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Abstrat
Searh is one of the fundamental methods in arti�ial intelligene (AI). It is at the oreof many suesses of AI that range from beating world hampions in non-trivial gamesto building master shedules for large orporations. However, the appliations oftoday and tomorrow require more than exhaustive, brute-fore searh, beause theseappliation domains have beome inreasingly omplex. Traditional methods fail tobreak the omplexity barrier aused by the ombinatorial explosion that haraterizesthese large, real-world domains.This thesis enhanes our understanding of single-agent searh methods. A puzzle(Sokoban) is used to explore new searh tehniques for single-agent searh. Sokobano�ers new hallenges to AI researh, beause it has a muh larger searh spae thanpreviously studied puzzle domains and exhibits a new, real-world-like searh-spaeproperty. Deadlok, the possibility to maneuver into an unsolvable position, providestraditional searh methods with onsiderable diÆulties. This thesis shows the failureof these traditional searh methods to solve more than trivial Sokoban problems. Thestate-of-the-art is signi�antly improved when traditional methods are hanged suhthat they are able to adapt to eah instane. Furthermore, several new tehniquesare suggested to ombat the omplexities and hallenges exempli�ed by Sokoban.Most suessful is a tehnique that dynamially gathers knowledge during the searhto avoid deadloks and to improve the searh's understanding of the searh spae.Another tehnique is desribed and analyzed that uses the heuristi notion of relevaneto fous the searh e�ort. This thesis loses with a suggestion of a framework and alassi�ation for single-agent searh enhanements.



PrefaeIt is quite interesting to ask people what they think of their PhD thesis after it is�nished. The reations range from dismissive hand-waving, to exuses for a numberof things. It is rare to meet somebody who is openly proud of their PhD thesis. Thatis good. It means I am not alone...I have tried to understand how so muh enthusiasm, drive and optimism ould turninto impatiene and a hope-it-will-be-over-soon attitude. By trying to understandwhat aused my frustration, I did regain some of the lost exitement for the researh.Of ourse, it always takes too long to �nish a thesis. Naturally, the disovery phase ismuh more fun than doumenting what has been found in full detail. We are hungryfor the knowledge, but not for the lean-up! The writing phase does not give thesame impression of progress { indeed, it seems it will never end. After doing a lot ofresearh and unovering many things, I feel that I know less now than ever before.How is this possible? We start out seeking the Truth, but inevitably �nd only deeperquestions."The more I know, the more I realize how little I know." { SoratesIn the quest to enlarge our irle of knowledge, we inevitably enlarge the fron-tier, where the questions lie. In the end, the searh for answers is a searh for newquestions. A working title for the thesis was "The Searh is the Goal", a play onthe Zen Buddhist adage "the path is the goal". This might explain why the feelingof ompleteness that I was hoping to ahieve is missing. To put it in more de�niteterms, thesis writing is about drawing the line. When enough new questions havebeen reated, it is time to stop. Thus, the thesis in front of you is a work in progress,halted for a moment in time to allow for proper doumentation of the results ahievedso far. The irle of knowledge does not stop expanding.I was privileged to have had the opportunity to ome to the University of Alberta,its Computing Siene Department, and not least, the GAMES researh group. Stu-dents from around the world ome to Edmonton to study some of the hardest problemsthat games have to o�er. The diverse interests and expertise of all the members forma wonderful synergy that leads to high-performane programs and exiting researh.I an reall ountless disussions in researh meetings and at parties where games andpuzzles (and how to solve them) were the subjet of intense debate.I have many people to thank, without whom this thesis would not be what it istoday. First and foremost, Jonathan Shae�er and his relentless pursuit of exellene{ nothing is good enough. Drawing from his wealth of knowledge and experiene has



allowed me to solve many hard problems. I thank the members of my examiningommittee, Peter van Beek, Joe Culberson, Rihard Korf, and Gordon Rostoker, fortheir time and valuable suggestions on how to improve the thesis. Yngvi Bj�ornsson,for being a sounding board for raw or unpolished ideas, and for the many valuablehints and ideas he shared. Darse Billings, for stimulating disussions about gamesand how they pertain to other aspets of life, as well as his e�orts in improvingmy speaken and wrotten English. Neil Burh, who rekindled my spirits after a longdrought of ideas. Tony Marsland, for being instrumental in my oming to Alberta.Other members of the GAMES group that helped produe ideas for this thesis, in somany diret and indiret ways: Mark Brokington, Aske Plaat, Roel van der Goot,Duane Szafron, Denis Papp, Lourdes Pe~na, and Jak van Rijswijk.And, last but not least, my family. Manuela, for her patiene and support, whihannot be repaid! Anne and Robert, for the joy and inspiration they gave during the�nal stages of this thesis. To all of you { Thanks!
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Chapter 1Introdution\To �nd the way out of a labyrinth," William reited, \there is only onemeans. At every new juntion, never seen before, the path we have takenwill be marked with three signs. If, beause of previous signs on someof the paths of the juntion, you see that the juntion has already beenvisited, you will make only one mark on the path you have taken. Ifall the apertures have already been marked, then you must retrae yoursteps. But if one or two apertures of the juntion are still without signs,you will hoose any one, making two signs on it. Proeeding through anaperture that bears only one sign, you will make two more, so that nowthe aperture bears three. All the parts of the labyrinth must have beenvisited if, arriving at a juntion, you never take a passage with three signs,unless none of the other passages is now without signs."\How do you know that? Are you an expert on labyrinths?"\No, I am iting an anient text I one read."\And by observing this rule you get out?"\Almost never, as far as I know..."Adso and William in the labyrinth, \The Name of the Rose", Umberto Eo.
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1.1 Arti�ial Intelligene and SearhResearh into searh methods is a fundamental branh of Arti�ial Intelligene (AI).Without joining the debate over what intelligene is and how it an be ahieved,it seems generally reognized that searh-based programs an solve problems thathumans would say require intelligene. Games and puzzles are examples of theseproblems. They have provided arti�ial intelligene researhers with exellent exper-imental domains. First, games are losed and well-de�ned appliations where im-provements are easily measured. Seond, they have supplied researhers with strongmotivation and lear goals, suh as beating the best humans with an arti�ial entity.Fifty years of AI researh using games as an experimental test bed has led to someimportant results:� Some games are solved. That means the omputer knows a strategy that allowsit to always ahieve the best possible result. Among these games are Go-Mokuand Qubi [All94℄, Nine-Men's-Morris [Gas94℄ and Connet-4 [All88℄.� In several games, programs have surpassed the best humans. In hekers, theprogramChinook won the World Championship in a regular math and defendedits title several times until it retired [SLLB96, Sh97℄. The Othello programLogistello defeated the world hampion 6-0 in a math [Bur97℄. The programMaven plays Srabble at suh a high level that it loses only a few possible pointsper game, onsistently surpassing human performane.� In other games, programs are approahing hampionship aliber that rivals thebest humans. In hess, strong programs an beat all but the very best humans.Deep Blue even defeated the World Champion Garry Kasparov in an exhibitionmath [New96℄. Gerry Tesaro's TD-Gammon plays bakgammon on par withthe best humans in the world [Tes95℄.� For games like bridge [Gin99℄ and poker [BPSS99℄, signi�ant progress is beingmade that may lead to high quality play rivaling the best human players.These are important suess stories for AI researh. For some of these games,one ould argue that the Turing test has been passed, albeit in a limited domain.However, some of the programs play so well that they would have to start blunderingone in a while to appear to be human!Of ourse, there are many hallenges left. Games suh as Go and Shogi still resistthe traditional approahes that are suessful in most of the mentioned games. Webelieve it is no oinidene that suess in writing programs for games appears tobe orrelated with our understanding of how to make searh work for them. Thisobservation undersores that searh is one of the most basi and important tools inAI.Domains besides two-player games in whih searh is suessfully deployed areoptimization tasks, sheduling, and, to a lesser extent, planning. These appliationsare examples of single-agent searh domains. In ontrast to adversarial games, suh ashess and poker, where opponents try to ahieve opposing goals, single-agent searh2



assumes that only one agent is manipulating the world in order to ahieve some(optimal) goal. Puzzles belong to the single-agent ategory as well.The researh into games and puzzles has produed an enormous body of usefultehniques and methods for problem solving that has found its way into main streamomputing siene. However, it has also some serious drawbaks. The arti�ial natureof games is reeted in their searh-spae properties. Relatively manageable searh-spaes, either small or well strutured, have been impliitly assisting the early progressof AI researh. However, they do not ompare to the omplexities of the real-worldappliations sientists are working on today. Beause of the ombinatorial natureof most domains and the resulting exponential size of the searh spaes, salabilityof searh methods is of great importane. If the domains used as researh vehilesdo not keep pae in omplexity and relevant properties, the researh results are lesslikely to be useful for pratial domains.The suess of searh depends on the ability of the program to visit most of therelevant parts of the searh spae. If the searh spae is too large and/or heuristiknowledge to fous the searh is missing, suess is unlikely. Sine the searh-spaesize of a problem is �xed, knowledge is needed to fous the searh. This is wheremahines urrently fail and humans still have a onsiderable edge: �nding and usingknowledge to redue the problem omplexity. Thus, more researh on how to foussearh on relevant parts of the searh spae is needed.Methods that do not adapt to the problem instane, but instead rely on generalproperties of the domain, an help to improve searh eÆieny. But, they are limitedby the neessity of keeping their knowledge generally appliable. However, humansare apable of learning during the problem solving proess about how to solve theurrent problem instane. This suggests developing dynami methods to glean and useknowledge that pertains to the spei� problem instane urrently under examination.This spei�ity an help to break the omplexity barrier on a problem-by-problembasis. Spei� problem knowledge an remove irrelevant parts from the searh withthe preision of a salpel. Of ourse, instane-dependent knowledge has its prie. Ithas to be found over and over again, and generalizing it is not only little understood,but it would turn this knowledge into a dull, even though larger, mahete.Dynami knowledge disovery is in fat a form of learning. It is performed at thelevel of problem instanes, but shows all the properties of learning. As the learningprogresses, the lassi�ation of subtrees as relevant/irrelevant beomes more preise.The result is a more eÆient searh, reduing the omplexity of the searh spae athand. However, our urrent understanding of these dynami methods is limited atbest.In this thesis, a puzzle game (Sokoban) is used to explore new searh tehniques forsingle-agent searh. Sokoban o�ers new hallenges, beause it has a muh larger searhspae than previously studied puzzle domains and exhibits real-world-like searh-spae properties. Deadlok, the possibility to maneuver into an unsolvable position,provides onsiderable diÆulties to traditional searh methods. This thesis showsthat traditional searh methods fail to solve more than trivial Sokoban problems. Thestate-of-the-art is signi�antly improved when traditional methods are hanged suhthat they are able to adapt to eah instane. Furthermore, several new tehniques3



