortunities for sa vings. F or example, problem #1

is already a paltry 50 no des; there is neither need nor ro om for further impro v emen t.

Eac h of the data p oin ts in a column corresp onds to one of the 14 problems that passed

our �lter. The line represen ts the a v erage of the sa vings.

The �gure sho ws that roughly 65% of the searc h tree can b e eliminated b y rele-

v ance cuts. F urther, in our implemen tation one need only p erform 50% of the cuts to

reduce the searc h b y 60%. Th us, ev en a small amoun t of cutting can translate in to

large sa vings.

T o put this in to p ersp ectiv e, one migh t suggest that the relev ance cuts are just a

fancy w a y of randomly cutting branc hes in the searc h tree. An additional exp erimen t

w as p erformed with random cutting, in line with the frequency of relev ance cuts. The

result w as some sa vings for a small amoun t of cutting, but as the frequency of cutting

increased, so did the searc h-tree sizes! By cutting randomly , more solution paths w ere

b eing eliminated from the searc h, increasing the lik eliho o d of ha ving to searc h more

115

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50

br
an

ch
in

g
fa

ct
or

problems ordered by branching factor

without relevance cuts (b)
with relevance cuts (b-r)

Figure 6.8: Measuring b and r

iterations.

Equation 6.3 essen tially brok e the relev ance-cut searc h no des in to t w o comp onen ts.

The �rst w as the searc h e�ort required to reac h the �rst solution. Clearly , relev ance

cuts pro v ably reduce this p ortion of the searc h since some branc hes are not explored.

In fact, Figure 6.7 is p ortra ying exactly these sa vings. Ho w ev er, these sa vings can b e

o�set b y the the second comp onen t, the additional e�ort needed to �nd a non-cuto�

solution.

Of the 50 problems solv ed, 7 ha v e non-optimal solutions (14%). As stated earlier,

solution qualit y is not a concern since, giv en the di�cult y of the problem domain,

any solution is w elcome. F urthermore, for solutions of lengths t ypical in Sok oban

(sev eral h undred) adding t w o or four pushes is a small increase. The signi�cance of

these non-optimal solutions is discussed in the next subsection.

6.4.2 Relev ance Cuts in Theory Revisited

Let's revisit Equation 6.3. These generic form ulas con tain sev eral assumptions, some

of whic h are explicitly stated in [Kor97], while others are implicit. In theory , w e

should b e able to use our exp erimen tal data to con�rm these equations. Of in terest

in Equation 6.3 is that the term

(b � r)

d � e

(6.4)

dominates the calculation. W e kno w d (the optimal solution length), and w e can

measure b , r and e . R ol ling Stone has b een instrumen ted to measure these quan tities.

Figure 6.8 sho ws the a v erage b and r for the 48 problems that w ere solv ed b y b oth

v ersions, sorted in order of increasing b . These statistics w ere gathered at no des in

the searc h that w ere visited b y b oth programs (one with relev ance cuts; the other

without). In other w ords, no des whic h w ere visited only b y the non-relev ance cuts

program w ere not a v eraged in. As can b e seen, the reduction in branc hing factor

v aries dramatically , dep ending on the problem.

116

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100

pe
rc

en
t o

f r
el

ev
an

ce
 c

ut
s

cu
tti

ng
 s

ol
ut

io
ns

percent of relevance cuts

percent of bad cuts
average percent of bad cuts

Figure 6.9: P ercen t of Relev ance Cuts Eliminating Solutions

Measuring e , the a v erage heuristic v alue of the in terior no des in the tree, sho w ed

little di�erence with/without relev ance cuts.

Plugging d , e , b and r in to Equation 6.4 pro duced a large discrepancy b et w een

the predicted tree size and the observ ed tree size. Since d is constan t in b oth v ersions

of the program, and e is e�ectiv ely a constan t, the impro v emen ts of relev ance cuts

rests solely on r , the reduction in the branc hing factor. Ho w ev er, in most cases the

observ ed sa vings are l ar g er than the predicted sa vings.

Equation 6.3 has the implicit assumption that the branc hing factor is relativ ely

uniform throughout the tree. Certainly this is true for the sliding-tile puzzle. But

Sok oban has di�eren t prop erties. In particular, the branc hing factor can swing wildly

from mo v e to mo v e. Also, our data sho ws that the branc hing factor tends to b e

smaller near the ro ot of the tree (to o man y obstacles in the puzzle) and, as the

problem simpli�es (jams get cleared, stones get pushed to their goal squares), the

branc hing factor increases un til near the end of the game when there are few stones

left to mo v e and the branc hing factor decreases again. In addition, the data sho ws

that the relev ance cuts tend to o ccur early in the searc h, rather than later. Hence, the

ma jorit y of the sa vings from relev ance cuts come from the smaller branc hing factor

b near the ro ot of the tree com bined with a larger branc h reduction. Korf 's form ula

only considers a v erages o v er the en tire tree, whereas an y bias to w ards the ro ot of the

tree can pro duce larger observ ed reductions.

The other comp onen t of Equation 6.3 is the additional searc h e�ort required when

relev ance cuts miss the �rst solution. Earlier, it w as suggested that the probabilit y of

searc hing an extra iteration w as quite high (14%). This suggests that the relev ance

cuts are b eing to o extreme in their cutting. R ol ling Stone w as instrumen ted to k eep

searc hing subtrees that w ould ha v e b een eliminated b y a relev ance cut to determine if

a solution path la y in that subtree. Figure 6.9 sho ws that only ab out 2-4% of the cuts

eliminate a solution. Note that some problems ha v e a relativ ely high error rate; these

results come from the problems that ha v e small searc hes, where the total n um b er of

cuts is small and a single error can sk ew the p ercen tages.

A relev ance cut error rate of 4% migh t seem high. Ho w ev er, consider that these

cuts are done throughout the tree, including near the ro ot. Giv en that a cut near the

117

Goal

Start

Articulation
Solution

Sequence

Figure 6.10: Solution Articulation Sequence

ro ot of the searc h will eliminate h uge p ortions of the searc h space, and few of these

cuts eliminate an y optimal solution, the cuts m ust b e doing a go o d job of iden tifying

irrelev an t p ortions of the searc h.

Infrequen tly eliminating solutions ma y seem imp ortan t if there are few solutions.

In fact, our exp erience with Sok oban sho ws that there are man y optimal solutions for

ev ery problem. The n um b er of solution paths gro ws exp onen tially with an y additional

searc h b ey ond the optimal solution length. F or example, consider a d -ply optimal

solution. If w e no w lo ok at solutions of length d + 2,

3

then w e can randomly insert

irrelev an t mo v es in to the solution path, giving O (d � b) more solution paths.

Equation 6.3 assumes that the probabilit y of a solution b eing cut o� is indep enden t

of an y other solution b eing cut o�. Unfortunately , this is a simplifying assumption

that do es not hold for Sok oban. Since Sok oban problems ha v e b een comp osed to b e

c hallenging to h umans (and, inadv erten tly , computers as w ell), most problems in our

test suite con tain sp eci�c maneuv ers that are mandator y for all solutions. In other

w ords, ev ery solution to some problems requires a sp eci�c sequence of mo v es to b e

made. W e call these maneuv ers solution articulation se quenc es .

A solution articulation sequence is illustrated in Figure 6.10. It sho ws the set of

mo v e sequences that are solutions to the problem of getting from the start state to

the goal state. First, there are man y p ossible sequences of mo v es (p ossibly ev en mo v e

transp ositions) un til a sp eci�c maneuv er is required. Then a �xed sequence of mo v es

is required (the solution articulation sequence). Ha ving completed the sequence, then

man y di�eren t p erm utations of mo v es can b e used to reac h the goal(s). Note that

a problem ma y ha v e m ultiple solution articulation sequences. As w ell, there ma y b e

3

In general, this w ould b e d + 1. Ho w ev er, since Sok oban solutions preserv e o dd/ev en parit y ,

solutions increase b y t w o pushes at a time.

118

classes of solutions, with eac h class ha ving a di�eren t set of articulation sequences.

Relev ance cuts use a sequence of mo v es (the past m mo v es) to decide whether

to curtail the searc h or not. If the mo v es forming the solution articulation sequence

happ en to meet the criterion for a relev ance cut, then it will b e falsely considered

\irrelev an t". Consequen tly , man y solution paths will b e eliminated from the searc h.

One can construct a scenario b y whic h al l solutions could b e remo v ed from the searc h.

Solution articulation sequences illustrate that the assumed solution indep endence

prop ert y is, in fact, incorrect. Coming up with a realistic mo del is di�cult. The

solutions tend to b e distributed in clusters. Man y clusters of solutions are, essen tially ,

the same solution with minor di�erences (suc h as mo v e transp ositions or, for non-

optimal solutions, irrelev an t mo v es added).

Although the n um b er of optimal solutions app ears high from our exp erimen ts,

relev ance cuts are vulnerable to solution articulation sequences. Hence, a single cut

has the p oten tial for eliminating al l solutions. Randomization seems to b e an e�ectiv e

w a y of handling this problem.

6.4.3 Summary

Relev ance cuts ha v e b een sho wn exp erimen tally to result in large reductions in the

e�ort required to solv e Sok oban problems. Giv en the exp onen tially increasing nature

of the searc h trees, solving an extra 2 problems represen ts a substan tial impro v emen t.

Although it w ould b e nice to ha v e a clean analytic mo del for Sok oban searc hes

that could b e used to predict searc h e�ort, this is pro ving elusiv e. Although a mo del

for single-agen t searc h exists [Kor97], it is inadequate to handle the non-uniformit y of

Sok oban. In the past, n umerous analytic mo dels for tree-searc hing algorithms ha v e

app eared in the literature. They are all based on simplifying assumptions that mak e

the analysis tractable, but result in a mo del that mimics an arti�cial realit y . Histor-

ically , these mo dels correlate p o orly with empirical data from real-w orld problems.

An in teresting recen t example from t w o-pla y er searc h can b e found in [PSPdB96].

6.5 Conclusions

Relev ance cuts pro vide a crude appro ximation of h uman-lik e problem-solving metho ds

b y forcing the searc h to fa v or lo cal mo v es o v er global mo v es. This simple idea pro vides

large reductions in the searc h-tree size at the exp ense of p ossibly returning a longer

solution. Giv en the breadth and depth of Sok oban searc h trees, �nding optimal

solutions is a secondary consideration; �nding any solution is c hallenging enough.

W e ha v e n umerous ideas on ho w to impro v e the e�ectiv eness of relev ance cuts.

Some of them include:

� Use di�eren t distances dep ending on cr ow ding . If man y stones are cro wding

an area, it is lik ely that the relev an t area is larger than it w ould b e with few er

stones blo c king eac h other. Dynamic in
uence measures should b e b etter than

static approac hes.

119

� There are sev eral parameters used in the relev ance cuts. The settings of those

are already dep enden t on prop erties of the maze. These parameters are critical

for the p erformance of the cuts and are also largely resp onsible for increased

solution lengths. More researc h on these details is needed to fully exploit the

p ossibilities relev ance cuts are o�ering.

� Using the analogy from Section 6.1, one could c haracterize R ol ling Stone as

\pain ting" lo cally but not y et pain ting in an \ob ject orien ted" w a y . If a
o w er

and the b ear are close, pain ting b oth at the same time is v ery lik ely . Better

metho ds are needed to further understand subgoals, rather than lo calizing b y

area.

Although relev ance cuts in tro duce non-optimalit y , this is not an issue. Once

h umans solv e a Sok oban problem, they ha v e t w o c hoices: mo v e on to another problem

(they are satis�ed with the result), or try and re-solv e the same problem to get a b etter

solution. R ol ling Stone could try something similar. Ha ving solv ed the problem

once, if w e w an t a b etter solution, w e can reduce the probabilit y of in tro ducing non-

optimalit y in the searc h b y decreasing the aggressiv eness of the relev ance cuts. This

will mak e the searc hes larger but, on the other hand, the last iteration do es not ha v e

to b e searc hed, since a solution for that threshold w as already found.

Relev ance cuts are y et another w a y to signi�can tly prune Sok oban searc h trees.

W e ha v e no shortage of promising ideas, eac h of whic h p oten tially o�ers another order

of magnitude reduction in the searc h-tree size. Although this sounds impressiv e, our

exp erience suggests that eac h factor of 10 impro v emen t seems to yield no more than

2 or 3 additional problems b eing solv ed.

120

Chapter 7

Ov erestimation

7.1 In tro duction and Motiv ation

T o ensure optimalit y of solutions pro duced b y A*-based algorithms, suc h as ID A*,

the heuristic has to b e admissible. The admissibilit y constrain t limits the c hoice of

kno wledge. Ev en if some kno wledge correlates w ell with the distance to the goal,

but there is the sligh test c hance that it o v erestimates, it cannot b e used. Solution

optimalit y w ould not b e guaran teed.

This sho ws that optimalit y has its price. Instead of �tting the function h as closely

as p ossible to h

�

, w e are restricted to creating a lo w er b ound. The error of suc h a

lo w er-b ound function is often larger than a function that is allo w ed to o ccasionally

o v erestimate. The larger the error of the lo w er-b ound function, the less e�cien t the

searc h.

W e ha v e seen in previous c hapters that an aggressiv e treatmen t of the searc h

space is needed to mak e signi�can t progress. The examples of the goal macros and

relev ance cuts ha v e sho wn the b ene�ts that are ac hiev able when the small risk of

losing optimalit y and completeness is tak en. Therefore, it seems logical to question

the admissibilit y constrain t for the heuristic function. The hop e is to ac hiev e a closer

�t of the heuristic function h to the correct distance h

�

, alb eit at the cost of non-

optimal solutions.

7.2 WID A*

T o ac hiev e a b etter appro ximation of h

�

, one can scale the admissible heuristic b y

a constan t factor. Statistical tests measuring the di�erence b et w een h and h

�

can

pro duce a constan t w that can b e used. Weighte d ID A* (WID A*) uses the cost

function f (s) = g (s) + w � h (s), with w > 1 [Kor93].

This scaling has the e�ect of a depth b onus . The further the searc h p enetrates

in to the tree, the more it is encouraged. No des close to the ro ot will ha v e larger

h v alues and the scaling will in
ate these v alues more in absolute terms than those

no des closer to the lea v es with smaller h v alues. Eac h mo v e that decreases the h v alue

will implicitly receiv e a small b on us, b ecause the cost of the mo v e is not balancing

121

the decrease of h ; f drops as the searc h approac hes leaf no des. This small decrease in

the f v alue with eac h mo v e deep er in to the tree will ev en tually allo w a non-optimal

mo v e to b e considered. This can lead to radical shifts of where the searc h e�ort is

sp en t, further to w ards no des deep er in the tree. In Sok oban, trees are highly irregular

and these shifts can lead to large c hanges in the n um b er of no des searc hed p er ID A*

iteration.

WID A* increases h uniformly . The only kno wledge implicitly en tailed in this

sc heme is that no des deep er in the tree are preferred, b ecause they tend to b e closer

to the goal no des. Because of deadlo c ks and arbitrary p enalties that migh t remain

undetected in Sok oban, no des deep er in the tree are not necessarily closer to goals.

The searc h migh t end up expanding more e�ort in parts of the tree that con tain no

solution.

7.3 P attern Ov erestimation

The lac k of domain kno wledge used in WID A* leads to p o or p erformance when

tra v ersing Sok oban searc h trees. What kno wledge could b e used to impro v e the

o v erestimation? The ob vious c hoice is the dynamic pattern kno wledge. Ho w can this

b e used e�ectiv ely?

Since the pattern searc hes are limited in certain w a ys to k eep them tractable,

the correct size of the p enalties and shap e of the patterns migh t not b e kno wn.

Therefore, the patterns represen t incomplete kno wledge. F urthermore, when patterns

are matc hed, only some of the p enalties can b e used to preserv e admissibilit y (see

Section 5.9 for details). Ho w ev er, eac h of the patterns that is matc hed in a p osition

suggests that there are complications in the curren t p osition. Not using the p enalt y

of suc h a pattern is equiv alen t to ignoring a v ailable kno wledge.

7.3.1 Maxim um P artial P enalties

The follo wing is the b est of our attempts to use the kno wledge con tained in all the

patterns that matc h in a p osition. W e call this metho d maximum p artial p enalties .

Instead of maximizing and adding the p enalties of patterns, the p enalties are

attributed to the stones in the maze. The p enalt y of a pattern that is matc hed

is split equally among all the stones con tained in the pattern. F or eac h stone the

maxim um of these partial p enalties is stored. The total p enalt y of a p osition is the

sum of all the maxim um partial p enalties for eac h stone. Th us, ev ery stone in v olv ed

in a p enalt y pattern con tributes to the total p enalt y assigned to a stone con�guration.

This total p enalt y is at least as large as the admissible p enalt y ac hiev ed b y the

metho ds describ ed in Section 5.9. The follo wing explains wh y:

� Non-o v erlapping patterns are con tributing in the same w a y as b efore.

� F or the admissible p enalt y , some patterns cannot b e used b ecause they o v erlap

with others. That means that some stones do not con tribute to the p enalt y ,

ev en though they are part of a p enalt y pattern that w as matc hed. When using

122

Figure 7.1: Maxim um P artial P enalt y Example

pattern p enalt y partial p enalties

A B C D

left 2 1.0 1.0 0 0

cen ter 2 1.0 0 1.0 0

righ t 8 2.66 0 2.66 2.66

maxim um partial p enalt y 2.66 1.0 2.66 2.66

sum of maxim um partial p enalties 9.0

scaled b y 1.8 16.2

rounded for parit y 16

T able 7.1: Calculation of Maxim um P artial P enalties

maxim um partial p enalties, eac h stone of a matc hing pattern con tributes to the

total p enalt y .

� The con tribution of eac h stone to the total p enalt y is at least as large in the

maxim um partial p enalt y metho d as it is for the admissible p enalt y , b ecause

the maxim um of the partial p enalties is used.

T o tune the o v erestimation further, the p enalt y is scaled b y a factor s . A �nal

rounding step assures that the total p enalt y is an ev en n um b er to preserv e the parit y

prop ert y of the heuristic.