are suggested to ombat the new omplexities and hallenges exempli�ed by Sokoban.Most suessful is a tehnique that dynamially gathers knowledge during the searhto avoid deadloks and to improve the searh's understanding of the searh spae.Another method that uses the heuristi notion of relevane to fous the searh e�ortis desribed and analyzed. This thesis loses with a suggestion of a framework and alassi�ation for single-agent searh enhanements.The researh presented here leaves a great number of important issues open. Theperformane of domain-independent solvers is still quite limited. The question is, howan the enhanements suggested here (and, of ourse, many others already suggestedelsewhere) be automatially instantiated for a new domain? Can they be formulatedin a domain-independent way? Can we identify the essential properties a domain musthave to be amenable to a ertain searh enhanement? For simple enhanements,suh as transposition tables, this is possible. Can we �nd suh ways for other, moreomplex searh enhanements? After all, humans seem to be able to adapt theirognitive proesses to a seemingly endless number of new problems. We are only atthe beginning...1.2 ContributionsThis thesis enhanes our understanding of single-agent searh with the following on-tributions:� The puzzle game Sokoban is investigated and it is shown that its large searh-spae size and partiular searh-spae properties o�er signi�ant new hallengesfor AI researh. One of these hallenges is the possibility of deadloks: thesearh an reate problem on�gurations that have no solution. In fat, state-of-the-art single-agent searh is shown to be insuÆient to even solve Sokobanproblems of modest omplexity.� The onept of maro moves [Kor85b℄ is improved by adding automati o�-linemaro-move generation. Signi�ant eÆieny gains are the result.� A new searh enhanement is introdued: pattern searhes. Small, speulativeon-line searhes gather dynami knowledge that helps avoid deadloks and im-prove the heuristi estimate of the distane to the solution. The use of thisdynami knowledge allows orders-of-magnitude redutions in searh-tree sizesfor our Sokoban solver. The neessary properties of the appliation domain andheuristi funtion are identi�ed that allow the appliation of pattern searhes.The feasibility of pattern searhes for di�erent domains is shown using the ex-ample of the 15-puzzle.� Relevane uts, a new domain-independent forward-pruning tehnique is pre-sented. It is theoretially analyzed, and the risks and bene�ts are studied. Theanalysis is ontrasted with the experimental results. Relevane uts lead torelatively small searh-eÆieny improvements in the domain of Sokoban.4
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Figure 1.1: Chapter Dependenies� A traditionally suessful method for overestimation (WIDA* [Kor93℄) is shownto fail in Sokoban. An explanation for this phenomenon is given. An alternate,domain-dependent method, driven by the dynami knowledge gathered with thepattern searhes, is shown to yield signi�ant improvements in searh eÆieny.� A lassi�ation of single-agent searh enhanements is presented. It revealsinteresting insights into the strengths and weaknesses of ertain fundamentalapproahes to enhaning searh algorithms.� Control knowledge and ontrol funtions, new onepts in single-agent searh,are proposed. The distintion between task and ontrol knowledge allows for aleaner treatment during design, implementation and tuning of searh enhane-ments.� A framework for single-agent searh enhanements is given. Four basi types ofsearh enhanements are identi�ed.1.3 OrganizationFigure 1.1 ontains a graph showing these inter-hapter dependenies. After an in-trodution to single-agent searh in Chapter 2, Chapter 3 introdues the puzzle gameSokoban in detail. Chapter 2 will be useful when reading through parts of Chapter 3,but it is not essential. Readers familiar with single-agent searh and/or Sokoban maywish to skip Chapter 2 and Chapter 3, respetively.Chapter 4 examines the performane of the standard single-agent searh teh-niques that are available in the literature and shows how to enhane maro moveswith o�-line preomputation. This hapter also lays out the experimental setup usedthroughout this thesis. It is fundamental to the understanding of either of the fol-lowing three hapters in terms of methodology and terminology.5



Chapter 5 introdues Pattern Searh, a method that dynamially learns how toavoid deadloks and improve the lower bound.Chapter 6 disusses a new forward-pruning tehnique alled Relevane Cuts.In Chapter 7, the possibilities for overestimation are explored. The reader of thishapter should be omfortable with ideas and terms de�ned in Chapter 5.Chapter 8 shows how these tehniques �t into a framework that extends the tra-ditional view on single-agent searh. To get the most from this hapter, the readershould be well versed with single-agent searh (Chapter 2), the standard single-agentsearh enhanements (Chapter 4) and the new searh enhanements from Chapter 5to Chapter 7.1.4 PubliationsChapter 4 \Using Standard Single-Agent Searh Methods" is based on two papers.The �rst paper, \Sokoban: A Challenging Single-Agent Searh Problem" [JS97℄,was presented at the workshop \Using Games as an Experimental Testbed for AIResearh" at IJCAI'97, Nagoya, Japan. The seond paper, \Sokoban: EvaluatingStandard Single-Agent Searh Tehniques in the Presene of Deadlok" [JS98℄, is arevised and updated version of the workshop paper. It was presented in 1998 at theCanadian AI onferene in Vanouver, Canada.Chapter 5 \Pattern Searhes" is based on the paper \Single-Agent Searh in thePresene of Deadlok" [JS98b℄ whih was presented at AAAI'98, Madison/WI, USA.Chapter 6 \Relevane Cuts" stems from the paper \Sokoban: Improving theSearh with Relevane Cuts" [JS99b℄ whih was aepted in 1999 for a speial issueof the Journal of Theoretial Computing Siene. This paper is based on an earlierversion, \Relevane Cuts: Loalizing the Searh" [JS98a℄, whih was presented in1998 at \The First International Conferene on Computers and Games", Tsukuba,Japan.Chapter 8 \Single-Agent Searh Enhanements" is based on the paper \Domain-Dependent Single-Agent Searh Enhanements" [JS99a℄ whih was presented at IJ-CAI'99, Stokholm, Sweden.
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Chapter 2Single-Agent Searh
2.1 Purpose of SearhReal-world problems an often be abstrated into models where a state of the worldis desribed mathematially. State-transition rules desribe the onditions for thetransitions between states in the model and the hanges these transitions ause.For example, the hildren's toy alled sliding-tile puzzle an be modeled in thefollowing way. A state onsists of the urrent loation of the tiles and the emptyspae. The state-transition rules de�ne that any of the up to 4 neighboring tilesan be pushed into the empty spae. This simple desription allows us to model the\real-world" problem of the sliding-tile puzzle eonomially.Single-agent searh assumes that only one \agent" is hanging the state of theworld, in priniple, having total ontrol within the rules de�ned by the model. Ad-versarial searh assumes multiple (typially two) agents that both hange the worldto ahieve opposing goals. We will restrit ourselves to single-agent searh in thisthesis.State desriptions and state-transition rules (olletively, the \model") impliitlyde�ne a graph that is alled the problem or state spae. The nodes in this graphrepresent the states and the edges are transitions between states. A problem is givenby a start state of the world and a desription of at least one goal state. A solutionwould be a path leading from the start state to any of the goal states. A solutionpath indiates the sequene of transitions needed to transform the start state intothe goal state. Some restritions on that path might be given, suh as the shortestpossible path in terms of number of transitions.In a problem desription as de�ned above, �nding a solution means �nding a pathin a graph. Di�erent algorithms have been proposed that attempt exatly that. Theyfollow di�erent strategies.
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Figure 2.1: Example Searh Graph (Tree) With Legend2.1.1 Notation and TerminologyFirst we will introdue some notation and terminology to help explain the algorithmsin the next setions. The exat distane1 from a state s to the losest goal is usuallyreferred to as h�(s). The funtion h�(s) is generally unknown. If we had a perfetfuntion for h�, �nding an optimal path to a goal would be trivial and searh would beunneessary. The heuristi funtion h(s) estimates h�(s) and is said to be admissible,if h(s) � h�(s); 8s 2 S, where S is the set of all states in the searh spae. Inother words, h(s) is a lower bound on h�(s). The funtion h(s) is alled onsistent, ifh(s1) � h(s2)+ (s1; s2); 8s1; s2 2 S, with (s1; s2) being the ost to get from s1 to s2.Consisteny means that eah transition having ost (s1; s2) an derease the heuristivalue by at most that ost. Consistent heuristis are neessarily admissible. For anyof the goal states h(sg) = 0, where sg 2 G and G is the set of all goal states andG � S. The value g(s) is the ost of all the transitions (or ations) performed to reahs from the start state s0, therefore g(s0) = 0. We will also use the funtion f(s), whihis de�ned as f(s) = g(s)+ h(s). Intuitively, f(s) is the estimate of the total distanefrom the start state to a goal state via s. f �(s) is de�ned as f �(s) = g(s) + h�(s).Thus, f �(s) is the atual ost along an optimal path through the state s. We willall a generated node in a searh graph open if all of its suessors have not yet beengenerated by the searh algorithm and losed otherwise.Figure 2.1 shows an example of a state spae whih we will use throughout thishapter to illustrate the di�erent searh algorithms. Nodes are marked with h andh�, and with g and f , as indiated in the legend of Figure 2.1.1Cost and distane will be used interhangeably, sine we assume ost to be equal to distane.This simplifying assumption does not invalidate the generality of the following statements, sinedistane ould be de�ned di�erently.
8



2.2 AlgorithmsMany di�erent algorithms have been proposed to traverse searh spaes. We willonentrate on the most important and relevant to this thesis. We will start withthree uninformed searhes: random walk, breadth-�rst searh and depth-�rst searh.We then move on to informed searhes, like A*, that use additional information inthe form of heuristi knowledge to guide the searh. This setion loses with someintuitive explanations of searh spaes and heuristi funtions.2.2.1 Uninformed SearhRandom Generation and Random WalkRandom walk does what the name suggests: The algorithm walks randomly throughthe searh spae, hoosing any of the neighbors. This might sound silly, but it an bea good idea if the goal density (the ratio of goal to non-goal states) is high enough, thequality (ost) of a solution is not a major issue, and little or no knowledge about theproblem domain is available. Systemati searh algorithms an su�er from problemssuh as spae requirements, yles, transpositions, and in�nite paths { problems thatare almost no issue in random algorithms. However, random algorithms are easilyoutperformed by more systemati approahes when searhing for good quality solu-tions, or searhing in large searh spaes with low goal density, or when high-qualityknowledge about the problem is available.Figure 2.2 shows pseudo ode for a random-generation algorithm. Instead ofhoosing a neighbor, it randomly selets any of the open nodes. OpenStorage refersto a data struture that an simply hold states visited, suh as a list. The routinesStore and SeletRandomly store and retrieve as well as remove states from that datastruture. Empty tests if the data struture still ontains states. Child expands astate (reates all possible suessors by applying all legal ations) and Solution testsif a state is a goal state.Some humans pratie a form of random walk when they try to �nd, for example,baby food in a big department store that they visit for the �rst time. Withoutknowledge of where the produts are loated, most of their steps take them in arandom diretion, eventually reahing the shelf with the baby food.Breadth-First SearhIntuitively, breadth-�rst searh traverses the searh spae systematially by visitingall the nodes that are losest to the start state before visiting the ones further away,hene breadth-�rst. Figure 2.3 shows an order the nodes of the example graph inFigure 2.1 are expanded.Figure 2.4 shows the pseudo ode for breadth-�rst searh. It starts by storingthe start state into a �rst-in-�rst-out (FIFO) queue that holds all open states, statesthat are due to be expanded.2 Until a goal state is found, breadth-�rst searh takes2Note that Store for OpenStorage in the random walker and Store for OpenFIFO have slightly9



RandomWalk( StartState )f Store( OpenStorage, StartState );Suess = FALSE;DO fCurrentState = SeletRandomly( OpenStorage );IF( Solution( CurrentState ) )Suess = TRUE;ELSEFOREACH( Child( CurrentState ) ) DOStore( OpenStorage, Child( CurrentState ) );g UNTIL( Suess OR Empty( OpenStorage ) );IF( Suess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.2: Random-Generation Algorithm
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Figure 2.3: Illustration of Breadth-First Searh
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BreadthFirst( StartState )f Store( OpenFIFO, StartState );Suess = FALSE;DO fCurrentState = GetFirstIn( OpenFIFO );IF( Solution( CurrentState ) )Suess = TRUE;ELSEFOREACH( Child( CurrentState ) ) DOStore( OpenFIFO, Child( CurrentState ) );g UNTIL( Suess OR Empty( OpenFIFO ) );IF( Suess ) RETURN( CurrentState );ELSE RETURN( NULL );gFigure 2.4: Breadth-First Algorithm (for Unit-Cost Ations)the next state from the queue, expands it and stores all suessors at the end of thequeue.Consider an analogy. When we drop our last math in a dark ellar, one wouldusually kneel down, touhing the immediate area on the oor, slowly extending ourreah, enlarging the area searhed until we touh the math. This is in priniple abreadth-�rst searh. This approah seems reasonable, sine we expet the math tobe lose by.This simple algorithm is guaranteed to �nd an optimal solution, if all ations havethe same (unit) ost. In the ase of non-unit-ost ations, having found a solution,we have to ontinue to expand all states in the queue that have a ost less than theurrently best solution. Two hanges are neessary to ahieve this. First, a simplehek of eah new state is added before it is put into the queue to see if its ost is lessthan the urrent best solution. Seond, the algorithm stops only after the queue isempty. Dijkstra's shortest-path algorithm is the generalisation of breadth-�rst searhto this ase.The immediate onern with this algorithm is its spae requirement. The queueontains the entire searh frontier, all the open states. This an quikly exhaust thememory apaity, even for moderately omplex problems. For problems where thatis the ase, we need an alternative.Depth-First SearhDepth-�rst searh explores the searh spae from top to bottom aross the graph (likeolumns in a table). More spei�ally, before searhing the siblings of a node, all itshildren are searhed. Thus, the deepest open nodes are expanded �rst. Figure 2.5di�erent semantis, eah aording to the kind of data struture they are operating on.11
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Figure 2.5: Illustration of Depth-First Searhshows depth-�rst searh for our example graph in Figure 2.1.To ahieve the behavior from the sketh of the breadth-�rst algorithm above, wesimply hange the queue into a stak (last-in-�rst-out = LIFO)3. Figure 2.6 showsthe pseudo ode for the depth-�rst algorithm. If the algorithm stops after the �rstsolution is found, we annot be guaranteed to have an optimal solution. We willhave to explore all hildren of the start state to make sure. However, there is oneobservation that an be used to improve the eÆieny. One a state s has a ost f(s)larger than or equal to the urrently best solution, exploring its suessors will notyield any better solution and we an stop searhing this part of the searh spae, ifno ations have negative ost.The advantage of depth-�rst searh over breadth-�rst searh is in the spae re-quirements. The stak only holds all the neighboring states of the states on theurrent path. That means that the spae needed for the stak is linear in the lengthof the urrent searh path, whih is logarithmi in the size of the tree. On the otherhand, breadth-�rst searh stores the searh frontier, whih, beause of the exponentialgrowth of the searh tree, grows exponentially.When Columbus set out from Spain to �nd India in the West, he did not wastetime trying to �nd it in the immediate viinity of Spain; he went straight West. Weknow today that this depth-�rst approah, beause of the size of the goal (we assumeit was Ameria), makes perfet sense.The obvious drawbak of this algorithm is the possibility of yles or in�nite paths.3The attentive reader will notie a slight inonsisteny here. If the nodes are generated from leftto right, as is usually assumed, and immediately plaed on the stak, they would be expanded rightto left. However, Figure 2.5 shows a left-to-right expansion.12



DepthFirst( StartState )f Push( OpenStak, StartState );Suess = FALSE;DO fCurrentState = Pop(OpenStak);IF( Solution( CurrentState ) )Suess = TRUE;ELSEFOREACH( Child( CurrentState ) ) DOPush( OpenStak, Child( CurrentState ) );g UNTIL( Suess OR Empty( OpenStak ) );IF( Suess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.6: Depth-First AlgorithmIf the problem domain allows for either of these, the simple algorithm of Figure 2.6might fail to �nd a solution. If the algorithm had a notion of how muh e�ort wasspent on a ertain path and an estimate about how far a potential solution was away,these two problems ould be avoided.Iterative DeepeningIterative deepening is an attempt to retify the problems depth-�rst searh faeswith in�nite paths or loops, without inurring the exessive spae requirements ofbreadth-�rst searh. It was �rst introdued in [SA77, Kor85a℄, albeit for minimax-like algorithms and with a slightly di�erent purpose.The basi idea is to iteratively deepen the maximum depth a depth-�rst searhan traverse into the searh tree. If a ertain iteration has �nished without �ndinga goal, the maximal depth is inreased and the depth-�rst searh is restarted. At�rst this might sound like a lot of wasted work, but sine the searh-tree size growsexponentially with the depth, the size of the tree is dominated by the e�ort spentin the last iteration. Thus, all previous iterations searh a relatively small portionof nodes when ompared with the urrent iteration. Additionally, if a goal is found,it must be an optimal goal, sine the previous iteration searhed all nodes reahablewith less moves then the urrent iteration allows (given unit-ost ations).Iterative BroadeningIterative broadening [Gin93a℄ is to breadth-�rst searh what iterative deepening isto depth-�rst searh. The number of suessors explored at eah node in the tree isrestrited to a �xed portion (or alternatively a �xed number) of all suessors. If nosolution is found, the searh an be restarted with more suessors onsidered at eah13



node. It is important to note here that the searh-tree size growth is only dampened;it still grows exponentially!Sine iterative broadening does not impose depth limits per se, loops and in�nitepaths an lead to problems if not searhed in a breadth-�rst manner. To avoidexessive spae requirements, one an use the iterative deepening idea in onnetionwith iterative broadening. However, if a searh iteration failed to �nd a solution, it ishard to deide if the searh should broaden or deepen the searh e�orts. Very littleresearh has been done to investigate mehanisms that might be useful to ontrolsuh hybrid searhes.Beam SearhBeam searh [Win92, Bis92℄ restrits the number of open states per level in the treeto a onstant { the beam into the searh tree. Obviously, the searh trees are onlygrowing linearly in depth. Even though the idea might seem appealing at �rst, itomes with its own set of problems that are similar to the hybrid iterative approahes.If a searh returns failure, how muh wider should the searh beam be? Whih nodesshould be kept at a partiular level? These and similar issues are under investigation(For an example see [Zha98℄.).2.2.2 Informed SearhAll previous algorithms had no more information about a state other than the ostneeded to reah it from the start state. Informed algorithms use additional knowledgeto estimate how far away a solution is. This domain-dependent knowledge is enodedinto a heuristi funtion. It returns an estimate of the distane to the goal for anyarbitrary state. This heuristi funtion is alled admissible if it never overestimatesthe distane (or ost) from any state in the searh spae to the losest goal. Thisestimate is also alled a lower-bound estimator.To get a lower-bound heuristi, one an remove onstraints from the original setof rules for the domain and use this simpler problem to ome up with an optimistiestimate on the ost to ahieve a solution. For example, in the sliding-tile puzzle (seeSetion 2.6.1), we might hoose to ignore the rules that only one tile an be at onesquare at a time and that a blank has to be beside a tile to be moved. With thesetwo relaxations of the rules of the game, we get the Manhattan distane heuristi (seeSetion 2.3.3). Of ourse, the more simplifying (or ignorant) the assumptions are, thegreater the error between the lower-bound estimator and the real ost to a goal.The fewer the simpli�ations, the smaller the error between h and h� will poten-tially be. Taking more details of the domain into aount makes the lower-boundestimator more expensive to ompute. However, sine dereasing the error in thelower-bound estimator means a more eÆient searh4, the gains in eÆieny ano�set the more expensive lower-bound alulations.Many of the good lower-bound funtions used for spei� domains, suh as thesliding-tile puzzle, are hand-rafted. Often, they result from lever redutions into4This relationship will beome more apparent in upoming setions.14



BestFirst( StartState )f Insert( OpenSortedList, StartState );Suess = FALSE;DO fCurrentState = GetBest( OpenSortedList );IF( Solution( CurrentState ) )Suess = TRUE;ELSEFOREACH( Child( CurrentState ) ) DOInsertSortedOnH( OpenSortedList, Child( CurrentState ) );g UNTIL( Suess OR Empty( OpenSortedList ) );IF( Suess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.7: Best-First Algorithmfuntions that are easy to ompute or approximate. The Manhattan distane is onesuh funtion: a number of table lookups and a summation are suÆient to alulateit. Furthermore, one an inrementally update the Manhattan distane as moves aremade. This an result in e�etive and eÆient implementations.However, these good lower-bound funtions are appliation-dependent. Eah newappliation domain requires new e�orts to �nd good heuristis. For large and non-intuitive domains this an be a hard problem. Holte et.al. [HPRA96℄ suggest usinghierarhial searhes to establish lower bounds on distanes to goals. By abstratingthe real searh spae (often by simplifying it), a smaller searh in an abstrat searhspae an produe a lower bound on the number of steps required to reah a goalin the real searh spae. Ge�ner [BG98, BG99℄ suggests a similar approah for hisstate-spae planner.Naive (Pure) Best-First SearhBest-�rst searh always expands the best open node next. \Best" is de�ned withrespet to some measure, typially the estimated distane to the losest goal stateh(s). Thus, at eah step a best-�rst searh expands the node that it believes tobe losest to a goal. This behavior an be ahieved by keeping all open states in asorted list, ordered by the estimate of the distane to the goal (see pseudo ode inFigure 2.7).Unfortunately, this algorithm is not guaranteed to �nd an optimal solution. Thesearh might be misled by an optimisti estimator for a path to a non-optimal solution.For example, if the heuristi returns a distane of 1 on the path to a non-optimal goal(see Figure 2.8), the path to an optimal goal is ignored and the suboptimal goal isfound �rst. Best-�rst searh will follow this suboptimal path to arbitrary depth. Aloser goal was ignored beause of a slightly larger estimate of the distane to the15
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A STAR( StartState )f StartState.g = 0;Insert( OpenSortedList, StartState );Suess = FALSE;DO fCurrentState = GetBest( OpenSortedList );IF( Solution( CurrentState ) )Suess = TRUE;ELSEf FOREACH( Child( CurrentState ) ) DO fIF( IsIn( OpenSortedList( Child( CurrentState ) ) ) )f OldState = Get( OpenSortedList( Child( CurrentState ) ) );OldState.g = min( OldState.g, Child( CurrentState ).g );gELSIF( IsIn( ClosedList( Child( CurrentState ) ) ) )PropagateG( Get( ClosedList( Child( CurrentState ) ) ) );ELSEInsertSortedOnF( OpenSortedList, Child( CurrentState ) );gInsert( ClosedList, CurrentState );gg UNTIL( Suess OR Empty( OpenSortedList ) );IF( Suess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.9: A* Algorithm
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Figure 2.10: Illustration of A*by setting the ost of ations to 0 (resulting in g being 0) and using the normal h, weahieve the naive best-�rst behavior.The maintenane and size of the OPEN and CLOSED lists, with the expensive Getand InsertSortedOnF operations, are the main drawbaks of A*. Even moderatelyomplex problems an bring the spae requirements beyond the aeptable.IDA*Korf [Kor85a℄ applied the idea of iterative deepening to A*. The resulting algorithm(see Figure 2.11), Iterative Deepening A* (IDA*), traverses the searh tree in a depth-�rst manner, iteratively deepening the tree. Eah iteration of IDA* tries to �nd asolution with a path length equal to PathLimit. For the �rst iteration, PathLimit isset to the heuristi estimate for the start state (h(s)). If the heuristi is admissible,any node s with g(s) + h(s) = f(s) > PathLimit annot be on a solution path oflength PathLimit and an therefore be ignored (pruned from the tree in this iteration).Exhaustively searhing the tree during an iteration and not �nding a solution is proofthat no solution with length PathLimit exists. PathLimit is inreased and a newiteration started. Eventually, we will inrease PathLimit to a value that is as large asthe optimal solution length (ost). During this last iteration we will �nd an optimalsolution.Is this approah eÆient? 18