7.3.2 Example

The upp er maze in Figure 7.1 sho ws a p osition with four stones A,B,C, and D . The

lo w er three mazes sho w three p enalt y patterns presumably found b y the searc h. The

p enalties are 2, 2 and 8 for the patterns from left to righ t. T able 7.1 sho ws the

maxim um partial p enalt y calculation. F or eac h pattern (1,2, and 3) the stones in

123

that pattern share the p enalt y ev enly . Summing the maxim um partial p enalties giv es

9.0. When scaling it b y s =1.8, a v alue of 16.2 results

1

. Rounding it to the next

factor of t w o sets the �nal p enalt y to 16, t wice the original p enalt y of 8.

The p osition in Figure 7.1 is a deadlo c k { an y increase is justi�ed. Other p ositions,

suc h as m ultiple linear con
icts as seen in Section 4.3.6, will b e incorrectly o v eresti-

mated. The scaling factor s has to b e carefully tuned to optimize the b ene�ts of the

maxim um partial p enalties, balancing the adv an tages and dangers of o v erestimation.

7.3.3 Pruning versus P ostp oning

Adding a limited p enalt y to the heuristic estimation of the distance to the goal will

only dela y the examination of a no de. If no solution can b e found, the threshold will

increase un til the p osition's estimated f -v alue do es not cause a cuto� an ymore. The

exploration of the no de is only p ostp one d . This is in stark con trast to forw ard pruning

with �xed rules, suc h as deterministic relev ance cuts, that will prune the same no de

in ev ery iteration.

Because new patterns are added and useless patterns are dropp ed, the decisions

to p ostp one a no de c hange dynamically o v er the course of a searc h as new kno wledge

is found or other kno wledge is discarded.

7.4 Exp erimen tal Results

7.4.1 WID A*

W e exp erimen ted with di�eren t v alues for w , ranging from 1.025 to 1.25, but the

results suggest an unpredictable b eha vior. On the one hand, the searc h can b ene�t

greatly , sa ving orders of magnitude b y extending lines that lead to solutions in early

iterations. On the other hand, large irrelev an t parts of the searc h tree migh t b e

explored that ha v e no solution for the curren t threshold. The blind scaling of h is not

e�ectiv e in Sok oban.

Figure 7.2 sho ws that c hanging w e�ects the searc h-tree sizes almost randomly .

The line indicates the searc h-tree size of the problems solv ed b y a v ersion of R ol ling

Stone that do es not use o v erestimation (R8). The problems are ordered according to

increasing searc h-tree size. The dots in eac h column represen t the corresp onding tree

sizes for R ol ling Stone using WID A* with di�eren t settings of w . T able 7.2 sho ws the

exact n um b ers of total no des for these v ersions of R ol ling Stone . Ev en though one

more problem can b e solv ed when using w = 1 : 15, the erratic b eha vior of the searc h

mak es it di�cult to justify the use of WID A*.

7.4.2 P attern Ov erestimation

Sev eral di�eren t v alues for the scaling factor s of the total p enalt y w ere tested. Fig-

ure 7.3 sho ws the results for a selected n um b er of these tests. The results for this

1

See the results section ab out the origin of the magic n um b er 1.8 for s .

124

0

5e+06

1e+07

1.5e+07

2e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

with w = 1.000
with w = 1.025
with w = 1.050
with w = 1.100
with w = 1.150
with w = 1.200
with w = 1.250

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

with w = 1.000
with w = 1.025
with w = 1.050
with w = 1.100
with w = 1.150
with w = 1.200
with w = 1.250

Figure 7.2: WID A*, V arying w (Linear and Log Scale)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

no overestimation
s = 0.2
s = 0.8
s = 1.4
s = 1.8
s = 2.0
s = 2.2

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

no overestimation
s = 0.2
s = 0.8
s = 1.4
s = 1.8
s = 2.0
s = 2.2

Figure 7.3: P attern Ov erestimation, V arying s (Linear and Log Scale)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without overestimation
with overestimation

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without overestimation
with overestimation

Figure 7.4: Scatter Plot for Ov erestimation With s = 1 : 8 (Linear and Log Scale)

125

w = 1 : 025 w = 1 : 050 w = 1 : 100 w = 1 : 150 w = 1 : 200 w = 1 : 250

ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns

1 50 1,042 2 50 1,042 2 50 1,042 2 50 1,042 2 52 1,044 2 50 1,042 2

2 83 7,543 1 83 7,543 1 83 7,543 1 83 7,750 1 83 7,543 1 83 7,543 1

3 95 14,080 1 88 12,887 1 88 12,887 1 95 14,080 1 95 15,869 1 95 15,869 1

4 187 50,369 1 187 50,369 1 187 50,369 1 198 60,972 1 198 60,972 1 187 50,369 1

5 205 43,325 2 209 43,742 2 224 45,909 2 225 45,904 2 247 49,631 2 225 45,939 2

6 84 5,118 1 106 5,679 1 120 5,647 1 151 6,676 1 150 8,448 2 174 8,901 1

7 839 25,578 2 1,297 23,527 2 325 18,962 1 134 16,203 1 140 16,263 1 352 19,323 1

8 268 319,432 3 282 274,534 3 223 237,563 2 236 230,065 2 216 230,593 2 158 141,539 1

9 1,884 435,449 5 1,897 440,025 5 1,884 435,498 5 1,897 440,025 5 1,369 368,445 4 1,834 429,997 5

10 1,087 987,188 1 > 18,792 > 20,000,000 1 > 21,066 > 20,000,000 1 > 17,876 > 20,000,000 1 > 21,880 > 20,000,000 1 > 21,050 > 20,000,000 1

11 8,704 4,436,816 11 5,848 3,104,222 11 16,448 7,271,274 12 10,754 5,406,302 12 10,057 5,315,444 12 12,435 6,463,687 12

12 936 354,151 8 1,377 351,783 8 1,068 412,189 9 1,008 378,364 9 1,008 379,934 8 1,083 411,965 8

17 2,204 31,052 7 1,808 27,202 7 1,845 27,906 7 2,280 32,214 7 1,822 28,577 7 1,794 28,906 7

19 21,796 9,906,276 9 > 132,815 > 20,000,000 9 119,484 14,041,498 9 14,349 7,241,004 9 20,575 5,522,483 8 15,204 5,365,996 8

21 784 153,574 6 1,186 180,938 7 1,163 180,532 7 727 149,827 6 572 126,955 6 681 158,387 6

25 19,511 6,185,785 6 23,143 6,570,080 7 25,678 7,193,315 7 37,364 10,968,201 7 22,729 7,264,953 7 12,445 5,108,715 5

26 > 2,182,655 > 20,000,000 8 > 2,561,324 > 20,000,000 7 3,731 248,845 6 1,260 269,558 6 905 273,594 6 1,008 264,000 6

33 1,156 353,432 3 1,077 350,680 3 1,360 464,887 3 739 262,206 3 1,340 321,785 3 1,168 366,238 3

34 10,929 1,426,154 3 891 519,188 2 2,163 313,461 1 948 302,144 2 23,822 1,410,840 1 36,484 2,077,968 1

38 7,449 156,259 6 3,619 72,532 5 3,296 74,171 5 3,900 75,044 6 5,132 95,851 6 6,718 119,464 6

40 11,133 8,046,261 6 10,045 7,503,696 5 4,565 3,442,797 4 4,302 3,121,816 4 2,460 2,387,446 3 1,066 819,836 2

43 1,742 422,391 7 1,742 422,391 7 1,957 452,816 7 1,848 433,746 7 1,539 354,230 7 1,031 250,927 6

45 380 202,542 2 349 183,349 2 362 185,029 2 381 199,133 2 395 225,558 2 384 210,170 2

49 51,286 318,704 9 59,827 317,331 8 413,718 2,471,208 9 369,687 2,150,887 8 148,422 1,130,394 8 351,409 2,668,480 8

51 230 21,400 1 452 20,966 1 146 7,947 1 98 8,119 1 98 8,119 1 98 8,119 1

53 157 22,308 1 283 25,206 1 > 552,138 > 20,000,000 1 6,558 34,593 1 3,900 49,145 1 8,600 55,589 1

54 215 40,737 2 854 52,793 2 203,348 2,155,609 1 190 48,644 1 > 1,661,855 > 20,000,000 1 > 1,809,413 > 20,000,000 1

55 97 2,993 1 105 3,712 1 115 4,239 1 121 4,389 1 123 4,435 1 125 4,639 1

56 232 56,070 1 220 55,976 1 301 76,642 1 290 64,237 1 288 70,827 1 347 80,166 1

57 249 120,179 2 248 117,928 2 222 137,332 1 234 126,904 1 238 152,757 1 233 148,843 1

58 211 130,474 2 276 190,884 2 1,268 229,296 1 213 136,742 1 218 136,761 1 214 153,687 1

59 1,903 1,077,731 4 425 206,863 2 399 211,000 2 399 211,000 2 1,271 602,470 2 981 435,208 2

60 158 27,384 1 393 84,848 1 147 19,012 1 241 60,438 1 351 88,837 1 751 172,177 1

61 304 107,227 5 311 112,473 5 330 115,131 5 337 120,666 5 353 132,410 5 375 135,636 5

62 225 105,460 3 232 106,869 3 227 106,147 2 208 178,071 2 283 256,023 2 268 248,424 1

63 548 313,547 1 524 238,083 1 565 306,892 1 671 372,544 1 415 178,149 1 424 193,946 1

64 319 358,836 4 176 168,047 1 239 200,448 1 314 270,426 1 323 278,368 1 211 231,923 1

65 136 19,706 1 137 19,830 1 145 21,259 1 156 22,130 1 156 23,204 1 156 23,204 1

67 473 129,400 5 477 134,723 5 285 99,545 1 323 139,625 1 367 196,735 1 392 209,076 1

68 1,471 349,388 5 1,162 268,415 5 994 286,392 4 357 247,631 1 303 207,747 1 287 181,097 1

70 420 149,731 3 456 179,115 3 611 285,603 4 604 288,028 3 546 229,156 3 509 193,981 3

72 133 45,695 1 140 46,207 1 128 54,712 1 134 51,121 1 759 259,080 1 197 112,411 1

73 218 106,558 1 226 116,000 1 248 118,004 1 317 128,516 1 317 128,516 1 317 128,516 1

75 > 36,609 > 20,000,000 8 > 32,282 > 20,000,000 8 > 272,263 > 20,000,000 8 > 69,564 > 20,000,000 7 > 614,488 > 20,000,000 9 441,895 16,042,868 7

76 43,071 3,660,025 4 20,666 1,600,408 3 760,595 19,264,490 3 702,830 13,111,226 3 > 505,884 > 20,000,000 3 > 343,016 > 20,000,000 1

77 > 801,181 > 20,000,000 1 924,824 13,368,970 1 362,265 4,141,556 1 57,384 1,021,452 1 204,884 1,835,139 1 1,238,968 8,400,844 1

78 64 4,916 1 64 4,913 1 64 4,916 1 64 4,916 1 64 4,916 1 64 4,916 1

79 123 15,518 2 123 15,518 2 105 13,331 1 105 13,331 1 105 13,331 1 107 13,623 1

80 315 34,638 1 280 48,605 1 288 44,568 1 193 38,801 1 193 38,801 1 193 38,801 1

81 36,676 409,001 1 143,579 1,166,420 1 2,177 68,565 2 337 43,753 1 192 38,448 1 207 38,460 1

82 91 35,536 2 94 34,979 2 92 36,825 2 92 36,825 2 115 38,890 2 115 38,178 2

83 80 5,631 1 108 6,856 1 131 10,387 1 137 9,210 1 127 10,408 1 127 13,598 1

84 108 7,818 1 110 7,901 1 115 8,018 1 115 8,018 1 115 8,018 1 115 8,018 1

> 3,251,464 > 101,240,428 > 3,957,269 > 118,866,248 > 2,781,039 > 125,623,214 > 1,313,078 > 88,614,519 > 3,263,539 > 110,587,542 > 4,315,823 > 112,351,209

T
able

7.2:
W

ID
A*,

V
arying

w

126

no o v erestimation s = 0 : 2 s = 0 : 8 s = 1 : 4 s = 1 : 8 s = 2 : 0 s = 2 : 2

ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns

1 50 1,042 2 50 1,067 2 50 1,042 2 50 1,042 2 55 1,267 3 55 1,267 3 55 1,267 3

2 80 7,530 1 82 7,532 2 80 7,530 1 80 7,530 1 80 7,530 1 80 7,530 1 80 7,530 1

3 87 12,902 1 92 13,168 3 87 12,902 1 94 14,095 1 94 14,095 1 95 15,929 1 95 15,929 1

4 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1

5 202 43,298 2 215 44,715 3 202 42,224 2 153 33,755 1 153 33,755 1 151 38,041 1 211 40,344 2

6 84 5,118 1 91 5,659 3 84 5,118 1 84 5,503 1 84 5,503 1 84 5,503 1 84 5,503 1

7 1,392 28,460 2 1,351 29,306 4 967 22,624 2 748 25,931 2 338 14,832 2 132 14,194 3 111 17,040 3

8 291 311,609 3 300 362,122 5 279 313,066 4 285 351,139 4 315 409,714 5 321 465,538 5 249 252,727 4

9 1,884 435,388 5 2,032 470,297 8 1,872 429,765 5 1,472 349,224 4 1,591 385,084 4 1,626 395,046 4 1,644 402,507 4

10 1,810 1,713,429 1 2,685 3,110,294 3 16,970 13,999,701 2 3,919 2,702,015 2 2,920 2,539,524 3 5,535 4,324,956 3 > 37,634 > 20,000,000 4

11 5,679 2,994,297 11 6,464 3,453,690 19 4,483 2,438,271 12 1,919 1,272,688 10 4,058 2,527,286 12 4,744 2,872,254 13 3,071 1,766,229 14

12 4,912 559,184 8 6,330 847,715 9 5,967 670,189 8 26,773 1,637,292 8 951 372,264 8 954 378,407 8 986 396,851 8

17 2,038 29,116 7 2,115 31,024 7 2,035 29,258 7 2,125 29,600 8 2,158 30,242 9 2,063 26,631 9 2,010 25,531 9

19 16,606 7,269,595 9 22,146 9,650,935 10 18,147 7,590,151 8 > 143,629 > 20,000,000 8 14,178 6,631,475 10 16,767 7,952,770 11 16,196 7,675,969 12

21 1,177 179,734 7 1,254 223,583 11 1,219 191,023 7 606 116,004 5 573 113,042 3 752 132,953 3 556 120,465 3

23 > 59,498 > 20,000,000 7 > 52,530 > 20,000,000 9 > 65,636 > 20,000,000 8 40,379 11,282,331 11 23,337 6,555,398 12 11,944 2,550,595 11 12,122 2,771,673 13

25 21,536 5,784,086 7 28,330 10,556,135 11 20,643 6,479,152 7 435 193,212 5 683 366,035 7 426 195,203 6 1,267 393,192 6

26 > 2,125,116 > 20,000,000 9 > 2,010,809 > 20,000,000 13 > 2,137,211 > 20,000,000 10 > 2,727,425 > 20,000,000 5 380 122,997 7 354 120,553 7 359 130,072 6

33 2,765 586,684 3 3,658 798,615 11 1,595 452,670 3 576 274,321 1 604 283,926 1 1,083 365,889 1 490 227,156 1

34 11,431 1,981,993 3 12,148 2,221,831 9 11,401 1,962,631 4 14,771 895,284 4 9,746 749,787 2 7,259 504,465 2 29,854 3,014,988 3

36 > 23,467 > 20,000,000 5 > 19,856 > 20,000,000 10 > 21,205 > 20,000,000 6 24,934 16,799,961 6 18,338 12,150,606 7 7,173 3,911,640 6 23,032 13,542,898 7

38 7,011 154,969 6 7,067 156,235 8 7,001 154,959 5 6,556 133,843 2 10,473 160,176 1 11,115 165,784 1 8,865 137,754 1

40 23,274 17,004,253 7 > 24,473 > 20,000,000 8 22,342 16,318,067 7 11,139 6,692,116 8 16,725 10,086,547 9 20,835 11,944,211 10 26,555 15,352,541 11

43 1,729 421,483 7 1,871 474,358 8 1,939 468,265 7 2,571 564,007 7 2,225 535,148 8 2,647 592,528 8 3,252 639,213 9

45 339 181,566 2 884 406,750 8 830 389,749 3 719 372,366 2 602 404,217 2 450 334,328 1 278 174,861 1

49 53,113 327,643 9 53,575 371,122 12 53,124 328,829 10 17,267 137,288 7 441,638 3,486,905 9 865,286 6,700,434 9 1,677,679 12,600,342 9

51 256 21,491 1 230 21,400 1 230 21,400 1 256 21,491 1 256 21,491 1 256 21,491 1 256 21,491 1

53 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1

54 163,757 2,031,577 2 165,732 2,065,955 5 163,886 2,033,377 2 > 1,041,418 > 20,000,000 3 269 45,332 3 282 46,343 3 > 1,944,336 > 20,000,000 4

55 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1

56 377 61,189 3 709 69,328 7 445 59,326 1 534 42,300 6 911 55,865 7 4,253 136,754 8 8,093 145,689 9

57 234 114,416 2 1,206 129,778 5 1,067 119,393 2 223 120,485 1 209 128,282 1 211 145,836 1 226 116,911 1

58 211 130,474 2 443 239,008 2 443 234,188 2 211 130,474 2 231 138,838 3 231 138,838 3 231 138,838 3

59 1,420 775,753 4 80,206 14,628,874 6 82,403 10,340,916 5 3,638 256,708 5 602 337,905 4 36,157 1,645,577 4 1,462 386,523 4

60 160 27,386 1 162 24,479 3 150 24,450 1 21,087 122,505 1 18,100 114,642 1 18,100 114,642 1 18,100 114,642 1

61 309 105,411 5 8 84,242 4 > 1,524,270 > 20,000,000 4 387 126,272 8 299 77,555 8 335 122,881 9 308 82,726 9

62 195 101,934 3 206 105,058 5 172 66,839 3 184 75,002 4 180 69,728 4 183 77,825 5 208 94,658 5