IDA STAR( StartState )f PathLimit = H( StartState ) - 1;Suess = FALSE;DO fPathLimit ++;StartState.g = 0;Push( OpenStak, StartState );DO fCurrentState = Pop( OpenStak );IF( Solution( CurrentState ) )Suess = TRUE;ELSIF( PathLimit >= ( CurrentState.g + H( CurrentState ) ) )FOREACH( Child( CurrentState ) ) DOPush( OpenStak, Child( CurrentState ) );g UNTIL( Suess OR Empty( OpenStak ) );g UNTIL( Suess OR ResoureLimitsReahed() );IF( Suess ) RETURN( CurrentState );ELSE RETURN( NULL );g Figure 2.11: IDA* Algorithm
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Figure 2.12: Illustration of IDA*19



� Eah iteration is a depth-�rst searh, restriting the spae requirements to log-arithmi spae in the size of the searh tree, whereas A* needed linear spae inthe size of the searh tree.� No expensive list operations are needed anymore, lists are replaed with a heapstak.� With the limit on the solution length, an additional uto� riterion is given thatontrols the size of the searh tree.� Sine we are dealing with trees that grow exponentially in size, earlier iterationsare usually small enough to be virtually negligible in ost ompared to the lastiteration.These four reasons make IDA* a viable ontender for pratial appliations in searh.The eÆieny of IDA* depends diretly on the quality of the heuristi funtion h.If h = h� the searh would simply walk to the solution. It is important to note thatthe quality of the heuristi funtion depends on the average error over all the states inthe searh spae, not just the root node. Even if the root node is estimated perfetly(no error), the searh might not be able to �nd a solution beause the heuristi ispoor in the rest of the searh spae. In the worst ase, h = 0 for all states, IDA* willdegenerate to a series of depth-limited depth-�rst searhes.Depth-First Branh and BoundIDA* starts with a lower bound on the solution length and inreases this lower boundeah time it proves that no solution with this lower bound exists. Depth-�rst branhand bound (DFBB) [LW66℄ starts with an upper bound on the solution length. Theupper bound is used to prune parts of the searh spae that annot ontain a solutionbetter than the urrent best solution. That means that whenever DFBB enountersa node s in the searh spae that has an f -value (f(s) = g(s) + h(s)) equal or largerthan the best solution found so far, s gets ut o�. DFBB traverses the searh spaein a depth-�rst manner. Whenever it �nds a new goal when attempting to expand it,this goal must be better than the previously found. The ost of the new goal is usedto adjust (lower) the upper bound and the searh ontinues. Depth-�rst branh andbound depends on a high goal density, otherwise it will su�er from the same problemsas depth-�rst searh.Bidiretional SearhNothing fores us to solve the problem in a \forward" diretion [Nil80℄. Why notsearh \bakwards", starting from the goal state and attempting to �nd a path tothe start state? Choosing the right diretion (\forward" or \bakward") an lead tosigni�ant savings, sine tree shapes might not be symmetri and a forward tree mightbe larger than the orresponding bakward tree. However, so far we are not talkingabout something new, just that the searh diretion might be an issue. Bakwardsearh would use inverse ations to reate all possible predeessors of a node in a20



During Search Path Found Dark Gray: Possible SavingsFigure 2.13: Illustration of Bidiretional Searhforward sense, whih are the suessors in a bakward sense. We would also have toexhange goal with start state(s).But why do we searh only in one diretion? Could it be bene�ial to searh fromboth sides? Bidiretional searh [Poh71℄ proeeds to deepen the tree from both sidesuntil both trees interset at one node, onneting a path between the start and agoal state. This path is not neessarily an optimal path. The searh strategies forthe forward and bakward searh do not need to be the same. Depending on thedi�erent searh-spae properties, di�erent strategies might be hosen for the di�erentdiretions.Figure 2.13 shows the searh trees for the two diretions. As they grow towardseah other, they will eventually meet. A unidiretional approah would have toexpand a deeper tree with a potentially larger number of nodes than the two smallertrees together. The dark gray area in the third part of the �gure shows what thepotential savings ould look like.All this sounds rather onvining. The question is why is this approah not widelyused? There are several problems with bidiretional searh. For a long time it wasassumed that it was hard to be able to make the searh frontiers meet. However,Kaindl and Kainz [KK97℄ show that �nding a solution was not so muh the problemas �nding an optimal solution. The searh spends a lot of e�ort making sure anoptimal solution is returned. Furthermore, the savings shown in Figure 2.13 are notneessarily ahievable, if the unidiretional searh is eÆient. If, for example, IDA*'slast iteration is small beause of good move ordering, the savings ahievable withbidiretional searh are small.Furthermore, it is a problem to detet when searh frontiers even meet, sine atleast one frontier has to be kept in memory to �nd intersetions. Sine trees grow21



exponentially, searh frontiers and, thus, spae requirements do too, a major drawbakfor bidiretional searh.Bakward searhes often fae another problem. Sine the goal state is not ne-essarily one state, but a set of states, the bakward searh ould potentially haveseveral possible start states. This inreases the amount of work to be done and simul-taneously dereases potential savings. Other, more pratial reasons might inludediÆulties with reverse ations and the overhead of �nding, tuning and oding theadditional heuristis.2.2.3 Choosing the Right AlgorithmWhen presented with the hoie of whih algorithm to implement for a ertain domain,one might be onfused by the multitude of di�erent approahes and ideas behind thealgorithms. So what drives the seletion of an algorithm? What are the properties ofthe searh spae that are used to deide whih algorithm to use?The �rst hoie between informed and uninformed algorithms depends on theavailability of domain knowledge. Usually, informed searhes perform better thanuninformed. Therefore, if knowledge is available, informed algorithms are the pre-ferred hoie. As long as the searh spae �ts into memory and the overhead ofmaintaining the OPEN and CLOSED lists is no onern, A* is the hoie. However,if memory or list maintenane is a onern, IDA* is the preferred hoie.Now, when would a branh and bound searh be useful? Branh and boundsearhes operate on the fat that we an easily �nd a solution, but want to improveon the quality of that solution. A high density of goal states in the searh spae isneeded if DFBB is used. Otherwise DFBB will degenerate into a depth-�rst searh.Random walk algorithms are of use when faed with huge searh spaes where wehave little or no knowledge of the searh spae and we are looking for just any solution,and not neessarily a high-quality solution. Reent interest in random walk applia-tions was sparked by advanes in the satis�ability (SAT) domain, where WALKSAT[SKC94℄ seems to perform rather well. Other random walk algorithms are heuristi-ally guided, but use the random element to avoid loal minima. Geneti algorithms,and ertain hill limbers, suh as simulated annealing, belong to that group.2.3 EnhanementsThe desription of the algorithms in the previous setion onveyed only the basiideas. Most of these algorithms are used in onnetion with powerful enhanements.Searh enhanements potentially inrease the searh eÆieny by orders of magnitude,depending on the problem domain and algorithm. Often, the hoie of the rightalgorithmi enhanement(s) is more diÆult and ruial to the performane of theprogram than hoosing the right algorithm. This problem will be disussed in moredetail in Chapter 4.
22



Figure 2.14: Example Problem to Illustrate Transposition Tables and Maros
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Figure 2.15: Impat of Transposition Tables2.3.1 Transposition TableEven though searh spaes are generally graphs, most searh algorithms treat themas trees. If a state an have several predeessors, this an lead to dupliate work.The searh ould revisit nodes and even entire subtrees several times. These \trans-positions" are deteted using a large transposition table [SA77℄5 in whih useful in-formation about previously visited nodes is stored. Before expanding a node, thetransposition table is onsulted, and if valid information is found, it is used to po-tentially urtail the searh. Transposition tables are usually implemented as hashtables.Furthermore, when iterative deepening is used, the transposition table serves tostore information that an be used to make subsequent iterations more eÆient (seeSetion 2.3.2 \Move Ordering").Consider the position in Figure 2.14: Two stones need to make three moves in arow. We will use a,b, for the moves of the left stone and d,e,f for the right stone.The moves of eah stone have to be made in sequene, but an be interleaved in anyway between the two di�erent stones. Figure 2.15 shows what happens if the searh isenhaned with a transposition table. Solid nodes represent nodes searhed normally,while light nodes represent uto� nodes beause of a transposition table math, withdotted lines onneting idential positions in the tree. For example, the top mostlight node is reahed with the move sequene d,a whih results in the same positionthat was previously searhed after the moves a,d.5Another way of deteting transpositions involves �nite state mahines [TK93℄.23



Another way of looking at the funtion of the transposition table is by desribingit in terms of the heuristi lower bound and IDA*. Eah state s searhed in IDA*must have the following property: g(s) + h(s) = f(s) <= PathLimit, otherwise thesearh would not onsider this state. When a state was searhed exhaustively and thesearh baks up with failure, we have proven that our heuristi funtion h(s) was o�.We know now that g(s) + h0(s) = f 0(s) > PathLimit, or h0(s) > PathLimit � g(s),or h0(s) >= PathLimit � g(s) + 1. When storing h0(s) in the transposition table,we allow the searh to improve on the heuristi value h(s) every time it revisits thestate s. The value stored in the transposition table is used to improve the lowerbound. This dynami improvement of the lower bound leads to additional uto�s inthe searh in two ways.� Within an iteration, revisiting a state with the same or larger g(s) allows us toimprove the lower bound with a transposition table lookup. The improved lowerbound will be enough to ause a uto� (g(s) + h0(s) = f 0(s) > PathLimit).� If the searh revisits the state s with a lower g(s), no uto� an happen, thesearh will proeed. However, in the next iteration, if we visit node s in thesame order, the h0(s) stored in the transposition table is now suÆient to ausea uto� when reahing s via a non-optimal g(s).This sheme also handles yle detetion. Rather than storing the new lowerbound after we searhed the subtree, we update the transposition table before de-sending into the tree. If we ever yle bak into a state that is on the urrent path,g(s) must be larger than it was previously and thus, a uto� will our. No speialode is needed to detet yles.62.3.2 Move OrderingInstead of visiting suessors of a move in an arbitrary order, one an try to look at\good" suessors �rst.Move ordering is not used in best-�rst searhes; the algorithm itself provides fora global ordering of the alternatives. In depth- and breadth-�rst searhes, moveordering an lead to eÆieny gains beause goals are found earlier (left in the tree)rather than later (right in the tree). Reinefeld and Marsland [RM94℄ omment onthe e�etiveness of move ordering in single-agent searh. For IDA*, ordering movesat interior nodes makes no di�erene to the searh, exept for the �nal iteration.Beause the �nal iteration is aborted one a solution is found, �nding a solution earlyin the �nal iteration an signi�antly improve the performane, espeially onsideringthat the last iteration is potentially the largest.The information used to order moves an ome from di�erent soures, usuallydomain-dependent knowledge. Sometimes domain-independent knowledge gathered6Some readers might feel unomfortable with this statement, beause there is the remote possi-bility of ollisions in the hash table that overwrite entries, resulting in undeteted yles. While thisis true, this should happen very infrequently and in suh rare ases we are willing to go the extradepth until g(s) is large enough to urtail the searh.24



in the searh tree (e.g., tree sizes, tree depths...) an be useful. In the ase ofiterative deepening, move ordering information is passed from one iteration to thenext by means of the transposition table.The alpha-beta algorithm, used in adversarial searh, relies on good move orderingto ahieve maximal eÆieny by establishing good bounds early (worst ase tree sizeis wd, best ase with perfet move ordering is wd=2, where w is the branhing fatorand d is the depth of the tree). In single-agent searh, move ordering an be muhmore ruial. If a depth-�rst searh had perfet move ordering, it ould go straight tothe goal. In the worst ase, depth-�rst searh spends exponential e�ort. Of ourse,perfet move ordering does not exist in searh, sine it would entirely obsolete searhper se. However, the better the move ordering the more eÆient the searh, if theoverhead of ahieving this ordering does not o�set the gains.2.3.3 Pattern DatabasesLower-bound funtions provide the searh with guidane in the form of ost estimatesfor reahing a goal from a position in the searh. These funtions usually ignore someof the domain onstraints to allow for eÆient implementations. A ommon approahis to deompose the total ost of solving the problem into solving independent sub-tasks. These subtasks usually onsist in moving physial objets to goal squares. Forexample, for the sliding-tile puzzles, the distane of eah tile to its target square issummed to produe a lower bound on the total number of steps required to solve theentire problem. This heuristi is alledManhattan distane. The Manhattan distaneassumes that every tile an diretly move to its goal without detour.Lower-bound funtions following this approah an be very eÆiently omputedand are even amenable to inremental updates during the searh beause of the in-dependene of the subgoals.However, the hallenge of these puzzles and real-world problems lies in the inter-ations of the subgoals. Negleting them reates poor lower bounds. An improvementto the sliding-tile puzzle's Manhattan distane, alled linear onits, was proposedby Hannson et al. [HMY92℄. It uses the observation that one of two neighboringsquares that are in eah others way to reah their goal square optimally has to makeat least two non-optimal moves o� the optimal path. Identifying two suh squaresallows us to inrease the lower bound by 2.Linear onits ontain the ore idea used for pattern databases [CS96℄. Instead oflooking at one of the (physial) elements or subgoals at a time, ombinations of theseelements (patterns) are used. For eah of these patterns a preomputation determinesthe minimum ost to get all the elements of the pattern to their respetive goals. Thepreomputation takes interations of these elements into aount and stores the ostsin a database that an be queried during the searh. The more elements are takeninto aount the more aurate the lower bound. One ould even all the Manhattandistane a one-tile pattern database and the Manhattan distane plus linear onitsa two-tile pattern database.Culberson and Shae�er [CS96℄ show results for the sliding-tile puzzle and Korf[Kor97℄ applies the tehnique to Rubik's Cube. The improvements in lower-bound25
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Figure 2.16: Impat of Maro Movesquality lead to signi�ant gains in the searh eÆieny.Cazenave [Caz99℄ suggests an interesting improvement on the idea of patterndatabases for the domain of Go. A ore pattern is annotated with external ondi-tions. The ore patterns are de�ned by the physial arrangement of stones. Externalonditions are logial properties of the board around the ore pattern that help todetermine the state of the ore pattern. The use of external onditions redues thenumber of total patterns, beause a large number of essentially irrelevant details areabstrated into a few rules.2.3.4 Maro MovesThe searh algorithms disussed so far treat all the moves equally. After making amove, all legal moves are onsidered as suessors. These algorithms are thereforeonsidering all sequenes of moves even though their order does not matter.Consider trying to solve the problem of driving to work in the morning. Whentrying to devise a plan to get from home to work, all the algorithms are onsideringsequenes suh as: leave-the-house, mow-the-lawn, open-garage, get-in-ar, exit-ar,mow-the-lawn, get-in-ar... All ations are legal, but not neessarily related. Themethod of maro moves [Kor85b℄ is an attempt to group related atomi ations intohigher level omposed ations: maros. This an result in impressive searh-spaeredutions. Speial attention has to be paid to the impat these maro moves anhave. They might inuene the orretness and/or the ompleteness of the searh aswell as the ability of the algorithm to �nd optimal solutions.Figure 2.16 shows the impat of the move sequene a-b- being treated as a maroin the position of Figure 2.14. The e�et on the searh-tree size is visible, instead ofexploring every possible ombination of interhanging moves a, b, , and d, e, f, thesearh visits less nodes and even the depth of the tree is redued.James [Jam93℄ builds on an idea from Iba [Iba89℄ and dynamially reates marosby \tunneling" peaks in the searh-spae landsape. Figure 2.17 shows what happens.Iba suggested tunneling from one valley in the ost landsape to the next, leading26
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Figure 2.17: Tunneling: The Dynami Creation of Marosto long maros with many preonditions that are hard to math. James observedthat diÆulty and improved on the tunneling idea by suggesting the shortest possibletunnel that \drains" the water into the next valley. This results in fewer preonditionsand the inreased hane to math a maro.It is important to note that tunneling hanges the searh spae by reating marosthat behave as shortuts. They detour the error of the heuristi estimate, rather thendereasing it.2.3.5 SummaryEnhanements to searh algorithms an improve searh eÆieny dramatially. De-pending on the appliation domain, those savings an be several orders of magnitudefor every one of those enhanements. Eah enhanement is impliitly bene�ting fromproperties of the searh spae. Transposition tables work only if the underlying searhtree is in reality a graph. Maro moves assume that treating several moves as one doesnot hange the rest of the problem and ultimately its solvability (or ompleteness7).For related results see Culberson and Shae�er [CS94℄.Eah new enhanement will have a limited sope of domains to whih it applies.The No-Free-Lunh (NFL) theorem, that we will be talking about later, baks this7Whereas ompleteness is an important theoretial onsideration, we feel it has little or evenno pratial value. \Complete" algorithms use exponential time to ensure ompleteness. Sine wefae time onstraints in pratie, this theoretial ompleteness is of little value. Furthermore, itis always easy to onstrut a omplete algorithm. After exhausting a predetermined time limit,any theoretially omplete algorithm an be exeuted. This two-phase approah is also theoretiallyomplete, but with a onstant run-time overhead. In pratie it is only important how many problemsan be solved within the time limit. Complete algorithms have the nie property that they anprove that no solution exists. But again, if they ould do that in a reasonable time frame, the moreeÆient algorithm would stop without �nding a solution even earlier and the seond phase of ourhypothetially omplete algorithm will prove that the problem has no solution. Beause the �rstphase searhes less of the searh spae, it will use less time than the seond phase. Our two-phasealgorithm will therefore take at most twie the time for this proof than the omplete algorithm ofthe seond phase would have used on its own. 27
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people even laim to have found suh a tool. Others are more modest in their laims;they restrit their statement to a ertain lass of problems, suh as searh problems.The last wave of suh laims ould be observed during the advent of evolutionaryalgorithms. This was, unfortunately, surely not the last.2.5.1 Bad NewsAs sedutive as the thought of a one-size-�ts-all algorithm is, suh an algorithm doesnot exist. Wolpert and Maready [WM96℄ prove with their No-Free-Lunh (NFL)theorems that all algorithms that searh for an extremum of a ost funtion performexatly the same when averaged over all possible ost funtions. A \universally best"searh algorithm would have to outperform all other algorithms on average. Wolpertand Maready show that if an algorithm A outperforms algorithm B on some ostfuntions, then B must outperform A on others. Culberson [Cul96℄ uses adversarialarguments to ome to the same onlusion.What does that mean? If we look at all possible ost funtions (or, for that matter,searh spaes), there exists no algorithm that an outperform all other algorithms.Worse still, all algorithms, even totally random searhers, will perform the same onaverage on all possible searh spaes.Extensions of these theorems in [Cul96℄ even show that learning does not work overall possible instanes. Not even adaptive (learning) algorithms that try to extrapolatefrom what they have seen so far to guess into the future will work better, whenaveraged over all searh spaes. Heuristi knowledge an also be only problem spei�and not absolutely general. The laim of \universal" an learly be rejeted, in allases.2.5.2 Good NewsHowever, not all is lost. By restriting our algorithm to domains where we haveknowledge available, the knowledge an help to inrease performane in that domainas ompared to a knowledge-poor algorithm. Given the above reasoning, we trade theperformane inrease for \our" problem with a performane derease in some otherdomain, but we are happy with that trade.That means that algorithms and algorithmi enhanements work for ertain prob-lem domains. What are these domains, what makes them suited for a ertain algo-rithm and not for another? Usually, the knowledge we are enoding in our algorithmsreets searh-spae properties that an be exploited by the searh. For example, ifwe know that our searh spae is a graph and not a tree, the use of a transpositiontable an yield performane improvements.The general strategy for takling a domain is to look for ertain searh-spaeproperties and exploit that knowledge for eÆieny gains. Therefore, the questionabout the generality of a searh enhanement (or onversely, how domain dependentis this enhanement) is not the proper question to ask. One should rather ask, whatthe properties of those searh spaes are that the enhanement in question relies onto yield a performane inrease. 32



2.6 Example Domains from the LiteratureThe following subsetions introdue the domains used most often in researh on single-agent searh in the literature. The goal here is to introdue the reader to the generalomplexities, speial properties, and issues of the searh spaes of those domains.2.6.1 Sliding-Tile PuzzlesThe sliding-tile puzzles are a family of the ommonly known toys, where a (usuallysquare) matrix of tiles has to be ordered. In a 4x4 matrix of tiles, there are 15 tilesand one blank square. The tiles an only be moved into the blank. Other studiedvariations are the 24-puzzle (5x5), the 8-puzzle (3x3), and even the 19-puzzle (4x5,and really MxN).A state of the 15-puzzle an be desribed with the loation of all tiles. Eah statean have a maximum of 4 legal moves if the blank is in the middle 4 squares, 3 ifit is at the edge and 2 moves if the blank is in a orner. However, sine one moveled into the urrent position, the move unmaking it does not need to be onsidered.Therefore, the resulting e�etive branhing fators are 3, 2 and 1, for the respetivepositions of the spae. Edelkamp and Korf derive 2.13 as the asymptoti branhingfator for the 15-puzzle [EK98℄.For the 24-puzzle, Korf [Kor96℄ reports average solution lengths (for randomlygenerated instanes) of over 112, for the 19-puzzle 71.5 and for the 15-puzzle 52.6.The 8-puzzle is small enough to be enumerated exhaustively [Sh67, Rei93℄. Thesearh spaes are almost 1025, 1018, 1013 and 105 for the 24-, 19-, 15- and 8-puzzle,respetively.The state-of-the-art systems solving sliding-tile puzzles use IDA* with transposi-tion tables and improved Manhattan distane as the admissible heuristi. Improve-ments of the Manhattan heuristi are derived from the fat that there might beonits among di�erent tiles when trying to push them straight to their respetivegoals (linear onits) [HMY92℄. Taking this idea even further, Culberson and Sha-e�er [CS96℄ suggest to use pattern databases that reord the optimal number of movesrequired to push subsets of tiles to their goal positions. A uni�ed view on this issueis that eah of these approahes allows more and more of the real onstraints to beused in the lower-bound alulation. Whereas the Manhattan distane assumes norestritions in the tile movements, linear onits take the movements of up to 4 tilesinto aount and treat the rest as non-existent. Pattern databases onsider even moretiles (onstraints).Current state-of-the-art searh tehniques and omputers allow us to solve anyrandom instane of the 15 and 19-puzzles within a reasonable amount of time. The24-puzzle is still presenting a onsiderable hallenge though.2.6.2 Rubik's CubeRubik's Cube, the famous ombinatorial puzzle invented by Erno Rubik in the late1970s, is also used in the literature to investigate searh algorithms and their en-33