63 703 312,546 1 765 361,208 3 1,022 354,324 1 520 242,420 1 473 237,196 1 476 263,201 1 942 643,671 1

64 405 332,402 4 > 860,545 > 20,000,000 11 573 384,994 3 221 173,204 4 193 186,508 1 284 213,755 1 219 311,995 1

65 196 21,442 2 204 21,535 6 168 20,222 1 145 21,190 1 165 23,004 1 192 24,459 1 156 22,130 1

67 12,669 512,488 6 12,922 691,462 12 1,727 136,904 5 379 94,003 1 298 104,356 1 298 105,639 1 298 105,639 1

68 1,953 538,509 6 2,327 399,233 10 1,732 473,317 5 549 239,606 5 324 236,157 1 371 240,815 1 317 232,112 1

70 431 140,765 3 463 175,073 3 453 155,760 3 428 173,712 4 446 178,657 5 498 211,520 6 498 211,520 6

72 134 44,908 2 142 45,791 6 136 45,928 2 141 46,012 3 123 45,735 1 123 45,951 1 123 45,951 1

73 214 94,568 1 219 94,763 2 214 94,568 1 225 103,494 1 225 103,494 1 225 103,494 1 234 107,556 1

76 74,315 3,775,394 4 361,704 5,681,518 6 644,192 10,062,414 3 23,749 751,299 2 251 183,656 2 1,587 476,069 2 17,332 613,786 2

77 > 1,019,702 > 20,000,000 1 > 973,871 > 20,000,000 4 > 1,043,492 > 20,000,000 1 > 1,055,068 > 20,000,000 1 > 1,108,195 > 20,000,000 1 > 1,055,933 > 20,000,000 1 257,001 4,729,912 1

78 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1

79 122 15,527 2 132 16,868 5 125 15,530 3 127 16,086 2 127 13,114 2 124 12,869 2 124 12,869 2

80 165 26,943 1 173 30,199 3 167 26,945 2 176 26,309 1 176 26,309 1 516 48,571 1 104 21,495 1

81 2,662 42,445 1 5,020 90,840 3 1,183 113,961 1 269 109,570 1 875 111,033 1 19,152 270,782 1 4,625 140,321 1

82 86 33,445 2 6 33,423 3 95 35,987 3 114 52,160 3 117 45,014 3 120 45,896 3 117 44,995 3

83 80 5,631 1 84 5,635 3 80 5,631 1 108 6,856 1 108 6,856 1 108 6,856 1 108 6,856 1

84 106 7,938 1 177 7,534 3 161 6,882 1 107 6,612 1 108 7,818 1 110 7,929 1 110 7,929 1

> 3,646,938 > 129,388,544 > 4,728,569 > 178,339,940 > 5,864,460 > 177,221,025 > 5,179,478 > 126,928,900 > 1,686,065 > 70,566,483 > 2,102,561 > 68,625,225 > 4,102,768 > 108,153,380

T
able

7.3:
P

attern
Ov

erestimation,
V

arying
s

127

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8
R8 + overestimation = R9

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8
R8 + overestimation = R9

Figure 7.5: Adding Ov erestimation to R ol ling Stone (Linear and Log Scale)

exp erimen t are more conclusiv e, go o d v alues for s can b e selected. It app ears that

the v alue of 1.8 is a go o d setting for s , allo wing three more problems to b e solv ed.

Ev en though setting s to 2.0 can also solv e 53 problems, it is inferior b ecause the

a v erage n um b er of top-lev el no des is almost double that for s = 1 : 8. See T able 7.3

for the no de n um b ers corresp onding to Figures 7.3 and 7.4.

7.4.3 Summary

Figure 7.5 sho ws the e�ort diagram, no w including the v ersion of R ol ling Stone with

o v erestimation using maxim um partial p enalties and a scaling factor of s = 1 : 8.

The impro v emen t app ears signi�can t with ab out one order of magnitude sa vings in

searc h-tree size.

There are a couple of in teresting p oin ts ab out the data in T able 7.3. With rel-

ev ance cuts, almost all problems, except #49, ha v e smaller or insigni�can tly larger

n um b er of no des. Problem #26, for example, drops from o v er 20 million no des to just

under 123,000. Other problems, lik e #23, #25, #36, #40, #54 and #76, also drop

in no de n um b ers signi�can tly . While most searc hes with o v erestimation use more

iterations to �nd a goal, the searc h for problem #26 uses less. The initial p osition is

o v erestimated enough to allo w the searc h to �nd a solution in few er iterations. On

a v erage, the top-lev el and total no des are reduced b y roughly half, from 3.6 to 1.7

million and 129 to 71 million, resp ectiv ely .

7.5 Conclusions and Op en Problems

With resp ect to WID A*, Sok oban is again pro ving to b e a di�cult domain. While in

other domains scaling h allo ws at least the opp ortunit y to trade o� solution qualit y

for searc h e�ort, it seems to only randomly shift the searc h e�ort in Sok oban. The

qualit y of the lo w er-b ound function is not go o d enough to indicate reliably when

progress is made. Therefore, using depth as an indicator for progress has its pitfalls.

P arts of the searc h tree that do not con tain solutions are explored with more e�ort

128

without the exp ected success.

Using kno wledge that is readily a v ailable (the patterns matc hing in eac h p osition)

to iden tify situations that are lik ely di�cult w as pro v en to b e of greater v alue. R ol ling

Stone using this dynamic, kno wledge-driv en o v erestimation is able to solv e three more

problems.

When lo oking through T ables 7.2 and 7.3 one can see that R ol ling Stone has found

solutions to a total of 54 problems. Problem #77 can b e solv ed when s is set to 2.2.

In fact, R ol ling Stone has solv ed 56 di�eren t problems with di�eren t com binations of

s and w , but nev er with one v ersion. A con trol function to set s and w according

to features of the maze that will ha v e to b e iden ti�ed could b e of b ene�t. Ho w to

iden tify suc h features is an op en problem. Esp ecially in domains suc h as Sok oban,

where the absence of a go o d heuristic function causes ine�cien t searc hes, disco v ering

reliable, predictable features seems a daun ting task.

129

Chapter 8

Single-Agen t Searc h Enhancemen ts

8.1 In tro duction

The AI researc h comm unit y has dev elop ed an impressiv e suite of tec hniques for

solving state-space problems. These tec hniques range from general-purp ose domain-

indep enden t metho ds suc h as A*, to domain-sp eci�c enhancemen ts, as w e ha v e seen

in this thesis. There is a strong mo v emen t to w ards dev eloping domain-indep enden t

metho ds to solv e problems. While these approac hes require minimal e�ort to sp ecify

a problem to b e solv ed, the p erformance of these solv ers is often limited, exceeding

a v ailable resources on ev en simple problem instances. This requires the dev elopmen t

of domain-dep enden t metho ds that exploit additional kno wledge ab out the searc h

space. These metho ds can greatly impro v e the e�ciency of a searc h-based program,

as measured in the size of the searc h tree needed to solv e a problem instance.

Previous c hapters rep orted on our attempts to solv e Sok oban problems using an

arra y of di�eren t tec hniques and searc h enhancemen ts. This allo w ed 53 problems to

b e solv ed.

1

These results sho w the large gains ac hiev ed b y dynamically disco v ering

and applying kno wledge in our program R ol ling Stone . With eac h enhancemen t,

reductions of searc h-tree sizes b y sev eral orders of magnitude are p ossible.

Analyzing all the additions made to R ol ling Stone rev eals that the most v alu-

able searc h enhancemen ts are based on searc h (b oth on-line and o�-line) to impro v e

the lo w er b ound. In this c hapter, w e classify the searc h enhancemen ts along sev eral

dimensions including their generalit y , computational mo del, completeness and admis-

sibilit y . Not surprisingly , the more sp eci�c an enhancemen t is, the greater its impact

on searc h p erformance.

When presen ted in the literature, single-agen t searc h (usually ID A*) consists of a

few lines of co de. Most textb o oks do not discuss searc h enhancemen ts other than cycle

detection. In realit y , non-trivial single-agen t searc h problems require more extensiv e

programming (and p ossibly researc h) e�ort. F or example, ac hieving high p erfor-

mance at solving sliding-tile puzzles requires enhancemen ts suc h as cycle detection,

1

Due to an o v ersigh t, w e failed to detect problem # 30 as b eing solv ed un til it w as to o late

to include the n um b ers in this thesis. Recen t exp erimen ts using Rapid Random Restart [GSK98]

increased this n um b er ev en further to 57.

130

Figure 8.1: Tw o Simple Sok oban Problems

pattern databases, mo v e ordering and enhanced lo w er-b ound calculations [CS96]. In

this c hapter, w e outline a new framew ork for high-p erformance single-agen t searc h

programs and prop ose a taxonom y of single-agen t searc h enhancemen ts.

8.2 Application-Indep enden t T ec hniques

Ideally , applications should b e sp eci�ed with minimal e�ort and a \generic" solv er

w ould b e used to compute the solutions. In small domains this is attainable (e.g., if

it is easily en umerable). F or more c hallenging domains, there ha v e recen tly b een a

n um b er of in teresting attempts at domain-indep enden t solv ers (e.g., blackb ox [KS96]).

Before in v esting a lot of e�ort in dev eloping a Sok oban-sp eci�c program, it is imp or-

tan t to understand the capabilities of curren t AI to ols. Hence, w e include this in-

formation to illustrate the disparit y b et w een what application-indep enden t problem

solv ers can ac hiev e, compared to application-dep enden t tec hniques.

The Sok oban problems in Figure 8.1 [McD98] w ere giv en to the program blackb ox

to solv e. Blackb ox w as one of the b est programs at the AIPS'98 fastest planner

comp etition. The �rst problem w as solv ed within a few seconds and the second

problem w as solv ed in o v er an hour.

Clearly , domain-indep enden t planners, lik e blackb ox , ha v e a long w a y to go if they

are to solv e the ev en simplest problem in the test suite. Hence, for this application

domain, w e ha v e no c hoice but to pursue an application-dep enden t implemen tation.

Note also, that man y of the domain-description languages used, suc h as STRIPS,

often do not allo w for e�cien t domain descriptions. While R ol ling Stone can use

simpli�cations, suc h as ignoring the exact p osition of the man, planners reading a

STRIPS-lik e problem description ha v e to deal with a m uc h larger searc h space, b e-

cause the man's p osition is enco ded explicitly and cannot b e handled e�cien tly .

8.3 Application-Dep enden t T ec hniques

Application-dep enden t tec hniques are not p er se application dep enden t, in fact they

can b e applied to a v ariet y of domains. W e call them application (or domain) dep en-

den t b ecause the kno wledge they use applies to a particular domain.

131

0

10

20

30

40

50

60

70

80

90

Sep '96 Mar '97 Sep '97 Mar '98 Sep '98

pr
ob

le
m

s
so

lv
ed

time

Figure 8.2: Num b er of Problems Solv ed Ov er Time

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8
R8 + overestimation = R9

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
R7 + relevance cuts = R8
R8 + overestimation = R9

Figure 8.3: E�ort Graph, Rep eated (Linear and Log Scale)

The preceding c hapters of this thesis sho w the p o w er and limitations of application-

dep enden t searc h enhancemen ts. Their p erformance comes at a price: programming

and researc h e�ort. Figure 8.2 sho ws ho w these results w ere ac hiev ed during 2.5 y ears

of dev elopmen t time. The dev elopmen t e�ort equates to a full-time PhD studen t, a

part-time professor, a full-time summer studen t (4 mon ths), and feedbac k from man y

p eople. Additionally , a large n um b er of mac hine cycles w ere used for tuning and

debugging. It is in teresting to note the o ccasional de cr e ase in the n um b er of problems

solv ed, the result of (fa v orable) bugs b eing �xed. The long, slo w, steady increase is

indicativ e of the realit y of building a large system. Progress is incremen tal and often

painfully slo w.

The large reductions in searc h-tree sizes that w e ha v e seen previously are not

ac hiev able with the curren t state-of-the-art domain-indep enden t tec hniques. Unfor-

tunately , if solutions to complex problems are required, application-dep enden t tec h-

niques are necessary .

The p erformance gap b et w een the �rst and last v ersions of R ol ling Stone in Fig-

132

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R9, goal macros (cuts) disabled
R9, pattern searches (overestimation) disabled

R9, transposition tables disabled
R9, relevance cuts disabled
R9, overestimation disabled
R9, move ordering disabled

R9, deadlock tables disabled
R9, tunnel macros disabled

R9, goal cuts disabled
R9, all enhancements enabled

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

R9, goal macros (cuts) disabled
R9, pattern searches (overestimation) disabled

R9, transposition tables disabled
R9, relevance cuts disabled
R9, overestimation disabled
R9, move ordering disabled

R9, deadlock tables disabled
R9, tunnel macros disabled

R9, goal cuts disabled
R9, all enhancements enabled

Figure 8.4: T urning One Enhancemen t O� (Linear and Log Scale)

ure 8.3 is astounding. F or example, consider extrap olating the p erformance of R ol ling

Stone only with transp osition tables (R1) so that it can solv e the same n um b er of

problems (53) as the complete program (R9). 10

50

(not a t yp o!) seems to b e a

reasonable lo w er b ound on the di�erence in searc h-tree sizes.

As already discussed in Chapter 4, the results in Figure 8.3 ma y misrepresen t the

imp ortance of eac h feature. Figure 8.4 sho ws the results of taking the full v ersion

of R ol ling Stone (R9) and disabling one searc h enhancemen t at a time. The exact

n um b ers can b e found split o v er T ables 8.1 and 8.2. In the absence of a particular

metho d, other searc h enhancemen ts migh t comp ensate suc h that most of the solutions

can still b e found. But if the searc h-tree reductions of an enhancemen t are mostly

unique, turning it o� will reduce the total n um b er of problems solv ed signi�can tly .

While the lo w er-b ound function alone cannot solv e a single problem, neither can

the complete system solv e a single problem without the lo w er-b ound function. This

explains wh y the lo w er b ound is nev er disabled in our tests. It is of paramoun t

imp ortance, without it no problem can b e solv ed.

Figure 8.4 sho ws that turning o� goal macros reduces the n um b er of problems

solv ed b y 32, more than 50%! When turning o� pattern searc hes, the n um b er of

solv ed problems drops b y 21. T urning o� transp osition tables loses 18 problems.

Besides the lo w er-b ound function, these three enhancemen ts are the most imp ortan t

ones for R ol ling Stone ; losing an y one of them dramatically reduces the p erformance.

Relev ance cuts are resp onsible for 4 solutions and tunnel macros for 2. T urning o�

either mo v e ordering or deadlo c k tables results in the loss of only one problem. Note

that ev en though in Section 4.8 disabling goal cuts lost 7 problems, the full v ersion

(R9) still solv es all problems, only with sligh tly larger no de coun ts. P attern searc hes,

relev ance cuts and/or o v erestimation are able to comp ensate for the loss of the goal

cuts.

133

goal macros (cuts) disabled pattern searc hes (o v erestimation) disabled transp osition tables disabled relev ance cuts disabled all enabled

ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns

1 111 1,798 3 52 52 2 55 1,752 3 55 1,267 3 55 1,267 3

2 129 7,775 1 194 194 2 80 9,729 1 82 7,532 1 80 7,530 1

3 9,975 45,553 1 305 305 2 101 23,614 1 106 15,188 1 94 14,095 1

4 21,469 665,602 3 392 392 1 187 63,527 1 187 50,369 1 187 50,369 1

5 811,912 4,145,913 8 20,213 20,213 3 287 121,360 2 218 36,778 1 153 33,755 1

6 9,163 115,558 1 174 174 3 111 9,922 1 85 5,504 1 84 5,503 1

7 207 12,177 1 8,295 8,295 5 336 28,439 1 391 13,984 2 338 14,832 2

8 738,055 2,921,408 4 450,161 450,161 6 540 867,357 5 371 465,263 5 315 409,714 5

9 2,859 390,770 4 34,514 34,514 8 824 327,033 1 172 80,434 1 1,591 385,084 4

10 > 99,661 > 20,000,000 3 > 20,000,000 > 20,000,000 2 > 25,983 > 20,000,000 1 19,119 12,029,738 5 2,920 2,539,524 3

11 > 734,353 > 20,000,000 12 > 20,000,000 > 20,000,000 16 > 32,628 > 20,000,000 8 6,553 2,076,276 12 4,058 2,527,286 12

12 > 307,056 > 20,000,000 8 > 20,000,000 > 20,000,000 10 > 252,493 > 20,000,000 1 > 1,674,420 > 20,000,000 1 951 372,264 8

17 > 2,515,393 > 20,000,000 12 9,182 9,182 7 > 919,122 > 20,000,000 9 2,698 30,287 9 2,158 30,242 9

19 > 910,691 > 20,000,000 10 > 20,000,000 > 20,000,000 8 > 31,982 > 20,000,000 6 > 59,322 > 20,000,000 8 14,178 6,631,475 10

21 > 7,398,297 > 20,000,000 3 286,982 286,982 10 2,762 577,354 10 17,221 884,501 3 573 113,042 3

23 > 584,364 > 20,000,000 12 > 20,000,000 > 20,000,000 3 > 169,507 > 20,000,000 7 31,868 5,264,113 12 23,337 6,555,398 12

25 > 2,440,537 > 20,000,000 7 > 20,000,000 > 20,000,000 5 619 399,815 6 901 409,941 7 683 366,035 7

26 > 2,240,971 > 20,000,000 7 > 20,000,000 > 20,000,000 15 > 3,219,787 > 20,000,000 13 > 4,285,048 > 20,000,000 7 380 122,997 7

33 > 863,437 > 20,000,000 2 > 20,000,000 > 20,000,000 7 > 65,650 > 20,000,000 1 2,155 378,220 1 604 283,926 1

34 32,227 2,500,435 2 2,234,289 2,234,289 9 17,069 6,376,898 3 513 358,480 3 9,746 749,787 2

36 > 194,690 > 20,000,000 6 > 20,000,000 > 20,000,000 6 2,167 1,461,524 6 259,772 9,570,145 6 18,338 12,150,606 7