hanements [Kor85b, FMS+89, Pri93, Kor97℄.Rubik's Cube has a searh-spae omplexity of about 1019 and a median solutionlength of 18. The longest solution is believed to be no longer than 20 moves [Kor97℄.Edelkamp and Korf [EK98℄ alulate the asymptoti branhing fator to be 13.35,if a move an be more than a 90 degree twist. Programs to solve Rubik's Cubeproblems are very similar to programs solving sliding-tile puzzles. IDA* is used asthe searh algorithm and large pattern databases are used to ahieve a good lower-bound estimator. Korf reports solving 10 random instanes of the Rubik's Cubeoptimally [Kor97℄.2.6.3 MazesRao, Kumar and Korf [RKK91℄ introdue another domain into the literature: mazes.The task is to �nd optimal routes between two points in the maze. The omplexityof mazes an be adjusted arbitrarily by saling. Transpositions an be simulated byallowing mazes with a graph struture (holes in walls). Whereas Rao, Kumar andKorf [RKK91℄ used mazes of size 120 x 90, Kainz and Kaindl [KK96℄ used mazes ofsize 2000 x 2000.The domain of mazes is interesting beause of the property of the lower bound.When the Manhattan distane is used, the ratio between the orret distane h� andthe estimated distane h an be large. IDA* performs rather poorly, sine manyiterations are performed, without �nding a solution. A*, beause it keeps the entiregraph in memory, should be a better hoie.2.7 SummaryThere are a wide variety of strategies for eÆiently traversing searh spaes. Unin-formed searhes traverse the searh spae blindly in a systemati fashion. Informedalgorithms exploit knowledge about the searh spae to searh more eÆiently. Searhstrategies and algorithmi enhanements are hosen to exploit spei� properties ofthe underlying searh tree or graph.The NFL theorems provide us with the arguments as to why di�erent searhstrategies and enhanements are needed for di�erent problem domains. Thus, algo-rithms should not be judged by obsure performane measures, that were proven notto exist, but should be quali�ed by the searh-spae properties they depend on. Aninteresting followup question then might be, if these properties are ommon amongthe domains we are interested in solving.
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Chapter 3Sokoban
3.1 The Game

He-Ge, Hd-H-Hd, Fe-Ff, Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh-Rg,Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-Ri,F-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg,Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh,Hd-He-Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-Qi,Ch-Dh-Eh-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-QhFigure 3.1: Sokoban Problem #1 With One SolutionSokoban is a popular one-player puzzle game. The rules and struture of the gameare simple. Figure 3.1 shows a sample Sokoban problem. The playing area onsists ofrooms and passageways, laid out on a retangular grid of size 20x20 or less. Litteredthroughout the playing area are stones (shown as irular diss) and goals (shadedsquares). There is a man whose job it is to push eah stone to a goal square. Theman must push from behind the stone and an only push one stone at a time. Atany time, a square an only be oupied by one of a wall, stone or man. The initialhallenge is to push all of the stones onto goal squares. To inrease the diÆultyone an try to �nd more eÆient solutions by reduing the required number of stonepushes and man moves. 35



Figure 3.2: Sokoban Problem #39To refer to squares in a Sokoban problem, we use a oordinate notation. Assumingthe maximum sized 20�20 problem, the horizontal axis is labeled from \A" to \T",and the vertial axis from \a" to \t", starting in the upper left orner. In our notationwe fous on stone pushes. For example, in Figure 3.1 Fh-Eh pushes the stone on Fhleft one square. We use Fh-Eh-Dh to indiate a sequene of pushes of the samestone. A push, of ourse, is only legal if there is a valid path by whih the man anmove behind the stone and push it. Thus, although we only indiate stone pushes(suh as Fh-Eh), impliit in this are the man's moves from its urrent position to theappropriate square to do the push. For example, for the move Fh-Eh the man wouldhave to move from Li to Gh via the squares Lh,Kh,Jh,Ih, and Hh.3.1.1 History and Test SuiteThe game was apparently invented in the early 1980s by Thinking Rabbit, a omputergames ompany in the town of Takarazuka, Japan. The game design is said to havewon �rst prize in a omputer games ontest. Beause of the simpliity and eleganeof the rules, and the intelletually hallenging omplexity of the omposed problems,Sokoban quikly beame a popular pastime.Several versions of the game appeared over the years, among whih are PC, Ma-intosh and Unix versions. XSokoban is a popular version for Unix running X windowsand an be downloaded at http://xsokoban.ls.mit.edu/xsokoban.html. There existsa quasi-standard set of 50 problems, ordered roughly easiest to hardest in diÆulty fora human to solve. Aording to Hiramatsu [Hir98℄, this set of 50 problems is derivedfrom a PC version by Spetrum Holobyte from 1984. Similar problem on�gurationsan be found in the problem olletions \Sokoban 2" from 1984 and are now inludedin \Sokoban Perfet". Some of the problems have been altered slightly, probably to�t into a 19x16 format.The test suite we are using in this thesis onsists of 90 problems inluding the 50standard problems plus 40 more of varying degree of diÆulty. These 90 problems36



Figure 3.3: Examples of Deadlokswere downloaded from the XSokoban web-site. Problem 1, shown in Figure 3.1, is theeasiest of the set of 90. Figure 3.2 shows maze #39. The shortest reorded solution todate needs 674 stone pushes. However, the solution length is not a reliable indiationfor how hard a problem is to solve. One an easily think of problem on�gurationsthat require even more pushes to solve, but are oneptually simple.An Internet high-sore �le is maintained that shows who has solved whih prob-lems and how eÆient their solution is (http://xsokoban.ls.mit.edu/xsokoban.html).Thus solving a problem is only part of the satisfation; improving it is equally impor-tant.3.1.2 DeadlokA player new to the game will quikly disover that the onstraints given by therules of Sokoban o�er some unique hallenges. If a stone is pushed into a orner, it ispermanently immobilized, and an never be pushed to a goal. Therefore, the problembeomes unsolvable.Figure 3.3 shows a variety of simple stone on�gurations that annot be solved.For example, the stone on Hm annot reah a goal despite having legal moves, beauseit an never be pushed o� the bottom wall. New players will soon understand thatertain squares in the maze are tabu for stones. We all these squares dead squares.Stones that an never be pushed to a goal are dead, and a problem on�gurationontaining a dead stone is said to be deadloked, or simply a deadlok.The two stones on Dh and Eg are also dead. Even though neither of the stones sitson a dead square, they interat in suh a way that the man annot push the stones tothe goals. The four-stone group (Ck, Cl, Dk, Dl) in the lower left part of the maze isalso a deadlok { the man an only push one stone at a time, but that is impossiblein this on�guration. The group of stones in the upper right orner shows a moreompliated deadlok. None of the �ve legal moves allows the man to get \behind"the stones to push them out.In all the examples in Figure 3.3 the deadloks are loal. In general, deadloksan be arbitrarily omplex and far reahing. Figure 3.4 shows an example of how37



Figure 3.4: A Large Deadlok in Maze #8
Figure 3.5: Position of the Man Matterslarge and involved these deadloks an beome. They an potentially inlude all thestones in the maze.3.1.3 Position of the ManThe preeding �ve-stone deadlok in Figure 3.3 identi�es an important issue: theposition of the man. Figure 3.5 shows two idential onstellations of stones with theman in two di�erent parts of the maze. The position on the left is a deadlok, whereasthe maze on the right is solvable.Furthermore, the stone on Gd needs a di�erent number of moves to reah a goal,depending on the position of the man. If the man is on the right side of the stone,the stone must be pushed into the left room �rst before the man an reposition itselfbehind the stone to push it towards the goal. Therefore, the position of the mana�ets deadloks as well as the number of pushes required to reah a solution.The interations between the stones and the man an be quite ompliated, andavoiding deadloks beomes the main hallenge of the game.
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Figure 3.6: Parking

Figure 3.7: Sokoban Problem #503.1.4 High-Level Themes and StrategiesThe beginner will soon �nd that there are a few general priniples and high-levelstrategies for solving Sokoban problems. We want to briey introdue some of themhere, to failitate later disussions.Most of the problems appear rowded in the beginning. Problem #39 in Figure 3.2is an example. To make progress, the stones have to be reorganized to simplify themaneuvering of stones into the goal area. This reorganization often requires stonesto be paked into a small spae without reating a deadlok. Paking is an importantskill that a Sokoban player must aquire early on.Often stones simply need to be moved out of the way safely until other tasks areaomplished. We all this maneuver parking, and it is demonstrated in Figure 3.6.Before any of the stones an be pushed to a goal square, one stone has to be parkedat the square Gb. To understand this, the reader should try to think about �lling inboth goal squares Ib and Id. These senarios an be arbitrarily omplex. In problem#50 (see Figure 3.7), many stones have to be moved through the goal area and thenparked and paked in a remote area of the maze before they an �nally be pushed tothe goals.Other problems in the standard suite introdue the player to the important on-ept of goal-room paking. There are several potential problems to onsider. A poorlyplaed stone may ause other goal squares to be inaessible. It ould also ause a39



Figure 3.8: Sokoban Problem #38
Figure 3.9: Hiroshi Yamamoto's Masterpieedeadlok by utting o� vital paths for the man, beause the goal area is needed for theman to reah ertain parts of the maze. Problem #38 (see Figure 3.8) is an exellentexample of these kinds of problems.One an �nd several problems that live or die on ommuniation hannels forthe man being aessible to ertain regions. Inaessibility of areas an form subtledeadloks that require a lot of higher level reasoning by the player to be avoided.3.1.5 Creativity, Art and ChallengePlaying our test suite, one ould easily get the impression that Sokoban an be in-ordinately beautiful and intelletually stimulating. But it is muh more than that.Sokoban is also an art. For some people it is reative work and espeially in Japanit is very serious fun. The results are wonderfully elaborate and hallenging designs.There are designs with only a few stones that shine with elegane and beauty beausethey ombine simpliity and hallenge. The game of Sokoban has so many \levels"that there is no end to disovery. If solving problems should ever beome monotonous,there is always the possibility of reating new ones.Figure 3.9 shows the winning design of the last Sokoban ontest held in 1996. Thedesigner Hiroshi Yamamoto sueeded in putting many of the ompliations of a goodSokoban puzzle into a small spae.For some humans simpliity is not a neessary element of beauty. Masato Hi-ramatsu reated the intelletual monster shown in Figure 3.10. It is an exellentexample of the level of reasoning that humans are apable of. The understanding40



Figure 3.10: Masato Hiramatsu's Creation

Figure 3.11: Mihael Reineke's Christmas Treeof intriate details and the ability to abstrat them into subproblems and in the endombine those subsolutions to solve the entire problem, taking all the interrelated spe-ial ases into aount, is the hallmark of human intelligene. Creating suh problemsgoes beyond...The hallenge in Sokoban an be ombined with fun as well. An exellent exampleis Mihael Reineke's Christmas tree shown in Figure 3.11.The examples shown here an only skim the surfae of Sokoban, only playing thegame an give an indepth understanding of the beauty of the game.3.2 Why Is Sokoban Challenging?Many of the aademi appliations used to illustrate single-agent searh, suh assliding-tile puzzles and Rubik's Cube, have some or all of the following properties:� Given a solvable start state, every move preserves solvability.� These domains also have small branhing fators and moderate solution depths,resulting in moderate-sized searh spaes.41