38 22,278 93,959 1 27,259 27,259 9 9,348 174,488 1 2,012 38,114 1 10,473 160,176 1

40 > 86,192 > 20,000,000 8 > 20,000,000 > 20,000,000 7 > 27,370 > 20,000,000 6 43,639 17,686,156 8 16,725 10,086,547 9

43 341,553 2,681,897 8 385,869 385,869 8 > 39,775 > 20,000,000 8 10,477 1,025,451 8 2,225 535,148 8

45 > 462,451 > 20,000,000 2 > 20,000,000 > 20,000,000 7 5,898 3,479,354 5 398 216,082 1 602 404,217 2

49 > 3,421,140 > 20,000,000 6 320,669 320,669 13 > 2,128,496 > 20,000,000 9 > 4,294,023 > 20,000,000 9 441,638 3,486,905 9

51 99,047 1,388,288 2 2,819 2,819 1 277 34,152 1 137 8,825 1 256 21,491 1

53 > 2,164,029 > 20,000,000 1 > 20,000,000 > 20,000,000 1 157 23,416 1 159 22,310 1 157 22,308 1

54 > 1,382,259 > 20,000,000 4 > 20,000,000 > 20,000,000 3 344 46,619 4 224 40,708 3 269 45,332 3

55 > 3,408,250 > 20,000,000 1 136 136 1 97 3,490 1 97 2,993 1 97 2,993 1

56 65,549 156,228 7 > 20,000,000 > 20,000,000 5 2,893 75,141 5 2,415 87,905 7 911 55,865 7

57 > 3,485,817 > 20,000,000 1 5,070,525 5,070,525 5 252 127,478 2 239 122,033 1 209 128,282 1

58 > 6,848,326 > 20,000,000 3 > 20,000,000 > 20,000,000 1 > 26,375 > 20,000,000 2 783 439,792 3 231 138,838 3

59 > 2,468,760 > 20,000,000 7 > 20,000,000 > 20,000,000 6 > 855,045 > 20,000,000 8 1,105 590,482 4 602 337,905 4

60 259,279 1,138,911 1 12,683 12,683 3 > 3,148,019 > 20,000,000 1 1,375 55,725 1 18,100 114,642 1

61 > 1,377,709 > 20,000,000 8 > 20,000,000 > 20,000,000 6 > 132,563 > 20,000,000 2 302 76,588 8 299 77,555 8

62 > 1,549,298 > 20,000,000 5 3,812 3,812 5 184 95,696 5 195 82,351 4 180 69,728 4

63 > 989,550 > 20,000,000 1 715,579 715,579 3 584 322,947 3 483 217,033 1 473 237,196 1

64 > 158,253 > 20,000,000 1 369,870 369,870 10 348 406,986 1 191 178,401 1 193 186,508 1

65 > 387,680 > 20,000,000 1 293 293 5 144 29,983 1 156 21,739 1 165 23,004 1

67 > 2,539,252 > 20,000,000 1 > 20,000,000 > 20,000,000 10 524 152,897 5 302 115,122 1 298 104,356 1

68 > 6,935,468 > 20,000,000 9 > 20,000,000 > 20,000,000 6 > 1,467,936 > 20,000,000 10 334 235,911 1 324 236,157 1

70 > 476,971 > 20,000,000 5 > 20,000,000 > 20,000,000 1 430 252,302 5 480 118,716 4 446 178,657 5

72 > 785,374 > 20,000,000 1 727,780 727,780 5 148 69,042 5 123 45,735 1 123 45,735 1

73 > 1,524,435 > 20,000,000 1 408,462 408,462 3 232 151,776 1 212 90,906 1 225 103,494 1

76 2,208,039 17,583,377 2 > 20,000,000 > 20,000,000 5 > 36,784 > 20,000,000 4 1,044 409,335 3 251 183,656 2

78 139 5,058 1 75 75 1 64 6,017 1 64 4,451 1 64 4,913 1

79 591,019 1,612,679 2 723 723 5 155 24,317 5 133 12,788 2 127 13,114 2

80 > 3,395,043 > 20,000,000 1 842 842 1 205 55,016 1 118 18,004 1 176 26,309 1

81 > 5,572,202 > 20,000,000 1 48,302 48,302 4 > 2,215,418 > 20,000,000 2 31,962 360,177 1 875 111,033 1

82 287 46,526 3 39,043 39,043 5 140 121,397 5 104 48,197 3 117 45,014 3

83 174 6,694 1 297 297 1 138 21,032 1 96 7,440 1 108 6,856 1

84 2,127,005 10,109,624 1 199,985 199,985 4 106 8,260 1 97 6,127 1 108 7,818 1

> 75,048,385 > 685,630,230 > 431,379,776 > 431,379,776 > 14,842,739 > 375,950,130 > 10,754,736 > 134,063,617 577,870 50,566,483

T
able

8.1:
T

urning
One

Enhancemen
t

O�
(I)

134

o v erestimation disabled tunnel macros disabled mo v e ordering disabled deadlo c k tables disabled goal cuts disabled all enabled

ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns ID A* no des total no des itrns

1 50 1,042 2 65 1,598 3 114 2,731 3 56 1,272 3 55 1,267 3 55 1,267 3

2 80 7,530 1 86 8,831 1 124 5,352 1 80 7,598 1 80 7,530 1 80 7,530 1

3 87 12,902 1 94 14,095 1 149 25,029 1 105 16,153 1 94 14,095 1 94 14,095 1

4 187 50,369 1 243 67,490 1 406 83,627 1 193 46,980 1 187 50,369 1 187 50,369 1

5 202 43,298 2 153 33,755 1 131 21,709 1 165 34,731 1 153 33,755 1 153 33,755 1

6 84 5,118 1 87 5,723 1 128 6,019 1 86 7,746 1 181 7,232 1 84 5,503 1

7 1,392 28,460 2 118 15,996 3 174 9,785 2 109 15,962 3 1,133 20,776 2 338 14,832 2

8 291 311,609 3 315 409,714 5 491 389,334 5 238 201,910 2 325 427,271 5 315 409,714 5

9 1,884 435,388 5 348 146,380 1 4,728 1,070,275 6 2,286 441,909 5 1,591 385,084 4 1,591 385,084 4

10 1,810 1,713,429 1 2,920 2,539,524 3 > 27,300 > 20,000,000 3 1,782 1,815,042 3 2,920 2,539,524 3 2,920 2,539,524 3

11 5,679 2,994,297 11 5,161 2,764,259 16 3,813 1,840,154 12 3,584 2,203,618 13 4,071 2,527,299 12 4,058 2,527,286 12

12 4,912 559,184 8 951 372,264 8 2,646 603,990 1 1,066 369,286 8 951 372,264 8 951 372,264 8

17 2,038 29,116 7 2,368 65,480 9 2,946 32,065 9 2,264 30,524 9 2,158 30,242 9 2,158 30,242 9

19 16,606 7,269,595 9 16,869 8,300,723 9 21,411 9,304,716 11 12,033 5,452,990 10 6,710 3,514,503 10 14,178 6,631,475 10

21 1,177 179,734 7 1,843 313,507 4 599 138,481 4 634 122,882 7 576 115,755 3 573 113,042 3

23 > 59,498 > 20,000,000 7 > 63,547 > 20,000,000 12 21,295 5,202,990 11 35,594 8,603,866 9 23,337 6,555,398 12 23,337 6,555,398 12

25 21,536 5,784,086 7 723 385,622 7 965 424,750 5 1,977 1,006,404 11 709 366,069 7 683 366,035 7

26 > 2,125,116 > 20,000,000 9 503 119,343 7 126,026 1,787,791 5 657 130,246 7 752 128,806 7 380 122,997 7

33 2,765 586,684 3 604 283,926 1 3,257 227,672 1 603 291,506 1 604 283,926 1 604 283,926 1

34 11,431 1,981,993 3 9,746 749,787 2 351,818 9,615,236 2 11,390 780,578 2 93,838 3,978,637 2 9,746 749,787 2

36 > 23,467 > 20,000,000 5 > 41,993 > 20,000,000 8 278,538 17,666,104 6 5,527 2,465,788 6 18,338 12,150,606 7 18,338 12,150,606 7

38 7,011 154,969 6 11,228 186,979 1 2,789 28,559 1 11,678 166,511 1 14,021 165,930 1 10,473 160,176 1

40 23,274 17,004,253 7 17,772 10,048,532 9 20,683 11,135,404 9 20,623 10,220,101 9 19,029 11,508,074 9 16,725 10,086,547 9

43 1,729 421,483 7 2,225 535,148 8 2,357 549,141 8 2,604 612,082 8 2,225 535,148 8 2,225 535,148 8

45 339 181,566 2 697 434,293 2 986 637,176 2 703 426,790 1 602 404,217 2 602 404,217 2

49 53,113 327,643 9 774,682 5,413,505 9 72,419 369,491 9 452,534 3,524,020 9 510,730 3,989,973 9 441,638 3,486,905 9

51 256 21,491 1 264 23,774 1 1,207 51,895 1 260 23,377 1 406 22,269 1 256 21,491 1

53 157 22,308 1 171 22,345 1 309 45,633 1 157 21,993 1 157 22,308 1 157 22,308 1

54 163,757 2,031,577 2 > 1,503,864 > 20,000,000 1 36,390 901,024 2 > 1,655,503 > 20,000,000 1 269 45,332 3 269 45,332 3

55 97 2,993 1 97 2,993 1 322 4,084 1 96 2,927 1 97 2,993 1 97 2,993 1

56 377 61,189 3 911 55,865 7 36,677 252,888 8 961 54,227 7 627 84,730 11 911 55,865 7

57 234 114,416 2 217 108,909 1 887 222,032 2 235 111,068 1 209 128,282 1 209 128,282 1

58 211 130,474 2 275 180,500 3 1,584 259,662 3 240 138,725 3 231 138,838 3 231 138,838 3

59 1,420 775,753 4 778 214,008 7 1,465 292,744 7 7,535 416,503 7 602 337,905 4 602 337,905 4

60 160 27,386 1 34,700 287,151 1 280 25,623 1 18,320 119,642 1 32,916 126,160 1 18,100 114,642 1

61 309 105,411 5 493 164,727 7 1,337 179,764 8 334 77,926 8 299 77,555 8 299 77,555 8

62 195 101,934 3 216 78,095 4 253 116,583 5 190 93,424 5 180 69,728 4 180 69,728 4

63 703 312,546 1 473 237,196 1 > 1,892,813 > 20,000,000 1 698 349,299 3 473 237,196 1 473 237,196 1

64 405 332,402 4 209 190,724 1 1,859 1,425,833 1 230 193,795 1 193 186,508 1 193 186,508 1

65 196 21,442 2 181 24,500 1 > 687,199 > 20,000,000 1 167 22,363 1 165 23,004 1 165 23,004 1

67 12,669 512,488 6 322 108,248 1 17,495 311,723 1 300 101,536 1 298 104,356 1 298 104,356 1

68 1,953 538,509 6 324 236,157 1 1,140 228,388 4 556 228,978 6 324 236,157 1 324 236,157 1

70 431 140,765 3 474 188,237 5 1,421 164,454 4 437 160,238 5 446 178,657 5 446 178,657 5

72 134 44,908 2 123 45,735 1 243 58,255 1 150 39,160 5 123 45,735 1 123 45,735 1

73 214 94,568 1 225 103,494 1 408 119,498 1 229 105,679 1 225 103,494 1 225 103,494 1

76 74,315 3,775,394 4 257 193,943 2 2,854 369,255 2 255 185,001 2 251 183,656 2 251 183,656 2

78 64 4,913 1 70 4,934 1 90 5,017 1 65 6,341 1 64 4,913 1 64 4,913 1

79 122 15,527 2 132 13,748 2 403 38,396 2 130 13,296 2 219 13,286 2 127 13,114 2

80 165 26,943 1 285 42,338 1 302 32,638 1 176 28,967 1 176 26,309 1 176 26,309 1

81 2,662 42,445 1 333 109,338 1 360 101,241 1 925 114,593 1 2,427 113,291 1 875 111,033 1

82 86 33,445 2 118 45,197 3 184 48,111 3 133 46,823 2 117 45,014 3 117 45,014 3

83 80 5,631 1 159 12,350 1 303 12,381 1 108 7,472 1 108 6,856 1 108 6,856 1

84 106 7,938 1 121 8,816 1 219 16,615 1 109 8,004 1 108 7,818 1 108 7,818 1

> 2,627,236 > 109,388,544 > 2,501,133 > 95,919,796 > 3,634,297 > 126,461,318 > 2,257,070 > 61,667,852 747,080 52,686,100 577,870 50,566,483

T
able

8.2:
T

urning
One

Enhancemen
t

O�
(I

I)

135

ID A* ID A* + PID A* # ID A* ID A* + PID A*

1 14 53 32 4 9

2 786 830 33 12 91

3 9 22 34 37 129

4 14 38 35 25 107

5 23 58 36 15 71

6 10 30 37 82 155

7 6 30 38 43 183

8 19 50 39 28 65

9 6 13 40 20 119

10 7 14 41 39 139

11 15 26 42 13 67

12 10 20 43 34 95

13 5 20 44 15 45

14 7 16 45 33 108

15 16 27 46 49 157

16 55 125 47 22 45

17 16 26 48 76 131

18 15 57 49 18 36

19 22 125 50 68 220

20 20 40 51 256 848

21 22 72 52 79 232

22 30 52 53 11 32

23 11 54 54 771 1,938

24 14 57 55 318 531

25 5 22 56 170 290

26 63 148 57 135,255 342,785

27 4 9 58 > 9,486,886 > 20,000,000

28 16 48 59 27 76

29 41 112 60 2,866 4,460

30 23 49 61 > 11,044,404 > 20,000,000

31 19 41

> 20,672,999 > 40,355,448

T able 8.3: The Kids Problems

136

8.4 T est Sets and Searc h E�ort

Using one test set to tune and measure progress with will necessarily lead to o v er�tting

of the program to the test set. W e ha v e tested our program R ol ling Stone on a set

of 61 simple problems to v erify that it is at least not geared to w ards large problems.

R ol ling Stone solv es 59 of the 61 problems. The t w o it cannot solv e with 20 million

no des of searc h e�ort require parking in the goal area, a concept the program do es

not kno w ab out. App endix B sho ws the complete test set.

The limit of 20 million no des in our exp erimen ts is arbitrarily c hosen. Ho w ev er,

Figures 8.3 and 8.4 sho w that decreasing the searc h e�ort ev en b y 2 orders of mag-

nitude w ould lead to almost the same qualitativ e results. T o see ho w close w e are to

solving more problems with our 20 million no de e�ort limit, w e conducted an exp er-

imen t with the b est v ersion of R ol ling Stone , allo wing for 1 billion no des of searc h

e�ort. One more problem could b e solv ed: #24 uses 591,287,416 no des. This con�rms

the exp onen tial nature of the domain.

8.5 Kno wledge T axonom y

Sev eral di�eren t w a ys of classifying the domain-sp eci�c kno wledge used to solv e

Sok oban problems can b e iden ti�ed:

Generalit y: Classify based on ho w general the kno wledge is: domain (e.g., Sok oban),

instanc e (a particular Sok oban problem), and subtr e e (within a Sok oban searc h).

Computation: Di�eren tiate ho w the kno wledge w as obtained: static (suc h as advice

from a h uman exp ert) and dynamic (gleaned from a searc h).

Admissibilit y/Completeness: Kno wledge can b e: admissible (preserv e optimalit y

in a solution) or non-admissible . Non-admissible kno wledge can either preserv e

c ompleteness of the algorithm or render it inc omplete . Admissible kno wledge is

necessarily complete.

Figure 8.5 summarizes the searc h enhancemen ts used in R ol ling Stone . Other en-

hancemen ts from the literature could easily b e added in to spaces that are still blank,

e.g. p erimeter databases [Man95] (dynamic, admissible, instance). Note that some of

the enhancemen t classi�cations are �xed b y the t yp e of the enhancemen t. F or exam-

ple, an y t yp e of heuristic (unsafe) forw ard pruning is incomplete b y de�nition, and

mo v e ordering alw a ys preserv es admissibilit y . F or some enhancemen ts, the prop erties

dep end on the implemen tation. F or example, o v erestimation tec hniques can b e static

or dynamic; goal macros can b e admissible or non-admissible; pattern databases can

b e domain-based or instance-based.

It is in teresting to note that, apart from the lo w er-b ound function itself, the

three most imp ortan t program enhancemen ts in terms of program p erformance are

all dynamic (searc h-based) and instance/subtree sp eci�c. The static enhancemen ts,

while of v alue, turn out to b e of less imp ortance. Static kno wledge is usually rigid

137

Classi�cation Domain Instance Subtree

Static admissible lo w er tunnel mo v e

b ound macros ordering

complete

incomplete relev ance goal

cuts cuts

Dynamic admissible deadlo c k pattern

tables searc hes

transp osi-

tion table

complete o v eresti-

mation

incomplete goal

macros

Figure 8.5: T axonom y of Searc h Enhancemen ts in Sok oban

and do es not include the m yriad of exceptions that searc h-based metho ds can unco v er

and react to.

8.6 Con trol F unctions

There is another t yp e of application-dep enden t kno wledge that is critical to p erfor-

mance, but receiv es scan t atten tion in the literature. Contr ol functions are in trinsic

parts of e�cien t searc h programs, con trolling when to use or not use a searc h en-

hancemen t. In R ol ling Stone n umerous con trol functions are used to impro v e the

searc h e�ciency . Some examples include:

T ransp osition T able: A �xed-size transp osition table can only hold so m uc h infor-

mation. Con trol kno wledge is needed to decide when new information should

replace older information in the table. Also, when reading from the table, con-

trol information can decide whether or not the b ene�ts of the lo okup justify the

cost. F or example, searc h applications ma y not lo ok up table en tries close to

the leaf no des.

Goal Macros: If a goal area has to o few goal squares, then goal macros are disabled.

With a small n um b er of goals or to o man y en trances, the searc h will lik ely

not need macro mo v es, and the p oten tial sa vings are not w orth the risk of

eliminating p ossible solutions.

P attern Searc hes: P attern searc hes are executed only when a non-trivial heuristic

function indicates the lik eliho o d of a p enalt y b eing presen t. Executing a pattern

searc h is exp ensiv e, so this o v erhead should b e in tro duced only when it is lik ely

138

to b e cost e�ectiv e. Con trol functions are also used to stop a pattern searc h

when success app ears unlik ely .

Implemen ting a searc h enhancemen t is often only one part of the programming

e�ort. Implemen ting and tuning its con trol function(s) can b e signi�can tly more time

consuming and more critical to p erformance. W e estimate that whereas the searc h

enhancemen ts tak e ab out 90% of the co ding e�ort and the con trol functions only 10%,

the rev erse distribution applies to the amoun t of tuning e�ort needed and mac hine

cycles consumed.

A clear separation b et w een the searc h enhancemen ts and their resp ectiv e con trol

functions (task and con trol kno wledge) can help the tuning e�ort. F or example, while

the goal macro creation only considers whic h order the stones should b e placed in to

the goal area, the con trol function can determine if goal macros should b e created

at all. Both tuning e�orts ha v e v ery di�eren t ob jectiv es: one is searc h e�ciency , the

other risk minimization. Separating the t w o seems natural and con v enien t.

Ho w ev er, this split is not solving the general problem w e are facing when tuning.

As sho wn in the NFL discussion, when sp ecializing an algorithm (b y tuning or an y

other measure, suc h as searc h enhancemen ts in general) w e are trading o� p erformance

of the algorithm for one kind of problem against the p erformance for other kinds of

problems. When tuning parameters using p erformance on a test suite as a measure of

impro v emen t, w e are implicitly adapting the algorithm to the prop erties exempli�ed

in the test suite. F or our 90 problems, this is most certainly true. Humans comp osed

the problems, using concepts suc h as ro oms and hallw a ys, structuring the problems

in a v ery sp eci�c w a y . Goal macros are a go o d example ho w w e exploited one of

these prop erties: goals are often together in lumps in a designated area. Random

instances w ould defy goal macros. Con trol functions are an attempt to recognize

these situations and turn goal macros o�.

8.7 Single-Agen t Searc h F ramew ork

Figure 8.6 illustrates the basic ID A* routine, with our enhancemen ts included (in

italics). This routine is sp eci�c to R ol ling Stone , but could b e written in more general

terms. It do es not include a n um b er of w ell-kno wn single-agen t searc h enhancemen ts

a v ailable in the literature. Con trol functions are indicated b y parameters to searc h

enhancemen t routines. In practice, some of these functions are implemen ted as simple

if statemen ts con trolling access to the enhancemen t co de.

Examining the co de in Figure 8.6, one realizes that there are really only four t yp es

of searc h enhancemen ts:

1. Mo difying the lo w er b ound (as indicated b y the up dates to lb). This can tak e

t w o forms: optimally increasing the b ound (e.g. using patterns) whic h reduces

the distance to searc h, or non-optimally (using o v erestimation) whic h redis-

tributes where the searc h e�ort is concen trated.

139

IDA*() f

/** Compute the best possible lower bound **/

lb = ComputeLowerBound();

lb += UsePatterns(); /** Match Patterns **/

lb += UseDe ad lo ckT able();

lb += UseOver estimate(CntrlOver estimate());

IF(cutoff) RETURN;

/** Preprocess **/

lb += R e adT r ansT able();

IF(cuto�) RETURN;

PatternSe ar ch(CntrlPatternSe ar ch());

lb += UsePatterns();

IF(cuto�) RETURN;

/** Generate searchable moves **/

movelist = GenerateMoves();

R emoveDe adMoves(movelist);

IdentifyMacr os(movelist);

Or derMoves(movelist);

FOREACH(move) f

IF(Irr elevant(move, CntrlIrr elevant())) NEXT;

solution = IDA*();

IF(solution) RETURN;

IF(Go alCut()) BREAK;

Up dateL owerBound(); /** Use New Patterns **/

IF(cuto�) RETURN;

g

/** Post-process **/

SaveT r ansT able(CntrlT r ansT able());

RETURN;

g

Figure 8.6: Enhanced ID A*

140

FOREACH(domain) f

/** Preprocess **/

BuildDe ad lo ckT able(CntrlDe ad lo ckT able());

FOREACH(instance) f

/** Preprocess **/

FindT unnelMacr os();

FindGo alMacr os(CntrlGo alMacr os());

WHILE(NOT solved) f

SetSearchParamaters();

IDA*();

g

/** Postprocess **/

SavePatterns(CntrlSavingPatterns());

g

g

Figure 8.7: Prepro cessing Hierarc h y

2. Remo ving branc hes unlik ely to add additional information to the searc h (the

next and br e ak statemen ts in the for lo op). This forw ard pruning can result in

large reductions in the searc h tree, at the exp ense of p ossibly remo ving solutions.

3. Collapsing the tree heigh t b y replacing a sequence of mo v es with one mo v e (for

example, macros).

4. Mo v e ordering allo ws for sa vings in the last iteration b y exploring promising

lines �rst.

Some of the searc h enhancemen ts in v olv e computations outside of the searc h. Fig-

ure 8.7 sho ws where the pre-searc h pro cessing o ccurs at the domain and instance lev-

els. O�-line computation of pattern databases or prepro cessing of problem instances

are p o w erful tec hniques that receiv e scan t atten tion in the literature (c hess endgame

databases are a notable exception). Y et these tec hniques are an imp ortan t step to-

w ards the automation of kno wledge disco v ery and mac hine learning. Prepro cessing is

in v olv ed in man y of the most v aluable enhancemen ts that are used in R ol ling Stone .

Similar issues o ccur with other searc h algorithms. F or example, although it tak es

only a few lines to sp ecify the alpha-b eta algorithm, the De ep Blue c hess program's

searc h pro cedure includes n umerous enhancemen ts (man y similar in spirit to those

used in R ol ling Stone) that cum ulativ ely reduce the searc h-tree size b y sev eral or-

141

ders of magnitude. If nothing else, the De ep Blue result demonstrated the degree of

engineering required to build high-p erformance searc h-based systems.

8.8 Conclusions

This c hapter summarizes our exp eriences w orking with Sok oban. In con trast to

the simplicit y of the basic ID A* form ulation, building a high-p erformance single-

agen t searc her can b e a complex task that com bines b oth researc h and engineering.

Application-dep enden t kno wledge, sp eci�cally that obtained using searc h, can result

in an orders-of-magnitude impro v emen t in searc h e�ciency . This can b e ac hiev ed

through a judicious com bination of sev eral searc h enhancemen ts. Con trol functions

are o v erlo ok ed in the literature, y et are critical to p erformance. They represen t a

signi�can t p ortion of the program dev elopmen t time and most of the program exp er-

imen tation resources.

Domain-indep enden t to ols o�er a quic k programming solution when compared to

the e�ort required to dev elop domain-dep enden t applications. Ho w ev er, with curren t

AI to ols, p erformance is commensurate with e�ort. Domain-dep enden t solutions can

b e v astly sup erior in p erformance. The trade-o� b et w een programming e�ort and

p erformance is the critical design decision that needs to b e made.

142

Chapter 9

Conclusions and F uture W ork

Researc h in to single-agen t searc h metho ds has b een dominated b y relativ ely simple

domains. Domains, suc h as the 15-puzzle or Rubik's Cub e, ha v e relativ ely small

searc h-space complexities and/or decision complexities. The conclusions from the

researc h in these domains ha v e simpli�ed our view of single-agen t searc h. Often,

implicit assumptions are made for certain metho ds to w ork. W ell-b eha v ed searc h

spaces with rev ersible mo v es and relativ ely small branc hing factors and searc h depths

are usually assumed. The a v ailabilit y of high-qualit y , lo w-cost lo w er-b ound estimators

is another one of these assumptions. Naturally , one has to b e careful ab out conclusions

dra wn from domains ha ving suc h nice prop erties.

In this thesis, w e ha v e seen an instance of a problem domain that de�es the

traditional approac hes and requires more sophisticated metho ds. Sok oban has not

just a large searc h space, but also exhibits the c hallenging searc h-space prop ert y of

non-rev ersible mo v es whic h lead to deadlo c k con�gurations. F urthermore, an e�cien t

and e�ectiv e lo w er-b ound function remains elusiv e. Man y or ev en all the implicitly

assumed preconditions of the text-b o ok approac hes are violated and the state-of-the-

art metho ds fail.

This thesis sho ws ho w to tac kle this c hallenge and mak es signi�can t progress in

solving non-trivial problem con�gurations for Sok oban. New searc h enhancemen ts are

in tro duced. The most successful of them use small sp ecialized searc hes to disco v er

kno wledge that can b e used to impro v e the e�ciency of the main searc h. Static,

o�-line searc hes pro ducing goal macros sho w considerable impro v emen ts in searc h

e�ciency . Ho w ev er, dynamic, on-line pattern searc hes gather kno wledge that leads

to more signi�can t reductions in searc h-tree sizes. It app ears that searc hes, and

dynamic searc hes in particular, can glean the information that is needed to break

the complexit y barrier build up b y the com binatorial explosion c haracterizing these

c hallenging domains. Other enhancemen ts suggested here, suc h as relev ance cuts

and the pattern-driv en o v erestimation, indicate that further considerable progress is

p ossible.

An in teresting observ ation made in this thesis is that the most p o w erful of searc h

enhancemen ts are closely link ed to sp eci�c kno wledge ab out the problem instances,

or ev en sp eci�c problem con�gurations. Examples are:

� T ransp osition table en tries store searc h results ab out sp eci�c states.

143

� P enalt y patterns con taining information ab out sets of states of one problem

instance (with these patterns presen t) are results of searc hes.

� Goal macros are found b y o�-line searc hes and represen t the kno wledge of ho w

to solv e the subproblem of goal-pac king in one instance.

W e b eliev e that this is no coincidence. While generalized and broadly applicable

heuristics can help to giv e the searc h a general direction, it cannot p ossibly capture

the subtleties of complex domains. Exceptions and sp ecial cases mak e these problems

di�cult and c hallenging and they ha v e to b e found b y the searc h on an instance-b y-

instance basis. F or puzzle games suc h as Sok oban, this w ealth of in tricate details is

what dra ws h umans and k eeps them coming bac k. F or the practice, this w ealth is

what c haracterizes man y of the c hallenging real-w orld problems w e are in terested in

solving. After all, if general guidelines or rules w ould apply , w e w ould probably not

p erceiv e these problems as hard.

Ev en though Sok oban is primarily used as our researc h domain here, the meth-

o ds and enhancemen ts suggested as w ell as the lessons learned are largely domain

indep enden t and carry therefore o v er to other domains.

Short from excusing ourselv es for pic king Sok oban as an exp erimen tal testb ed, w e

w ould lik e to p oin t out that it could b e a ric h and fertile ground for man y sub�elds of

AI. Ev en though w e ha v e made considerable progress in this domain using adv anced

searc h metho ds, searc h alone is not going to b e su�cien t to solv e the toughest of the

Sok oban problems.

A Sok oban solv er could b ene�t from an y of the follo wing areas of AI:

� Reasoning in all its di�eren t forms (automated, case-based, probabilistic, geo-

metric and spatial,...) could help to decomp ose Sok oban instances in to subprob-

lems and, taking all the in teractions of the subproblems in to accoun t, reassem ble

the solution for the complete problem.

� Belief revision m ust certainly pla y a role for the dynamic disco v ery of subsolu-

tion in teractions. As new, p ossibly con
icting facts (in teractions, partial solu-

tions, constrain ts), are disco v ered they ha v e to b e in tegrated in to the curren t

kno wledge base.

� Case-based reasoning could help to adapt solutions from similar instances solv ed

in the past to new problems curren tly at hand.

� Kno wledge acquisition and represen tation can help to tac kle one of the funda-

men tal problems of AI, of ho w to represen t and store all the kno wledge e�-

cien tly . As w e ha v e seen, this b ecomes an imp ortan t problem.

� Planning can help to direct the searc h b y pro viding it with the global con text

of lo cal actions to assist in critical decisions lik e forw ard pruning and mo v e

ordering.

Ho w ev er, these areas can also b ene�t from Sok oban! Sok oban o�ers a non-trivial test

b ed for man y tec hniques from di�eren t sub�elds of AI.

144

There are man y more searc h related c hallenges and op en questions left to explore

in the domain of Sok oban. Searc h metho ds can most certainly b e impro v ed signif-

ican tly . Some of the immediate issues that come to mind are: Can relev ance cuts

b ene�t from dynamically accum ulated kno wledge? Can mo v e ordering b e impro v ed

with additional kno wledge? Are there b etter heuristics to decide whic h stone to in-

clude next in a pattern searc h? What could that kno wledge b e and ho w could it b e

collected?

Ho w ev er, a m uc h more fruitful question to explore is probably ho w to use the

metho ds dev elop ed for Sok oban in other domains. Di�eren t domains can pro vide

di�eren t conditions and prop erties whic h these metho ds can b e sub jected to. The

necessary generalizations can yield in teresting new insigh ts in to wh y and ho w certain

metho ds w ork for di�eren t application domains.

Y et another step is to try to use the metho ds dev elop ed here (and of course else-

where) in a domain-indep enden t w a y . It is fairly straigh tforw ard for some of the

simpler searc h enhancemen ts, lik e transp osition tables, to b e instan tiated for a new

domain. Esp ecially transp osition tables could also b e turned o�, when simple sta-

tistical tests ab out hit rates sho w that the sa vings do not justify their use. But,

ho w can other, more complex metho ds b e automatically instan tiated lik e that? Ho w

can the kno wledge needed for these domain-dep enden t searc h enhancemen ts b e au-

tomatically extracted? More to the p oin t: Ho w can w e in v ok e a metho d, instead of a

scien tist? With the example of pattern searc hes w e ha v e sho wn that w e can iden tify

necessary conditions for the use of searc h enhancemen ts. Can these conditions b e

tested automatically and, dep ending on the result of the test, searc h enhancemen ts

b e enabled or disabled, or ev en adjusted? Are domain descriptions the source of most

of the necessary information? Or w ould example searc hes rev eal certain prop erties of

the searc h space (of course assuming w e are dealing with a w ell b eha v ed, predictable

domain)? Or b oth?

Humans are incredibly apt in adapting their problem solving metho ds. They do

this on man y di�eren t lev els, suc h as for di�eren t domains, as w ell as for di�eren t

instances of the same domain, and ev en for di�eren t phases of the solution of one

problem instance. Humans are able to recognize when they are not making an y

progress and they can c hange their solution strategies. What are the next steps

to w ards creating an arti�cial en tit y with suc h capabilities?

145

Bibliograph y

[All88] V. Allis. A kno wledge-based approac h of connect-four. the game is solv ed:

White wins. Master's thesis, F ree Univ ersit y , Amsterdam, The Nether-

lands, 1988.

[All94] V. Allis. Se ar ching for Solutions in Games and A rti�cial Intel ligenc e .

PhD thesis, Univ ersit y of Lim burg, 1994.

[A V AD75] G. Adelson-V elskiy , V. Arlazaro v, and M. Donsk o y . Some metho ds of con-

trolling the tree searc h in c hess programs. A rti�cial Intel ligenc e , 6(4):361{

371, 1975.

[BG98] B. Bonet and H. Ge�ner. Hsp: Heuristic searc h planner. In AIPS-98

Planning Comp etition , June 1998.

[BG99] B. Bonet and H. Ge�ner. Planning as heuristic searc h: New results, Ma y

1999. h ttp://www.ldc.usb.v e/~hector/rep orts/hspr.ps.

[Bis92] R. Bisiani. Searc h, b eam. In S.C. Shapiro, editor, Encyclop e dia of A rti-

�cial Intel ligenc e , pages 1467{1468. Wiley-In terscience, New Y ork, 1992.

[BPSS99] D. Billings, L. P ena, J. Sc hae�er, and D. Szafron. Using probabilistic

kno wledge and sim ulation to pla y p ok er. In AAAI , 1999.

[Bre98] D. Breuk er. Memory versus Se ar ch in Games . PhD thesis, Univ ersit y of

Maastric h t, Computer Science Departmen t, Maastic h t, 1998.

[Bur97] M. Buro. The othello matc h of the y ear: T ak eshi m urak ami vs. logistello.

ICCA Journal , 20(3):189{193, 1997.

[Caz99] T. Cazena v e. Generation of patterns with external conditions for the

game of G o. In A dvanc es in Compter Chess 9 , 1999. to app ear.

[CKW91] P . Cheeseman, B. Kanefsky , and T a ylor W.M. Where the really hard

problems are. In IJCAI , pages 331{337, 1991.

[CS94] J. Culb erson and J. Sc hae�er. E�cien tly searc hing the 15-

puzzle. T ec hnical Rep ort TR94{08, Departmen t of Computing Sci-

ence, Univ ersit y of Alb erta, Edmon ton, Alb erta, Canada, 1994.

ftp.cs.ualb erta.ca/pub/T ec hRep orts/1994/TR94{08.

146

[CS96] J. Culb erson and J. Sc hae�er. Searc hing with pattern databases. In

G. McCalla, editor, A dvanc es in A rti�cial Intel ligenc e , pages 402{416.

Springer-V erlag, 1996.

[CS98] J. Culb erson and J. Sc hae�er. P attern databases. Computational Intel li-

genc e , 14(4):318{334, 1998.

[Cul96] J. Culb erson. On the futilit y of blind searc h. T ec hnical Rep ort TR96{18,

Departmen t of Computing Science, Univ ersit y of Alb erta, Edmon ton, Al-

b erta, Canada, 1996. ftp.cs.ualb erta.ca/pub/T ec hRep orts/1996/TR96{

18.

[Cul97] J. Culb erson. Sok oban is PSP A CE -complete. T ec hni-

cal Rep ort TR97{02, Departmen t of Computing Science,

Univ ersit y of Alb erta, Edmon ton, Alb erta, Canada, 1997.

ftp.cs.ualb erta.ca/pub/T ec hRep orts/1997/TR97{02 .

[dee99] deepgreen. P ersonal comm unications, Marc h 1999.