Figure 3.12: Example of Neessary Irreversible Moves� Furthermore, simple and e�etive lower-bound estimators are available to guidethe searh.Sokoban has none of these desirable properties, nor is a good lower-bound funtionknown. This setion examines these di�erenes in more detail.3.2.1 DeadlokIn most of the single-agent searh problems studied in the literature, all state transi-tions preserve the solvability of the problem, though not neessarily the optimality ofthe solution. That is beause all state transitions (moves) are reversible { there existsa move sequene whih an undo a move. For example, a tile just pushed in a sliding-tile puzzle an be pushed bak, and any rotation on a Rubik's Cube an be undone.Sokoban has irreversible moves (e.g. pushing a stone into a orner), and these movesan lead to states that provably have no solution. In e�et, a single move an hangethe lower bound on the solution length to in�nity. If the lower-bound funtion doesnot reet this, then the searh will spend unneessary e�ort exploring a subtree thathas no solution.The presene of deadlok states in a searh spae reates a serious dilemma forreal-time searh algorithms. While we are searhing, even irreversible moves arereversible via baktraking in the searh spae. This situation hanges if we have toommit to a move in the real world before the searh has found a solution, beauseof onstraints on time or other resoures. We may inadvertently move to a deadlokstate { a part of the searh spae without solution. Sine many of these deadloksenarios annot be determined without searh, a real-time algorithm will have adiÆult time alloating resoures to guarantee that a solution will be found.The simple problem in Figure 3.12 demonstrates that irreversible moves may beneessary to solve a problem. Therefore, simply avoiding irreversible moves is notfeasible.The existene of irreversible moves reveals an important property of the underlyingsearh spae: It is a direted graph. The traditional domains used to examine single-agent searh map onto undireted graphs. This distintion leads to a rather signi�antdi�erene. In a domain with an underlying undireted graph, a move of ost  anonly hange the distane to the goal by at most . In domains with a direted graphsearh spae, a legal move an derease the distane to a goal by at most , but aninrease it by an arbitrary amount. In the extreme that is in�nity, meaning deadlok.42



3.2.2 Searh-Spae SizeThe large size of the searh spae for Sokoban is due to potentially large branhingfators and long solution lengths ompared to previously studied domains. The num-ber of stones ranges from 6 to 34 in the standard problem set. With 4 potential movesper stone, the branhing fator ould be over 100. The solution lengths range from97 to over 650 stone pushes, ignoring man moves. The trees are bushier and deeperthan in previously studied problems, resulting in a searh spae that is many ordersof magnitude larger.Note that there are di�erent de�nitions of an optimal solution to a Sokoban prob-lem: minimizing the number of stone pushes, minimizing the number of man moves,or minimizing some ratio between pushes and moves. For a few problems there isone solution that optimizes both stone pushes and man moves, but in general theyonit.Calulating an upper bound for the searh-spae omplexity for Sokoban revealsthe startling size of the searh task. For simpliity, let's restrit the size of the problemon�gurations to mazes of size 20 x 20. Requiring walls around the perimeter leavesan internal area of at most 18 x 18 = 324 squares where stones an move. Maximizingthe possible arrangements of stones in this area requires (18 � 18)=2 = 162 stones.This leads to  324162 ! = 324!(324� 162)! � 162! � 1096possible stone on�gurations. Sine the man an be on any of the empty squares, weneed to multiply this number by 162, resulting in a number of the order 1098. Whenonsidering equivalent man positions for the task of minimizing stone pushes, the sizeof the searh spae is somewhere between 1096 and 1098.In these alulations we assume that there are no dead squares and that the mazeis as large as possible with no other walls. In pratie that is not the ase. In ourtest suite the average number of squares is 113, of whih 77 squares are not dead, andthere are 16 stones on average. Table 3.1 shows the searh-spae size for eah mazeonsidering only the non-dead squares. This number assumes that the searh will notgenerate moves onto dead squares, a reasonable assumption.The median searh-spae size for all 90 problems using only non-dead squares isroughly 1018 { far less then the initial estimate of 1098. However, the searh-spaesize is not neessarily a good indiator of the diÆulty of the problem, sine it doesnot reet the deision omplexity [All94℄. If a problem is over-onstrained or under-onstrained, it might be easy to solve or prove that no solution exists, respetively.The hard problems an be expeted to be in the middle zone. Sine the problemsin the test sets are omposed by humans for humans, we an assume that they aregenerally hallenging and have a high deision omplexity. The property of a suddeninrease in diÆulty at ertain onstraint levels is alled a phase transition ([CKW91℄is an exellent referene).
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# stones squares non-deadsquares searhspaesizes1 6 56 41 1082 10 70 46 10113 11 56 43 10114 20 112 77 10205 12 71 54 10136 10 60 41 10117 11 64 43 10118 18 109 85 10209 14 83 60 101510 32 172 116 103111 14 93 68 101612 15 104 66 101613 16 118 78 101814 18 121 85 102015 15 104 77 101716 15 81 55 101517 6 87 53 10918 11 105 70 101419 15 123 84 101820 18 151 96 102121 13 94 64 101522 27 167 116 102823 18 127 104 102224 22 157 114 102525 19 140 88 102126 13 80 58 101427 20 122 92 102228 20 112 85 102129 16 107 59 101630 18 119 78 101931 20 110 85 102132 15 73 59 101533 15 93 62 101634 14 93 62 101535 17 150 101 102136 21 124 92 102237 20 130 92 102238 8 49 40 10939 25 142 105 102640 16 107 77 101841 15 94 67 101642 24 118 98 102543 9 88 61 101244 9 95 64 101245 17 98 68 1017

# stones squares non-deadsquares searhspaesizes46 14 97 68 101647 16 85 73 101848 34 94 84 102549 12 81 57 101450 16 134 96 102051 14 72 54 101452 18 132 101 102253 15 133 76 101754 16 135 82 101955 12 128 72 101556 16 123 82 101957 16 130 90 101958 15 135 92 101959 16 122 81 101860 13 121 77 101661 20 131 82 102162 16 126 86 101963 17 140 94 102064 16 117 82 101965 15 130 80 101866 18 144 89 102067 20 121 82 102168 15 132 84 101869 18 139 82 102070 18 130 84 102071 18 135 77 101972 16 132 84 101973 14 139 88 101874 16 126 73 101875 17 130 77 101976 17 130 88 102077 14 126 80 101778 8 90 66 101279 12 100 68 101580 12 110 80 101681 12 95 72 101582 12 85 65 101483 10 102 66 101384 12 104 75 101585 15 145 78 101886 10 75 49 101287 12 111 74 101588 23 133 114 102689 21 155 104 102490 25 181 133 1029AVG: 16 113 77 1018Table 3.1: Searh-Spae Sizes for the Test Suite44



3.2.3 Lower BoundIn general, it is hard to admissibly estimate the number of stone pushes needed tosolve a Sokoban problem.1 The tighter the bound, the more eÆient a single-agentsearh algorithm an be. The stones an have omplex interations with elaboratemaneuvers often being required to reposition stones. For some problems, without adeep understanding of the problem and its solution, it is diÆult to obtain a reason-able bound. For example, in problem #50 (see Appendix A), the solution requiresmoving stones through and away from the goal squares to make room for other stones.Our best lower-bound funtion returns 100 stone pushes (see Setion 4.3), whereasthe best known human solution requires 370 moves. This is learly an enormous gap,and an imposing obstale to an eÆient IDA* searh.Several ideas ome to mind when trying to design a good lower-bound funtion.Trivially, one ould use the number of stones not on a goal; or, with a little more so-phistiation, one ould ompute the sum of the distanes of eah stone to its respetivelosest goal. Unfortunately, neither of these two heuristis is aurate.Eah goal an aept only one stone, so instead of using the goal losest to eahstone, we an try to �nd a mathing of stones to goals. Sine we are looking for alower bound (i.e. an admissible heuristi) we need to �nd a minimum ost mathingof stones to goals, where the ost is the number of pushes required to get a stone fromits urrent position to a spei� goal.This lower-bound heuristi is expensive to ompute (O(n3)), whih is yet anotherdistintion from simpler domains (for example the Manhattan distane used in thesliding-tile puzzles). Despite the expense of omputing this lower bound, it is still ofrather poor quality. None of the omplex interations of stones that an inrease so-lution lengths dramatially are taken into aount. The resulting di�erenes betweenh and h� an be large, ausing IDA* to fail sine its eÆieny depends on reasonablysmall errors. We will disuss this lower-bound estimator and possible enhanementsfor Sokoban in more detail in Setion 4.3.3.2.4 ConlusionsSokoban is a diÆult searh appliation for many reasons:1. the branhing fator is large and variable (potentially over 100),2. the solution may be deep in the searh tree (some problems require over 500moves to solve optimally),3. solutions are inherently sequential, subgoals are often interrelated and thusannot be solved independently,4. it has a omplex lower-bound estimator, and1We hose to solve problems minimizing stone pushes. Solving for man moves instead of stonepushes would require a di�erent lower-bound estimator than we are urrently using. In our opinion,it would be harder to �nd and most likely of poorer quality.45



5. the searh spae is a direted graph that ontains states with no solution.However, humans an suessfully solve Sokoban problems. They apply higher-level reasoning, pattern mathing, detet exeptions and speial ases, learn fromprevious examples, ombine partial solutions, and are able to �nd the exat reasonfor why a partiular strategy failed. As a testbed for arti�ial intelligene tehniques,Sokoban o�ers a signi�ant hallenge to researhers, sine many of the ore problemsof arti�ial intelligene need to be addressed to build a program that rivals the besthuman performane in solving Sokoban problems.3.3 Related WorkUnbounded Sokoban has been shown to be NP-hard [DZ95℄ and P-SPACE omplete[Cul97℄. Dor and Zwik [DZ95℄ show that Sokoban is an instane of a motion planningproblem, and ompare the game to other motion planning problems in the literature.For example, Sokoban is similar to Wilfong's work with movable obstales, wherethe man is allowed to hold on to the obstale and move with it, as if they were oneobjet [Wil88℄. Sokoban an be ompared to the problem of having a robot in awarehouse move a number of spei�ed goods from their urrent loation to their �naldestination, subjet to the topology of the warehouse and any obstales in the way.When viewed in this ontext, Sokoban is an exellent example of using a game as anexperimental test-bed for mainstream researh in arti�ial intelligene.There are a number of other known Sokoban solvers in existene. It is interestingto see the di�erent approahes people have taken.3.3.1 Mark JamesIn 1993, Mark James wrote his Master's thesis at the University of Calgary on theautomati reation of maro moves [Jam93℄. He used Sokoban to show the limitationsof his suggested methods whih worked well in other domains (see Setion 2.3.4). HisSokoban program was able to solve problem #1 using over 2 hours of CPU time. Noother problems where solved.3.3.2 Andrew MyersAndrew Myers' program appears to be an interesting approah, and it has solved nineproblems. Myers [Mye97℄ writes that his:. . . program uses a breadth-�rst A* searh, with a simple heuristi to seletthe next state to examine. A ompat transposition table stores the states.When the solver runs out of memory, it disards some states below the10th perentile in moves made. This feature allows the program to handlelevels [problems℄ like level 51. The solver tries to minimize both movesand pushes. It does not support maro moves.46