[DZ95] D. Dor and U. Zwic k. SOK OBAN and other motion planning problems,

1995. h ttp://www.math.tau.ac.il/~ddorit.

[Ede98] S. Edelk amp. P ersonal comm unications, July 1998.

[EK98] S. Edelk amp and R.E. Korf. The branc hing factor of regular searc h spaces.

In AAAI , pages 299{304, 1998.

[FMS

+

89] A. Fiat, S. Moses, A. Shamir, I. Shimshoni, and G. T ardos. Planning

and learning in p erm utation groups. In Pr o c e e dings of the 30th A.C.M.

F oundations of Computer Scienc e Confer enc e (F OCS) , pages 274{279,

1989.

[Gas79] J. Gasc hnig. P erformance measuremen t and analysis of certain searc h

algorithms. T ec hnical Rep ort CMU-CS-79-124, Carnegie-Mellon Univ er-

sit y , 1979.

[Gas94] R. Gasser. Harnessing c omputational r esour c es for e�cient exhaustive

se ar ch . PhD thesis, ETH Z • uric h, Switzerland, 1994.

[GC90] G. Go etsc h and M.S. Campb ell. Exp erimen ts with the n ull-mo v e heuris-

tic. In T.A. Marsland and J. Sc hae�er, editors, Computers, Chess, and

Co gnition , pages 159{181, New Y ork, 1990. Springer-V erlag.

[Gin93a] M. Ginsb erg. Dynamic bac ktrac king. Jounal of A rti�cial Intel ligenc e

R ese ar ch , 1:25{46, 1993.

[Gin93b] M. Ginsb erg. Essentials in A rti�cial Intel ligenc e . Morgan Kaufman Pub-

lishers, San F rancisco, 1993.

147

[Gin96] M. Ginsb erg. P artition searc h. In AAAI , pages 228{233, 1996.

[Gin99] M. Ginsb erg. GIB: Steps to w ard an exp ert-lev el bridge-pla ying program.

In IJCAI , Sto c kholm, 1999. T o app ear. UPD A TE.

[GSK98] C.P . Gomes, B. Selman, and H. Kautz. Bo osting com binatorial searc h

through randomization. In AAAI , pages 431{437, 1998.

[Hik99] T. Hikita. Sok oban, Jan uary 1999. P ersonal comm unications: T ranslation

of Sok oban article [UNH97] in to English.

[Hir98] M. Hiramatsu. P ersonal comm unications, Decem b er 1998.

[HMY92] O. Hannson, A. Ma y er, and M. Y ung. Criticizing solutions to relaxed

mo dels yields p o w erful admissable heuristics. Information Scienc es ,

63(3):207{227, 1992.

[HNR68] P .E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minim um cost paths. IEEE T r ansactions on Systems

Scienc e and Cyb ernetics , 4(2):100{107, 1968.

[HPRA96] R. Holte, M. P erez, Zimmer R., and MacDonald A. Hierarc hical A*:

Searc hing abstraction hierarc hies e�cien tly . In AAAI , pages 530{535,

1996.

[Iba89] G.A. Iba. A heuristic approac h to the disco v ery of macro-op erators. Ma-

chine L e arning , 3(4):285{318, 1989.

[Jam93] M.L. James. Optimal tunneling: A heuristic for learning macro op erators.

Master's thesis, Univ ersit y of Calgary , Alb erta, Canada, Ma y 1993.

[JS97] A. Junghanns and J. Sc hae�er. Sok oban: A c hallenging single-agen t

searc h problem. In IJCAI , pages 27{36, Nago y a, Japan, August 1997. A t

the W orkshop: Using Games as an Exp erimen tal T estb ed for AI Researc h.

[JS98a] A. Junghanns and J. Sc hae�er. Relev ance cuts: Lo calizing the searc h. In

The First International Confer enc e on Computers and Games , pages 1{

13, Tsukuba, Japan, 1998. Also in: L e ctur e Notes in Computing Scienc e ,

Springer V erlag.

[JS98b] A. Junghanns and J. Sc hae�er. Single-agen t searc h in the presence of

deadlo c k. In AAAI , pages 419{424, Madison/WI, USA, July 1998.

[JS98c] A. Junghanns and J. Sc hae�er. Sok oban: Ev aluating standard single-

agen t searc h tec hniques in the presence of deadlo c k. In R. Mercer

and E. Neufeld, editors, A dvanc es in A rti�cial Intel ligenc e , pages 1{15.

Springer V erlag, 1998.

[JS99a] A. Junghanns and J. Sc hae�er. Domain-dep enden t single-agen t searc h

enhancemen ts. In IJCAI , pages 570{575, 1999.

148

[JS99b] A. Junghanns and J. Sc hae�er. Sok oban: Impro ving the searc h with rel-

ev ance cuts. Journal of The or etic al Computing Scienc e , 1999. T o app ear.

[KK96] G. Kainz and H. Kaindl. Dynamic impro v emen ts of heuristic ev aluations

during searc h. In AAAI , pages 311{317, 1996.

[KK97] H. Kaindl and G. Kainz. Bidirectional heuristic searc h reconsidered. Jour-

nal of A rti�cial Intel ligenc e R ese ar ch , 7:283{317, 1997.

[Kle67] M. Klein. A primal metho d for minimal cost
o ws. Management Scienc e ,

14:205{220, 1967.

[Kor85a] R.E. Korf. Depth-�rst iterativ e-deep ening: An optimal admissible tree

searc h. A rti�cial Intel ligenc e , 27(1):97{109, 1985.

[Kor85b] R.E. Korf. Macro-op erators: A w eak metho d for learning. A rti�cial

Intel ligenc e , 26(1):35{77, 1985.

[Kor93] R.E. Korf. Linear-space b est-�rst searc h. A rti�cial Intel ligenc e , 62(1):41{

78, July 1993.

[Kor96] R.E. Korf. Finding optimal solutions to the t w en t y-four puzzle. In AAAI ,

pages 1202{1207, 1996.

[Kor97] R.E. Korf. Finding optimal solutions to Rubik's Cub e using pattern

databases. In AAAI , pages 700{705, 1997.

[KR98] R.E. Korf and M. Reid. Complexit y analysis of admissible heuristic

searc h. In AAAI , pages 305{310, 1998.

[KS96] H. Kautz and B. Selman. Pushing the en v elop e: planning, prop ositional

logic and sto c hastic searc h. In AAAI , pages 1194{1201, 1996.

[Kuh55] H.W. Kuhn. The Hungarian metho d for the assignmen t problem. Naval

R es. L o gist. Quart. , pages 83{98, 1955.

[L W66] E.L. La wler and D. W o o ds. Branc h-and-b ound metho ds: A surv ey . Op-

er ations R ese ar ch , 14, 1966.

[Man95] G. Manzini. BID A*: An impro v ed p erimeter searc h algorithm. A rti�cial

Intel ligenc e , 75:347{360, 1995.

[McD98] Drew McDermott. Using regression-matc h graphs to con trol searc h in

planning, 1998. Unpublished man uscript.

[Min88] S. Min ton. Quan titativ e results concerning the utilit y of explanation-

based learning. In AAAI , pages 564{569, 1988.

[My e97] A. My ers. P ersonal comm unications, Marc h 1997.

149

[New96] M. Newb orn. Kasp ar ov versus De ep Blue. Computer Chess Comes of

A ge . Springer-V erlag, New Y ork, 1996.

[Nil80] N. Nilsson. Principles in A rti�cial Intel ligenc e . Morgan Kaufman Pub-

lisher, Inc., Tioga, P alo Alto, CA, 1980.

[P oh71] I. P ohl. Bi-dir e ctional Se ar ch , pages 127{140. Edin burgh Univ ersit y Press,

Edin burgh, 1971.

[Pri93] A.E. Prieditis. Mac hine disco v ery of e�ectiv e admissible heuristics. Ma-

chine L e arning , 12:117{141, 1993.

[PSPdB96] A. Plaat, J. Sc hae�er, W. Pijls, and A. de Bruin. Best-�rst �xed-depth

minimax algorithms. A rti�cial Intel ligenc e , 87(1{2):255{293, No v em b er

1996.

[Rei93] A. Reinefeld. Complete solution of the eigh t-puzzle and the b ene�t of

no de ordering in ida*. In IJCAI , pages 248{253, 1993.

[RKK91] V. Rao, V. Kumar, and R.E. Korf. Depth-�rst vs. b est-�rst searc h. In

AAAI , pages 434{440, 1991.

[RM94] A. Reinefeld and T.A. Marsland. Enhanced iterativ e-deep ening searc h.

IEEE T r ansactions on Pattern A nalysis and Machine Intel ligenc e ,

16(7):701{710, July 1994.

[SA77] D. Slate and L. A tkin. Chess 4.5 | The North w estern Univ ersit y c hess

program. In P .W. F rey , editor, Chess Skil l in Man and Machine , pages

82{118, New Y ork, 1977. Springer-V erlag.

[Sc h67] P .D.A. Sc ho�eld. Complete solution of the eight puzzle , pages 125{133.

American Elsevier, New Y ork, 1967.

[Sc h86] J. Sc hae�er. Exp eriments in Se ar ch and Know le dge . PhD thesis, Univ er-

sit y of W aterlo o, Canada, 1986.

[Sc h97] J. Sc hae�er. One Jump A he ad . Springer V erlag, New Y ork, 1997.

[SK C94] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for impro ving

lo cal searc h. In AAAI , pages 337{343, 1994.

[SLLB96] J. Sc hae�er, R. Lak e, P . Lu, and Martin Bry an t. Chino ok: The man-

mac hine w orld c hec k ers c hampion. AI Magazine , 17(1):21{29, 1996.

[SS77] R.M. Stallman and G.J. Sussman. F orw ard reasoning and dep endency-

directed bac ktrac king in a system for computer-aided circuit analysis.

A rti�cial Intel ligenc e , 9:135{196, 1977.

[T es95] G. T esauro. T emp oral di�erence learning and td-gammon. CA CM ,

38(3):58{68, Marc h 1995.

150

[TK93] L. T a ylor and R.E. Korf. Pruning duplicate no des in depth-�rst searc h.

In AAAI , pages 756{761, 1993.

[UNH97] A. Ueno, K. Nak a y ama, and T. Hikita. Sok oban. bit, sp e cial issue "Game

pr o gr amming" , pages 158{172, 1997.

[Wil88] G. Wilfong. Motion planning in the presence of mo v able obstacles. In 4th

A CM Symp osium on Computational Ge ometry , pages 279{288, 1988.

[Win92] P .H. Winston. A rti�cial Intel ligenc e . Addison-W esley , 1992.

[WM96] D.H. W olp ert and W.G. Macready . No free lunc h theorems for searc h.

T ec hnical Rep ort SFI{TR{95{02{010, The San ta F ee Institute, San ta F e,

New Mexico, 1996. ftp.san tafe.edu/pub/wgm/.

[Zha98] W. Zhang. Complete an ytime b eam searc h. In AAAI , pages 425{430,

Madison/WI, USA, July 1998.

151

App endix A

The 90 Problem T est Suite

Problem #1 Problem #2 Problem #3

Problem #4 Problem #5 Problem #6

Problem #7 Problem #8 Problem #9

Problem #10 Problem #11 Problem #12

152

Problem #13 Problem #14 Problem #15

Problem #16 Problem #17 Problem #18

Problem #19 Problem #20 Problem #21

Problem #22 Problem #23 Problem #24

Problem #25 Problem #26 Problem #27

153

Problem #28 Problem #29 Problem #30

Problem #31 Problem #32 Problem #33

Problem #34 Problem #35 Problem #36

Problem #37 Problem #38 Problem #39

Problem #40 Problem #41 Problem #42

154

Problem #43 Problem #44 Problem #45

Problem #46 Problem #47 Problem #48

Problem #49 Problem #50 Problem #51

Problem #52 Problem #53 Problem #54

Problem #55 Problem #56 Problem #57

155

Problem #58 Problem #59 Problem #60

Problem #61 Problem #62 Problem #63

Problem #64 Problem #65 Problem #66

Problem #67 Problem #68 Problem #69

Problem #70 Problem #71 Problem #72

Problem #73 Problem #74 Problem #75

156

Problem #76 Problem #77 Problem #78

Problem #79 Problem #80 Problem #81

Problem #82 Problem #83 Problem #84

Problem #85 Problem #86 Problem #87

Problem #88 Problem #89 Problem #90

157

App endix B

The 61 Kids Problems

Problem #1 Problem #2 Problem #3 Problem #4 Problem #5

Problem #6 Problem #7 Problem #8 Problem #9 Problem #10

Problem #11 Problem #12 Problem #13 Problem #14 Problem #15

Problem #16 Problem #17 Problem #18 Problem #19 Problem #20

Problem #21 Problem #22 Problem #23 Problem #24 Problem #25

Problem #26 Problem #27 Problem #28 Problem #29 Problem #30

158

Problem #31 Problem #32 Problem #33 Problem #34 Problem #35

Problem #36 Problem #37 Problem #38 Problem #39 Problem #40

Problem #41 Problem #42 Problem #43 Problem #44 Problem #45

Problem #46 Problem #47 Problem #48 Problem #49 Problem #50

Problem #51 Problem #52 Problem #53 Problem #54

Problem #55 Problem #56 Problem #57 Problem #58

Problem #59 Problem #60 Problem #61

159

App endix C

Implemen tation Details

T o impro v e readabilit y and not to w ear the patience of the reader to o thin, w e decided

to mo v e most of the implemen tation details in to this app endix. These details are non-

essen tial to the basic ideas of the algorithms, but are imp ortan t to understand ho w

the implemen tation is realized. It is geared to w ards explaining ho w something w orks,

without trying to justify an ything. There will b e more \magic n um b ers", but w e will

not p oin t to them sp eci�cally an ymore.

C.1 Construction of Deadlo c k T ables

This section con tains a detailed accoun t of the implemen tation used to construct the

deadlo c k tables.

An o�-line searc h w as used to en umerate all p ossible com binations of w alls, stones

and empt y squares for a �xed-size region. F or eac h com bination of squares and their

con ten ts, a small searc h w as p erformed to determine whether or not a deadlo c k w as

presen t. This information w as stored in a tree data structure.

Eac h no de in the tree of Figure C.1 represen ts a certain pattern of stones, w alls

and empt y squares. The ro ot of the tree is the empt y maze, except for the man and

one stone. The three successors of the ro ot represen t a pattern with an additional

stone, w all or empt y square. Eac h of their successors represen t a pattern con taining

one more stone, w all or empt y square, and so on. Figure C.2 sho ws a p ossible order

of placing/querying the squares in a maze. The pattern with a w all on square 1 and

a w all on square 2 represen ts a deadlo c k, and the tree terminates at that p oin t. T o

�nd out if a certain pattern is a deadlo c k, a sp ecial searc h is p erformed whic h tries

to push all stones to goal squares. Ev ery square that is not part of the curren tly

in v estigated pattern is a goal square. If the searc h fails to �nd a solution { pushing

all stones to goals, a deadlo c k pattern w as disco v ered.

There are man y optimizations that mak e the computation of the tree more e�-

cien t.

� If a w all is placed, suc h that a stone b ecomes immediately deadlo c k ed (the w all

creates a dead square on whic h a stone is p ositioned), the searc h can b e a v oided

and deadlo c k is declared immediately .

160

...

... ...

...

1
2
3

4
5

deadlock deadlock deadlock deadlock

deadlock

2
3

4
5

2
3

4
5

2
3

4
5

3
4
5 3

4
5 3

4
5 3

4
5 3

4
5 3

4
5 3

4
5 3

4
5 3

4
5

4
5

4
5

4
5

4
5

4
5

4
5

Figure
C.1:

Deadlo
c

k
T

ree

161

Figure C.2: Example Deadlo c k T able Query Order

Figure C.3: Goal Macro Example

� If neither placing a w all nor a stone on a particular square created a deadlo c k,

placing an empt y square there cannot create deadlo c k either.

� When placing a stone, w e can c hec k if the patterns computed so far can iden tify

this p osition as a deadlo c k.

� The searc h of a deadlo c k pattern can b e sp ed up b y remo ving stones immediately

when they reac h a goal square.

� The searc h can use a c heap lo w er b ound that sums the distances of all stones

to their resp ectiv e closest goal.

Ev en with all these enhancemen ts, computing a deadlo c k table of appro ximately 5x4

tak es sev eral w eeks of computation, since most in terior no des of the pattern tree

represen t a small searc h, a v eraging sev eral h undred no des. Pushing deadlo c k tables

further w ould require an enormous n um b er of CPU cycles and the e�ects w ould b e

limited (see Section 4.6.4).

C.2 Goal Macros

C.2.1 Goal Ro oms

A goal ro om is a v ague concept. Humans rarely de�ne hard b oundaries as are needed

b y a program trying to precompute goal macros. The pro cedure describ ed here should

not b e view ed as the ultimate answ er to the problem of goal ro om detection.

162

Figure C.4: Tw o Kinds of En trances

First, all goal squares that are direct neigh b ors are included in the goal ro om.

If less than three goal squares are found together, no goal ro om is created, since

the p ossible sa vings do not out w eigh t the risk of pro ducing unsafe goal macros (see

Section 4.7.2). Then, using the goal squares as a start state, a highly pruned depth-

�rst branc h-and-b ound searc h is executed that searc hes through the searc h space of

goal ro om con�gurations for the \b est" goal ro om. \Best" is de�ned as follo ws:

� include as few stones as p ossible,

� lea v e as few en trances as p ossible, and

� include as man y squares as p ossible.

The primary concern is to iden tify a goal ro om with a minim um n um b er of en-

trances, and then, if p ossible, to maximize the n um b er of squares in the goal ro om.

A t eac h no de in this goal-ro om searc h, successor states are goal-ro om con�gurations

increased b y one square through whic h a stone can en ter the curren t goal-ro om con-

�guration. T o impro v e e�ciency , a transp osition table is used to prev en t duplicating

w ork. The result of this searc h for the example problem in Figure C.3 is a goal ro om

with the en trances at the squares Dc and Dd . Note, that the squares Gc and Gd

w ould also form a goal ro om with t w o en trances, but with few er squares inside.

T o determine goal ro oms is extremely di�cult, b ecause man y problems in
uence

it. The larger the goal ro om the larger the p oten tial gains, but also the higher the risk

of creating goal macros that cut o� solutions. F ew er en trances are generally preferred,

since man y en trances increase the risk of blo c king comm unication c hannels. If goal

ro oms are to o small ho w ev er, the pro cedures describ ed in the follo wing sections migh t

not b e able to �nd solutions b ecause stones ha v e to temp orarily lea v e the goal area.

C.2.2 En trances

There are generally t w o t yp es of en trances.

Man En trance: an en trance through whic h only the man can en ter, and

Stone En trance: an en trance through whic h stones (and man) can en ter.

If w e talk ab out \en trance" without sp ecifying if it is a man or stone en trance,

w e will assume it is a stone en trance. F or example, assume the en trances to the goal

163

ro om in Figure C.4 are Ec and Ee , then Ec is a stone en trance, since stones can reac h

goal squares from Ec . Ho w ev er, the en trance at Ee is a man en trance only; no stone

can reac h a goal from this en trance.

C.2.3 Goal-Macro T rees

Ha ving iden ti�ed a goal ro om, another o�-line searc h no w creates a goal-macro tree.

W e call this searc h go al-macr o tr e e gener ation and it is discussed in detail in Sec-

tion C.2.5. Figure C.5 sho ws an example of a goal-macro tree

1

. Eac h no de in this

tree represen ts a sp eci�c con�guration of stones in the goal ro om. Edges b et w een

the no des represen t macro mo v es. Eac h edge is lab eled with the n um b er of pushes

required b y the macro it represen ts. A macro mo v e is de�ned b y the en trance square

and the �nal goal square the stone is pushed to. The ro ot of the tree represen ts the

empt y goal area at the b eginning of the searc h. If at an y p oin t in time during the

searc h a stone is pushed to the en trance of a goal area, the goal-macro tree is con-

sulted as to whic h macro(s) should b e tried b y lo oking up the no de that represen ts

the curren t stone con�guration in the goal ro om. T o sp eed up the pro cess of �nding

the correct no de in the goal-macro tree, a p oin ter is k ept that p oin ts to the no de in

the goal-macro tree that represen ts the curren t stone con�guration in the goal area.

This p oin ter is up dated ev ery time a goal-macro mo v e is made or undone.

C.2.4 T arget Squares

Giv en a certain stone con�guration in the goal area, the goal-macro generation has

to solv e the problem of whic h square(s) should the next stone b e pushed to. These

squares are called target squares. There is a p oten tially di�eren t set of target squares

for eac h en trance.

Sev eral prop erties of the empt y goal squares are considered. Figure C.6 sho ws an

example goal ro om that w e will b e using to explain the follo wing concepts. There are

�v e en trance-indep enden t prop erties used:

FIXED: The stone w ould b e �xed if placed on this square. Squares Ih , Kh and Ke

ha v e this prop ert y .

DEAD: Placing a stone on this square w ould render one or more other empt y goal

squares immediately inaccessible, essen tially creating a deadlo c k. The squares

Jg and Jf ha v e this prop ert y . Note that the emphasis is on imme diately , a one-

mo v e lo ok-ahead. Placing a stone on If creates a deadlo c k as w ell, but only

deep er lo ok-ahead is able to v erify that.

NONOBSTR UCT: The stone w ould not obstruct an y path to an y of the other

squares, meaning if a square is reac hable from some en trance under some con-

ditions, it still is. The squares Ih,Jh and Kh are suc h squares. Ho w ev er, the

1

In e�ect, w e treat goal-macro trees as graphs for e�ciency reasons. W e still call it a tree, b ecause

this is more in tuitiv e.

164

HcHd

deadlocks

HdHc

deadlocks

DdDc Dc Dd

HdHc

Hd Hc

Dc

He

Dc

Dd

He

Dd

6

5 5

4 5 45

4 4

4 5 5 4 5

Figure C.5: Goal-Macro T ree Example

Figure C.6: T arget Squares

165

square Ig is not. It obstructs the reac habilit y of square Ih from en trance A . A

longer path is needed to get the stone to Ih .

A CCESS: Placing a stone on this square w ould render some square inaccessible from

some en trance. Squares If and Je are example squares with this prop ert y .

COMMUNICA TION: Placing a stone on a square with this prop ert y do es not cut

o� an y comm unication paths b et w een stone and man en trances. If p ossible, one

should a v oid placing stones on squares that cuto� certain areas of the maze.

The follo wing square prop erties are with resp ect to a sp eci�c en trance:

OPTIMAL: The stone can reac h the target square with an optimal n um b er of

pushes; no other stone is placed suc h that w e ha v e to mak e a detour. All

squares ha v e this prop ert y for eac h of the t w o en trances in our empt y example

maze. The man is allo w ed to lea v e the goal area.

INSIDE: When pushing the stone to a target square with this prop ert y , the man

do es not ha v e to lea v e the goal area. The squares Ig and Ih don't ha v e this prop-

ert y for en trance A , neither has square Ke for en trance B , giv en that optimalit y

is required.

STRICT: This prop ert y is a com bination of OPTIMAL and INSIDE. Squares Ig,

Ih and Ke do not ha v e this prop ert y . Either the man needs to lea v e the goal

ro om or the macro mo v e will require a non-optimal push sequence.

LOOSEST: A target square with this prop ert y is only reac hable with the man lea v-

ing the goal area and the stone taking a non-optimal path.

CLOSEST: CLOSEST is trying heuristically to guess where stones should go if

they come through a sp eci�c en trance. Since en trances can b e arbitrarily far

a w a y from the �rst goal square (see en trance A for example), CLOSEST is with

resp ect to the closest goal square to that en trance. F or en trance A the squares

If,Ig and Ih are closest, so are the squares Je and Ke for en trance B .

A heuristic function ev aluates eac h of the target squares using the prop erties

describ ed ab o v e. These v alues and prop erties are used to order the target squares to

allo w for a more e�cien t goal-macro tree generation.

C.2.5 Goal-Macro T ree Generation

Goal-macro tree generation is a searc h that tra v erses the highly pruned searc h space

of stone con�gurations in the goal area to �nd p ossible w a ys to pac k the stones in to

the goal ro om. Stones can en ter through all stone en trances and in an y order. The

searc h sa v es its results in a goal-macro tree, suc h that the ID A* searc h can reuse the

kno wledge found b y the goal-macro tree generation.

Eac h no de the searc h tries a set of target squares for eac h en trance. It places a

stone on eac h of the squares in turn and recursiv ely calls itself. The recursiv e call

166

Figure C.7: Piv ot P oin t Example

returns successfully if at least one p ossible w a y w as found to pac k all the stones in to

the goal area. In that case, the goal macro to the target square is added to the curren t

no de. The searc h attempts to satisfy eac h of the follo wing prop erties with at least one

target square: CLOSEST, OPTIMAL, INSIDE and NONOBSTR UCT. If the searc h

cannot �nd an y successful target square at a no de, it returns with failure.

C.2.6 Piv ot P oin ts

If all of the target squares ha v e the A CCESS prop ert y (they cut o� some square from

some en trance), w e call the p osition a pivot p osition and all squares are included as

macros. This is necessary b ecause at piv ot p oin ts in the searc h there is no w a y of

kno wing ho w man y stones will b e pushed through whic h en trance. Figure C.7 sho ws

one suc h p osition. Placing the stone at an y of the remaining goal squares divides

the goal area in to parts accessible only from one en trance. Since the goal-macro

generation cannot kno w what happ ens during the ID A* searc h, an y guess migh t b e

wrong. Hence all squares ha v e to b e included.

C.2.7 Included Stones

The goal-macro tree creation assumes an empt y goal area at the start of the searc h.

If stones w ere included in the goal area of the start con�guration, then the goal-

macro tree that is created, and the p oin ter the searc h has in to it represen ting the

curren t stone con�guration in the goal area, do not corresp ond. Whenev er a mo v e

is generated for a stone inside the goal area during ID A*, a sp ecial routine is called

that tries to put the stone in the closest goal square that the curren t goal-macro tree

no de o�ers.

C.2.8 P arking

If the �rst attempt to build a goal-macro tree fails, it w as most lik ely b ecause a

parking maneuv er is needed that the searc h cannot handle. A second attempt is

started, and this time the searc h is allo w ed to k eep no des in the goal macro tree that

ha v e no successor. It is assumed that at that p oin t, stones need to b e park ed and that

the ID A* searc h will b e able to solv e the parking problem. Since parking happ ens

167

mostly late in the goal pac king, w e can get most of the b ene�ts of goal macros without

rendering the problems unsolv able.

C.3 Customizing ID A* for P attern Searc hes

If the pattern searc hes used the same ID A* pro cedure and lo w er-b ound estimator as

in R ol ling Stone , the searc h w ould b e prohibitiv ely large and slo w. Instead, w e use a

sp ecial v ersion of ID A* (PID A*) that is customized for pattern searc hes, allo wing for

additional optimizations that dramatically impro v e the searc h e�ciency . By relaxing

the rules of Sok oban and in tro ducing new goal criteria, the resulting searc h is more

e�cien t and still returns an admissible lo w er b ound on the solution.

C.3.1 Stone Remo v al

One enhancemen t is to remo v e stones from the test maze once they reac h a goal

square. F or deadlo c k PID A* searc hes, stones are also remo v ed when they are pushed

on to a man-reac hable square. This comes from the observ ation that most deadlo c ks

result in a n um b er of stones getting cr owde d together. Hence, if a stone \breaks free",

w e assume w e no longer need to consider it in that searc h subtree.

C.3.2 Multiple Goal States

Another optimization is to relax what w e consider a goal state. In this relaxation,

goal states are also p ositions where the man can reac h all squares, and at least one

con
ict with the curren t StoneP ath has b een found. P enalt y PID A* searc hes do not

use this simpli�cation.

These shortcuts simplify the searc h leading to large sa vings in the cost of a pattern

searc h. Ho w ev er, this comes at the exp ense of p ossibly missing a p enalt y or deadlo c k.

In practice, the reduced searc h e�ort more than comp ensates for the few missed

opp ortunities.

C.3.3 E�cien t Lo w er Bound

Since stones get remo v ed from the b oard when they reac h a goal square, the Min-

matc hing lo w er-b ound heuristic is not appropriate. A c heap er heuristic can b e used:

the sum of the shortest distances of eac h stone to its closest goal. When a stone

mo v es, this lo w er b ound is easily up dated. This results in large sa vings in the cost

p er no de compared to the original O (n

3

) lo w er b ound. Since the n um b er of stones

is small in a pattern searc h, most searc h-related routines are fast, b ecause their cost

dep ends on the n um b er of stones in the maze.

168

C.3.4 T ransp osition T able En tries

Usually , if an ID A* searc h is started, the transp osition table has to b e cleared, since

old en tries are not v alid for the curren t searc h. Since m ultiple PID A* searc hes are

run on the same problem just with di�eren t stone con�gurations, w e can p oten tially

reuse transp osition table en tries from previous PID A* searc hes within the same ID A*

searc h. Ho w ev er, sp ecial care has to b e tak en when up dating the transp osition table

at the end of an ab orted searc h. Reusing en tries from previous searc hes can drastically

reduce the o v erhead for the PID A* searc hes.

C.4 Relev ance Cuts

C.4.1 In
uence T able

Our implemen tation runs a shortest-path �nding algorithm to �nd the largest in
u-

ence b et w een an y pair of squares. The �rst is referred to as the start square; the

second as the destination square. Eac h square on a path b et w een the start and des-

tination squares con tributes p oin ts dep ending on ho w it in
uences that path. The

more p oin ts are asso ciated with a pair of squares, the less the squares in
uence eac h

other. The exact n um b ers used to calculate in
uence are the follo wing:

Alternativ es: A square s on a path will ha v e t w o neigh b oring squares that are not

on the path. F or eac h of the neigh b oring squares n , the follo wing p oin ts are

added: 2 p oin ts if it is p ossible to push a stone (if presen t) from s to n ; 1 p oin t

if it is only p ossible to mo v e a man from s to n ; and 0 if n is a w all. Th us, the

maxim um n um b er of p oin ts that one square can con tribute for alternativ es is 4.

Goal-Sk ew: Ho w ev er, if s is on an optimal path from the start square to an y of the

goals in the maze, then the alternativ e p oin ts are divided b y t w o.

Connection: The connection b et w een consecutiv e squares along a path is used to

mo dify the in
uence. If a stone can b e pushed in the direction of the destination

square, then 1 p oin t is added. If only the man can tra v erse the connection

b et w een the squares (mo ving to w ards the destination square), then 2 p oin ts are

added.

T unnel: If the previous square on a path is in a tunnel, 0 p oin ts are added, regardless

of the ab o v e prop erties.

Figure C.8 is used to illustrate in
uence. F or a subset of squares in the �gure,

T able C.1 sho ws the in
uence n um b ers. In this example, the program automatically

determines that an in
uence relationship > 8 implies that t w o squares are distant

with resp ect to eac h other. Ho w this threshold is determined is describ ed in the next

section.

In this example, square A is in
uencing squares B and C . Ho w ev er, only B is

in
uencing A (the non-symmetric prop ert y). The table sho ws that there are sev eral

169

Figure C.8: Example Squares

A B C D E F G H I J K L M N O

A 1 6 10 18 19 21 13 17 17 24 12 12 10 18 16

B 4 1 5 13 14 18 8 16 16 22 10 11 9 17 15

C 7 4 1 9 10 15 9 15 15 25 13 14 12 20 18

D 11 8 5 3 9 14 12 14 14 29 17 18 16 24 22

E 13 10 7 7 2 7 9 7 7 26 19 12 14 18 20

F 23 19 17 18 10 2 13 6 6 25 34 11 13 17 19

G 12 7 9 15 14 11 1 15 15 34 23 19 17 25 23

H 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8

I 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8

J 16 16 20 27 19 15 23 11 11 1 10 11 12 11 14

K 10 10 14 22 23 26 17 22 22 16 1 17 15 23 21

L 8 8 12 20 14 10 15 6 6 21 14 1 2 7 8

M 7 7 11 19 16 12 14 8 8 23 13 3 1 9 7

N 12 12 16 24 18 14 19 10 10 16 18 5 6 3 6

O 11 11 15 23 20 16 18 12 12 18 17 7 5 8 3

T able C.1: Example In
uence V alues

regions with high lo calit y , whereas most of the en tries indicate non-lo cal relationships.

Giv en the high p ercen tage of non-lo cal en tries in the table, one migh t exp ect relev ance

cuts to eliminate most of the searc h tree. This is not quite true, in that a sequence

of lo cal mo v es can result in the start and end squares of the mo v e sequence not b eing

lo cal with resp ect to eac h other.

Consider calculating the in
uence b et w een squares A and C , as w ell as C and

A (see T able C.2). The table en tries corresp ond to the con tribution of eac h of the

in
uence prop erties. The table indicates the in
uence scores for the squares A , B ,

C , and the in termediate squares p and q , as w ell as for the connection b et w een the

squares (indicated b y the arro ws). Eac h line mo di�es the previous line (adding new

v alues or c hanging existing v alues). The �nal in
uence, the sum of the preceding

columns, is sho wn in the last column.

170

I nf l uenceT abl e [C ; A] C ! q ! B ! p ! A in
uence

alternativ es 1 0 2 0 0 0 4 0 0

connection 1 1 2 1 0 1 4 1 0

tunnel 1 1 2 1 0 0 4 1 0

goal-sk ew 1 1 1 1 0 0 2 1 0 7

I nf l uenceT abl e [A; C] A ! p ! B ! q ! C in
uence

alternativ es 2 0 4 0 0 0 1 0 1

connection 2 1 4 1 0 1 1 2 1

tunnel 2 0 4 1 0 0 1 2 1

goal-sk ew 1 0 4 1 0 0 1 2 1 10

T able C.2: Example In
uence Calculation

C.4.2 P arameter Settings

T o re
ect di�erences in mazes, the parameters inf thr eshol d and m are set at the

b eginning of the searc h. The maximal in
uence distance, inf thr eshol d , is computed

as follo ws:

1. Compute the a v erage v alue for all en tries I nf l uenceT abl e [x; y] satisfying the

condition that square y is on an optimal path from x to an y goal.

2. The a v erage is to o high. Scale it bac k b y dividing it b y t w o.

3. T o ensure that the cuts are not to o aggressiv e, inf thr eshol d is not allo w ed to

b e less than 6.

The length of the history used, m , is calculated as follo ws:

1. Compute the a v erage v alue for all en tries I nf l uenceT abl e [x; y] satisfying the

condition that a stone on square y can b e pushed to a goal (e.g. in Figure C.8,

squares F and G w ould not b e included).

2. T o ensure that the cuts are not to o aggressiv e, m is not allo w ed to b e more

than 10.

171

App endix D

F ailed Ideas

W e had no shortage of \go o d" ideas during the Sok oban pro ject, man y of whic h did

not pro duce the exp ected results. This app endix con tains a collection of the most

promising of these ideas that w e tried but did not lead to signi�can t impro v emen ts.

Ev en though this migh t not b e considered as a con tribution of the thesis (hence the

lo cation in the app endix), it migh t pro v e v aluable for the k een b eginners in Sok oban

to caution themselv es.

W e ha v e found discussions ab out Sok oban in v ariably leading in to certain direc-

tions, suggesting things to try and ideas to pursue. Unfortunately , w e then ha v e to

p oin t out that w e ha v e tried man y of the suggested ideas with little or no success.

Some of the ideas are sa ving searc h no des, but come at a cost that prohibits their

use b ecause the o v erall run time increases. Other metho ds w ork, but only for so few

problems that w e did not w an t them included b ecause w e w ere afraid they could do

more harm than go o d.

Wherev er p ossible, w e try to iden tify the problems that need to b e solv ed in order

to mak e some tec hnique feasible. This, of course, is not necessarily a complete list,

other problems migh t exist that w e are not a w are of. The reader migh t also detect

a sarcastic tone in the description of some of our attempts - unfortunately that is

what often remains. After mon ths of design, implemen tation, tuning and debugging,

redesign, reimplemen tation and tuning and debugging again, and again, the insigh ts

gained are often demoralizing in nature. The searc h-tree size is one of these concepts

w e still fail to appreciate completely . W e are faced with suc h an incredibly large

searc h space that searc hing in it for solutions seems lik e the pro v erbial searc h for the

\needle in the ha ystac k" - except that w e probably face an ev en more daun ting task.

This app endix migh t therefore seem lik e a turno� to man y , but it is not mean t lik e

that. W e are con vinced that a public record of \ideas that failed" is needed, not just

for pro jects lik e Sok oban, but for Computing Science in general. This app endix is an

attempt to start suc h a record for the domain of Sok oban and single-agen t searc h.

It migh t help to spark and/or further the discussion in to the merits of these ideas

in general, ultimately p ossibly leading to in teresting publications in their o wn righ t.

The p oten tial b ene�ts are manifold and not restricted to a v oiding duplicated e�orts,

but include fo cusing future researc h, impro ving exp erimen tal w ork and increasing the

comm unication on hard problems.

172

Idea Efficient ImplementationConcrete Algorithmic RepresentationHard Concepts

Figure D.1: Dev elopmen t Chain of Success

Wh y is it so hard to mak e an idea w ork? Figure D.1 sho ws what it tak es for us

to consider an idea a success. W e need to mak e three critical transitions.

1. W e need to tak e the idea that w as conceiv ed (and often has a v ague nature) and

form hard concepts around it. It is often easy to utter fuzzy ideas, but the mo-

men t one has to b e more concrete, it is m uc h more complicated to capture what

w as mean t when one w as thinking ab out it. F or example, what do y ou mean

with \a v oid di�cult stone con�gurations"? Ma yb e the concept of cro wding is

more concrete: \Man y stones in a restricted area m ust b e a v oided."

2. The second step is to dev elop a concrete algorithm that represen ts an idea.

Ho w can a hard concept b e put in to a concrete algorithm? F or example, ho w

can cro wding b e calculated in a Sok oban maze? What is \man y stones" for a

\restricted area" and what do es it mean to \a v oid" suc h situation in the searc h:

cutting them o�, or p ostp oning them?

3. Assuming w e ha v en't failed so far, no w w e ha v e to �nd a w a y to implemen t the

algorithm e�cien tly . Sa ving 50% of the no des is not go o d enough if eac h no de

searc hed b ecomes 10 times more exp ensiv e.

Often, ev en though all three h urdles w ere passed successfully , one �nds out that

a certain idea is redundan t with another idea already presen t in the solv er and only

small additional gains are p ossible. This is esp ecially prev alen t in high-p erformance

solv ers that are v ery e�cien t already: impro ving on their p erformance is often in-

credibly c hallenging.

W orse are in teracting features. Ev en though the new searc h enhancemen t w orks

lik e a c harm, it hinders another one and they con
ict in suc h a w a y that the o v erall

p erformance drops.

W e ha v e also seen what w e call logical bugs. After dev eloping and implemen ting

an idea, thorough testing migh t rev eal that pathological cases or exceptions exist. T o

handle those exceptions w ell is often the di�erence b et w een failure and success of a

metho d.

And then there are implemen tation errors - or bugs for short...

W e ha v e encoun tered all these problems{and more{while w orking on the Sok oban

pro ject. The follo wing list of failed ideas pro vides some insigh t in to our e�orts in

tac kling the \Go of single-agen t searc h": Sok oban. W e fo cus here on the description of

the high-lev el ideas that failed. Man y ideas to ok w eeks of e�ort to con vince ourselv es

of their futilit y .

173

Figure D.2: A Problem Where Bac kw ard Searc h Wins

D.1 Means End Analysis

Ev en b efore w e started seriously thinking ab out exhaustiv e searc h, w e in v ested sev-

eral w eeks in trying to mak e Means End Analysis (MEA) w ork. The problem w e

encoun tered is ho w to restrict and order all the p ossible c hoices of mo v es. In teracting

subgoals do not allo w for easy ordering of the c hoices. A lot of domain kno wledge

w ould b e needed to solv e this problem using MEA.

D.2 Bac kw ard Searc h

As already p oin ted out in Chapter 2, there is nothing forcing us to searc h from the

initial p osition forw ard to �nd a goal state. W e could also start from a goal state and

searc h bac kw ards. There are sev eral problems w e face when implemen ting suc h an

approac h:

� Multiple start states: Because only the stone/goal lo cations are de�ned, the

man can p oten tially b e in di�eren t places in the goal p osition. F or push-optimal

solutions that is a small n um b er, lik e 1 to usually not more than 4, but for mo v e-

optimal solutions this can b e quite a bit more. Of course, that increases the

searc h-tree size.

� W e trade forw ard deadlo c ks for bac kw ard deadlo c ks. Bac kw ard deadlo c ks are

usually easier to detect; the man runs out of mo v es, b ecause it is \compressing"

its o wn space. But, there are bac kw ard deadlo c ks that are just as hard to detect

as forw ard deadlo c ks. Those are the ones where the man compresses an area

of the maze, but can escap e to do other (futile) w ork, lea ving a few stones in

a lo c k ed p osition. W e found with the pattern searc hes a w a y to detect forw ard

deadlo c ks, but w e w ould ha v e to c hange them to detect bac kw ard deadlo c ks.

� Usually , goals are in goal areas (forw ard searc hes), but when searc hing bac k-

w ards, they are scattered throughout the maze, making it hard to establish

orders in whic h y ou w an t to put stones in. Goal macros, one of our most

v aluable searc h enhancemen ts, are useless.

W e ha v e a maze in whic h our bac kw ard searc h b eats our forw ard searc h, but w e

had to sp ecially design it to get the e�ect. Figure D.2 sho ws the maze. The forw ard

searc h needs 99,829 no des to solv e the maze; the bac kw ard searc h needs only 10,244.

174

This comparison is not quite fair, since the bac kw ard searc h is not using pattern

searc hes and th us do es not create their corresp onding o v erhead, nor can it appreciate

an y b ene�ts. Ho w ev er, turning o� pattern searc hes in the forw ard searc h is an ev en

bigger lo oser (364,006 no des) against the bac kw ard searc h.

The feature in the problem in Figure D.2 that mak es this problem amenable to

bac kw ard searc h is that the bac kw ard searc h detects early on (high up in the searc h

tree) that an extra mo v e is needed to get all the stones out of the goal area. The

forw ard searc h detects this only deep in the searc h, resulting in a m uc h larger searc h

tree b efore it switc hes in to the second iteration at whic h p oin t go o d mo v e ordering

results in a quic k successful termination of the searc h.

Ho w ev er, in general, the bac kw ard searc hes w ere m uc h larger than the forw ard

searc hes, mostly b ecause of the lost opp ortunit y to apply the goal macros.

D.3 Bidirectional Searc h

Let's assume w e solv e the problems with the bac kw ard searc h. W e could com bine

forw ard and bac kw ard searc h to form a bidirectional approac h. When using iterativ e

deep ening for forw ard and bac kw ard searc hes, one can easily alternate b oth directions.

Since b oth directions can ha v e di�eren t searc h-tree sizes, it seems natural to exploit

this fact. W e tried to deep en the searc h direction that had a smaller tree in the

previous iteration.

The general idea is the follo wing: Let's sa y the lo w er-b ound function estimates the

length of a solution (distance to the goal from the ro ot no de) to b e D . W e can start

the forw ard searc h using normal ID A* and giv e it an additional hard depth limit of,

sa y , X � D . Then w e start the bac kw ard searc h and giv e it an additional depth limit

of D � X . If there w as a solution with length D , then the searc h fron tiers should meet

at depths X and D � X . If the fron tiers did not meet, no solution exists with length

D . Consequen tly , w e increase the target solution length and start either a forw ard or

a bac kw ard searc h, no w with increased threshold D and increased additional depth

limit X or D � X . If of the t w o initial searc hes the forw ard searc h had the smaller

tree, it is probably a go o d idea to use forw ard searc h for the next step.

Ho w ev er, the meeting of the searc h fron tiers is still the most imp ortan t problem.

T raditionally , this is regarded as the main dra wbac k of bidirectional searc h. The

trouble is that the searc h fron tiers can b e so large that one needs lots of memory to

store them. W e c hanged the transp osition table co de to detect that, but the lik eliho o d

of o v erwriting en tries is high. T able replacemen t sc hemes usually prefer en tries from

deep searc hes, and shallo w en tries are thro wn a w a y . W e c hanged that to sa v e the

fron tier no des from clobb ering. Then, the table is
o o ded with all the fron tier no des.

X is an imp ortan t v ariable here. Setting X to ab out half of the solution length

will k eep b oth trees ab out the same size, maximizing the theoretical sa vings of bidi-

rectional searc h. Using X biased to w ards cutting one searc h shorter than the other

will k eep at least one searc h fron tier small, allo wing it to b e stored with practical

amoun ts of memory .

W e faced t w o ma jor problems with our implemen tation. The �rst w as predicting

175

whic h direction w as more pro�table to searc h. The previous searc h sizes are only a

w eak predictor of the size of the next iteration, b ecause iterations gro w rather errat-

ically . Second, what should X b e set to? W e tried an iterativ e approac h, increasing

X for the bac kw ard searc h for the same threshold D , but that is not cost e�ectiv e

b ecause large p ortions of the tree are re-searc hed.

F uture directions migh t include searc hing b oth directions un b ounded, assuming

that the �rst iterations will fail to mak e the fron tiers meet, and to record ho w deeply

they p enetrated the tree to mak e a more informed decision as to whic h searc h direction

to gro w next and where to set the depth limit. It b ecomes ob vious here ho w imp ortan t

con trol functions are. They could con trol the setting of X and D and switc h the searc h

directions, basically con trolling the searc h using information gathered b y previous

searc hes.

D.4 Real-Time Searc h

The searc h no w sp ends all its allo cated time to �nd a solution. What if w e had to

con trol a rob ot that had to mo v e ev ery n seconds? If n is small enough, suc h that

w e cannot �nd a complete solution, w e ha v e to commit to a mo v e without kno wing

if that mo v e leads to a solution. Muc h w orse, and unique to domains with directed

searc h spaces suc h as Sok oban, b y making a mo v e, w e migh t in tro duce a deadlo c k

and th us nev er b e able to solv e the problem.

Our attempt at real-time searc h tried to minimize the risk of b eing trapp ed in a

deadlo c k b y executing the follo wing steps:

1. Sp end ab out 25% of the allo cated time to order mo v es b y small searc hes and

using the searc h results to estimate whic h mo v e is b est. If, b y c hance, w e �nd

a solution, w e are done, the rest of the problem is easy . Else, go to step 2.

2. Chec k if the curren tly b est mo v e is rev ersible (use 25% of e�ort). If the b est

mo v e is rev ersible, go to step 4. Else, go to step 3.

3. Chec k if w e can �nd a deadlo c k (use 25% of e�ort). If so, goto step 1. Else, go

to step 4.

4. Execute b est mo v e. Go to step 1 to �nd next mo v e.

The last 25% are \bank ed" for the cases when w e ha v e to return to step 1 b ecause

a deadlo c k w as found in step 3. This pro cedure usually gets caugh t in a lo op, b ecause

it �nds rev ersible mo v es attractiv e. Some measure of progress is needed to guide the

real-time searc h. Otherwise the threat of deadlo c k forces the program in to a \safe",

but unpro ductiv e c hoice.

D.5 General P attern Databases

After a searc h �nishes, the patterns found b y the pattern searc hes are just forgotten.

W e implemen ted a sc heme where these patterns are sa v ed and then reused in later,

176

di�eren t mazes.

W e restricted the patterns sa v ed to areas of size 6x6 and �ltered all patterns

to remo v e \lo ose" w alls. These are w alls that, when remo ving the con text outside

the 6x6 area, are not connected to an y other w all and do not neigh b or an y stone.

The resulting patterns are then app ended to a dynamically gro wing database of suc h

patterns. When starting a searc h, all patterns are matc hed in all p ossible w a ys in

the maze (rotating, mirroring) and v eri�ed b y a small searc h to mak e sure that the

p enalties still hold in the new maze. The appro v ed patterns are then en tered in to the

database.

The o v erheads at the end and the b eginning of the searc hes are negligible. Ev en

the v eri�cation searc hes, limited to 100 no des eac h, are fast. What kills this ap-

proac h is the pattern matc hing o v erhead. T o o man y patterns are en tered in the

on-line database, and matc hing during the searc h slo ws the program do wn signi�-

can tly . Moreo v er, the matc hing rate is small. The ma jorit y of the patterns are nev er

matc hed and only cost o v erhead without e�ciency gain. That is a t ypical instance of

the utilit y problem [Min88].

After w e abandoned this idea w e implemen ted the pattern limits. With the pattern

limits, this metho d migh t w ork b etter, but additional in v estigation is needed.

D.6 Stone Reac habilit y

One of the most exciting, but failed, ideas w e pursued is the idea of stone reac habil-

it y . This idea came up in sev eral serious discussions with in terested p eople and w as

suggested in sligh tly di�eren t v ariations. Don Beal called it r o aming , Bart Massey

calls them e quivalenc e classes , Neil Burc h's v ersion w as named stone r e ach and Da v e

Gom b o c suggested it as c anonic al form .

The idea is roughly the follo wing: Keep pushing a stone un til the reac habilit y of

other stones is e�ected. Reac habilit y of stones is de�ned as the squares the man can

push stones to without pushing other stones in b et w een. Alternativ ely , one can think

of it as the area in whic h a stone can b e pushed around rev ersibly .

The idea is that one could create pseudo macro mo v es: as long as no stone reac h-

abilities are c hanged, k eep pushing this stone and do not consider an y alternativ e

pushes. Ho w ev er, Sok oban pro v es itself more di�cult than foreseen, again. There are

frequen tly o ccurring cases when this heuristic fails and truncates solutions. Second-

order reac habilit y considerations are of imp ortance. Often, b y mo ving a stone to a

certain square, stone reac habilit y is c hanged, but only if another stone is mo v ed �rst.

W e call this shado wing. Mo ving stone A w ould c hange the reac habilit y of stone B ,

but stone C shado ws (restricts) stone B 's reac habilit y suc h that the e�ect is not im-

mediately visible. Only after remo ving stone C , one can no w see that mo ving stone

A w as indeed c hanging stone B 's reac habilit y .

W e tried a t w o-step v ersion of the initial idea. If the �rst-order stone reac habilit y

w as not e�ected, a second test w as p erformed. No w, all stones, except the t w o in

question (A and B in the previous example) are remo v ed and it is determined if stone

A 's mo v e c hanges stone B 's reac habilit y . If not, w e can treat the sequence of mo v es of

177

stone A as a macro. That w orks quite w ell, the searc h trees get reduced b y ab out 50%,

ho w ev er, the cost of computing stone reac habilit y increases the cost of computation

for eac h no de b y ab out 10 times! The net loss is ab out 5 times longer run times.

The reader is cautioned to assume this migh t b e an implemen tation ine�ciency . W e

reduced the cost of naiv ely computing stone reac habilit y b y man y clev er enhancemen ts

b y at least one order of magnitude and closer examination rev eals wh y this cost is so

high. T o compute stone reac habilit y , one has to compute man reac habilit y man y times

o v er (at least around the stone to b e pushed) and that is an exp ensiv e computation

(depth- or breadth-�rst searc h).

It is hard to accept the fact that a b eautiful idea fails on something as trivial

as computation cost of a constan t factor. Unfortunately , high-p erformance problem

solv ers cannot con v enien tly ignore these constan ts and th us, ev en nice ideas are of-

ten retired after mon ths of in tense in tellectual, programming, tuning and debugging

e�orts. This is esp ecially frustrating b ecause one can nev er b e sure when to stop

these e�orts. The brillian t idea migh t b e just around the corner to sa v e the metho d,

or more realistically , one migh t �nd the bug that caused the implemen tation to fail.

After all, admitting defeat also means giving up on a lot of e�ort sp en t.

D.7 Sup er Macros

Another exciting idea w e pursued w as that of sup er macros. When a p enalt y searc h

fails to pro duce a pattern b ecause there are no more stones con
icting with the curren t

StoneP ath and ManP ath, then this is a hin t that the set of stones just considered can

b e pushed to goals indep enden tly of other stones. In principle, the p enalt y searc h has

just pro v en that there exists a solution for an indep enden t subproblem in the maze:

a set of stones.

The kno wledge ab out the indep endence of a subset of stones can b e used to restrict

the ID A* searc h to this subset, un til this en tire subset of stones is pushed on to goals.

Hence the name sup er macr os . This idea w as implemen ted and pro v en to w ork, but

the sa vings are small, usually less than 5%. W e decided not to use it b ecause there

are a few problems with the ab o v e reasoning. P attern searc hes assume that a stone

is going to its closest goal. What if that assumption is wrong? W e migh t not ha v e

an indep enden t set of stones; the pattern searc h could b e wrong. While w e did not

witness suc h adv erse e�ects, the risk in v olv ed seemed to o high to ignore compared to

the p ossible sa vings.

Wh y are the sa vings so small? These indep enden t sets of stones are usually close

to the goal areas. Usually they are few stones and optimal solutions can b e found for

pushing them to goals. With our mo v e ordering, ID A* will try these optimal mo v es

close to the goal area �rst an yw a ys. If these mo v es lead to goal macros, the goal cuts

are already remo ving alternativ es to these mo v es in case no solution w as found.

Sup er macros are an example of an idea that is almost en tirely subsumed b y an

arra y of other searc h enhancemen ts, and adding it on top do es not impro v e the searc h

an y further.

178

D.8 Conclusions

T o put it in to one sen tence:

Ideas are c heap; making them w ork is exp ensiv e.

Ev ery one of the ideas describ ed in this app endix is in teresting, ev en promising.

Most of the time, the reasons b ehind their failure are not ob vious. F uture researc h,

hop efully motiv ated b y new insigh ts, migh t �nd w a ys to turn some of these ideas in to

successful metho ds. Ho w ev er, it is unlik ely to b e easy to o v ercome the problems w e

encoun tered.

179