The heuristi estimates both the number of stone pushes and the numberof man movements needed to omplete the puzzle. The number of pushesis estimated more quikly but less aurately, taking advantage of theusual lustering of the goal spaes in one area of the board. The estimatehas two parts: the number of moves and pushes needed to push a ballto the nearest goal square, and the number of pushes needed to push aball to eah goal square from the nearest non-goal square. In addition,the estimator ompensates for the ball that is optimal for the man topush next. The estimate is summed quikly, using approximately 700K ofpreomputed tables. The estimate does not onsider linear onits, whihwould probably help. The heuristi is not monotoni; a onservative,monotoni estimate is used to disard suboptimal states.Deadloks are automatially identi�ed for 3x3 regions, and also for ertaingoal loations that an never be �lled. A goal loation an only be �lledif in one of the four diretions, the two immediately adjaent squares anbe made empty. If an immovable ball is plaed in either square, the stateis deadloked. An optional deadlok table allows easy spei�ation ofomplex deadlok onditions by hand. However, the program does notattempt to automatially �ll the deadlok table.3.3.3 Stefan EdelkampStefan Edelkamp, working on his PhD at the University of Freiburg in Germany,has developed a program that an solve 13 problems of our test suite [Ede98℄. Hisprogram attempts to solve for minimal number of stone pushes and uses a sophisti-ated deomposition algorithm to reason about the presene of stati deadloks withminimal lookahead. An elaborate data struture is used to store and math minimaldeadlok patterns.3.3.4 Meiji UniversityAt Meiji University, Japan, A. Ueno, K. Nakayama and T. Hikita developed a strongSokoban solver based on A*, but using non-admissible heuristis [UNH97, Hik99℄.The program uses a heuristially driven deadlok searh; no onits of potentialsolutions are exploited. The solutions found are neither move- nor push-optimal.The program an solve 25 of the 90 problems.3.3.5 Sokoban LaboratorySokoban Laboratory is a program developed in Japan to failitate the onstrutionof Sokoban problems. It also ontains a solver, whih solves 55 problems of the testsuite, using a heuristially driven best-�rst searh. Their solutions are non-optimal,for either pushes or moves. The program is based in part on the Sokoban solverdeveloped at Meiji University. It appears to be a team e�ort of several people, either47



ontributing diretly, or making ode of their solvers available: K. Takahashi, A. Ueno,K. Nakayama, T. Hikita, Y. Murase, Y. Oki as well as deepgreen.3.3.6 DeepgreenThe best overall program we have heard about so far is by an author who alls himselfor herself deepgreen. The program an solve 62 of the 90 problems [dee99℄. No detailsare known about this program at the moment. However, deepgreen is in ommuni-ation with the authors of the other strong Japanese programs and we assume theprogram builds on previous e�orts of the strong Japanese Sokoban ommunity.The ollaborative approah to solving Sokoban problems make the Japanese e�ortsunique. Eah new program an build on over 10 years of team e�ort. Sharing soureode and ideas aumulates a wealth of knowledge that is unparalleled.
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Chapter 4Standard Single-Agent SearhMethodsThis hapter investigates the power and limitations of state-of-the-art single-agentsearh tehniques. We will onsider the hoie of algorithm and the plethora of searhenhanements available to inrease searh eÆieny as given in arti�ial-intelligenetext books. We implemented those tehniques in the program Rolling Stone to obtainexperimental results that allow us to evaluate them for the domain of Sokoban.The next setion ontains a lari�ation of what the problem is that we are tryingto solve. Eah of the following setions is then devoted to single-agent searh and itsenhanements as disussed in Chapter 2. Starting with the hoie of algorithm andmoving on to the lower-bound funtion, transposition table, move ordering, dead-lok tables and maro moves, this hapter disusses and explains how the standardtehniques from the text books an be applied to the domain of Sokoban and, moreimportantly, what their strengths and limitations are.To evaluate these methods, one entral experiment is used throughout this (as wellas the following) hapter(s). The program is given a �xed amount of searh e�ortper problem { 20 million nodes. The program tries to solve eah of the 90 problemswithin the searh onstraints. With eah enhanement disussed and added to theprogram, more of the 90 problems an be solved. This \evolutionary" approah toperformane evaluation has its pitfalls. Therefore, a setion is inluded that estimatesthe value of eah of the enhanements in a di�erent way.The onlusion of this hapter is that even though text books stress the importaneof hoosing the orret algorithm, this is usually a trivial task. In ontrast, �nding,implementing and tuning the right ombination of searh enhanements is far morediÆult and important for performane. Furthermore, even though standard searhenhanements an give some impressive searh tree redutions, they are far from beingsuÆient to solve even moderately diÆult problems in the domain of Sokoban.
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4.1 Problem De�nitionAs disussed before, there are several possible ways to solve Sokoban problems. Thedi�erene lies in what one tries to optimize: man moves, stone pushes or a (weighted)ombination of both. For real-world domains, the optimization would try to minimizeost. That ost is usually dependent on the ations performed: an airplane's operatingost, the time to load or unload a truk { any number of osts an be imagined. SineSokoban is a game, real osts do not exist and we have the hoie of what osts weassoiate with eah ation.Rolling Stone is designed to �nd solutions that optimize the number of stonepushes; the number of man moves is not onsidered. Expressed in terms of ost, weassoiate a ost of 1 with a stone push and a ost of 0 with a man move. This hoiewas deliberate, beause we felt that a good lower-bound estimator for man moves washarder to design and implement than for stone pushes.When omparing human solutions to those found by Rolling Stone, this beomesimmediately obvious: the number of man moves is usually higher. Those solutionsontain sequenes of pushes that an be optimized for man moves by simply rearrang-ing the stone pushes. One ould add a post-proessing phase that takes a solutionand tries to reorganize the stone pushes to redue the number of man moves. Thispost-proessor ould be ompared to a sheduler of tasks provided by the planner(Rolling Stone) minimizing the resoure \man moves".Our initial attempts to solve Sokoban optimally ould solve only a few small prob-lems. Relaxing the optimality riterion allows us to use more aggressive approahesthat enable us to solve more problems. The tradeo� is between solving a few problemsoptimally and solving many more problems nearly optimally. We believe strongly thatoptimality is of little pratial value if it means that only a small perentage of theposed problems an be solved. For humans, the satisfation omes from �nding anysolution to a Sokoban problem; few are interested in or apable of �nding optimalsolutions.4.2 Searh AlgorithmWhen hoosing the algorithm to solve problems from the Sokoban domain, we onsidersome of the ruial searh-spae properties:� there are few goal nodes, and they are loated deeply in the tree,� heuristi information, in the form of a lower-bound heuristi, is available and� the searh spae is large.These properties ditate an informed searh that �nds sparsely distributed goals ina huge searh spae: IDA*. As disussed in Setion 2.2.3, the hoie of algorithm israther trivial. 50
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Figure 4.2: Minmathing Detets DeadlokMinmathing returns 14! This larger lower bound allows the searh to eliminate largeparts of the searh spae.4.3.2 Deadlok DetetionFigure 4.2 shows an example where the Minmathing algorithm detets a deadlok.None of the stones an reah the goal on F, the goal on Db is over-ommitted.This example shows how powerful this lower bound is, ompared to the more naiveapproahes.4.3.3 Underlying AlgorithmsMinimum ost perfet mathing for a bipartite graph an be solved using minimumost augmentation [Kuh55℄. Given a graph with n nodes and m edges, the ostof omputing the minimal ost mathing is O(n �m � log(2+m=n)n). Sine we have aomplete bipartite graph, m = n2=4 and the omplexity is O(n3� log(2+n=4)n). Clearlythis is an expensive omputation, espeially if it has to be performed for every nodein the searh.However, there are several optimizations that an redue the overall ost. First,when we �nd a mathing that redues the minimum ost by the ost of the move,we know we an not do better and we an abort immediately. Seond, during thesearh we only need to update the mathing, beause eah push results in only onestone hanging its distanes to the goals. This requires �nding a negative-ost yle[Kle67℄ involving the stone pushed. Finally, we are looking for a perfet mathing,whih onsiderably redues the number of suh yles to hek.Even with these optimizations, the ost of maintaining the lower bound dominatesthe exeution time of our program.4.3.4 Entrane ImprovementHow an we be more eÆient in omputing the Minmathing? Consider Figure 4.3:Both stones need to go through the entrane square Ce to enter the goal area. When-ever two stones (S1; S2) must go through one square (let's all that square E) to get totheir goals (G1; G2), the assignment of stones to goals does not matter, sine the sumof the distanes is a onstant (distane(S;G) denotes the distane from the square Sto the square G): 52



Figure 4.3: Both Stones Are Fored to Pass Through Ce
distane(S1; G1) + distane(S2; G2) = (distane(S1; E) + distane(E;G1))+(distane(S2; E) + distane(E;G2))= (distane(S1; E) + distane(E;G2))+(distane(S2; E) + distane(E;G1))= (distane(S1; G2) + distane(S2; G1))Most of the problems that we are interested in solving follow similar priniples.They have goal areas with single entranes. This observation an lead to signi�antspeedups when worked into �nding negative-ost yles. However, even after thisimprovement, our lower-bound estimator is still more expensive to ompute thanmost of the lower-bound funtions used in the single-agent searh literature (suh asthe Manhattan distane used for sliding-tile puzzles). Note that the entrane trikonly improves the eÆieny of the omputation, but does not improve the quality ofthe lower-bound estimate.4.3.5 Position of the ManSimply using the distane of the stone to the goals ignores an important issue: Theposition of the man with respet to the stone to be pushed.What is the distane of a stone to a partiular goal? One ould assume the manis able to travel from anywhere in the maze to anywhere else. However, the maze,even with only one stone in it, restrits the man's movements. If a stone's path leadsthrough an artiulation point1 in the maze, the man's movement is restrited by thatone stone.Consider the maze in Figure 4.4. Even though the stone is only three squaresaway from the goal, the man is on the wrong side of the stone to be able to push thestone with three pushes to the goal. To reposition itself to the left side of the stone,the man needs to push the stone two pushes away from the goal, swing behind it, andthen push it to the goal. The apability to detet this and improve the lower boundis alled the bakout onit.1Artiulation points (or squares) are squares that divide the maze into at least two disjoint parts.53



Figure 4.4: Distane Depends on the Position of the Man

Figure 4.5: The Stone Needs to Be Baked Out

Figure 4.6: Bakout Conit Improves Lower Bound for Problem #4
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Figure 4.7: Example of Linear ConitsFigure 4.5 shows how this idea arries over to stones that are not on artiulationsquares yet, but that are fored to move through them. Problem #4 in Figure 4.6is an exellent example of the e�etiveness of this lower-bound enhanement. Fourstones have to be baked out of their urrent room to reposition the man behindthem: Ge, Gg, Dh and El. For eah of these stones the lower bound is o� by 6. Thelower bound is inreased by 24, from 331 to 355, resulting in a large redution insearh-tree size.As already disussed in Setion 2.2.2, this improvement is possible beause furtherproblem onstraints are used in the lower-bound alulation. Whereas previously,the man was allowed to ignore the plaement of the stones, with the bakout-onitenhanement the man annot simply jump over stones anymore. That results inlarger and more realisti distanes that stones have to travel between squares andtherefore in an inreased lower-bound estimate.4.3.6 Linear ConitsThe linear onits enhanement is used to improve upon the Manhattan-distanelower bound in the sliding-tile puzzles. There, if two neighboring tiles are in eahother's way (their paths diretly onit), an evasive maneuver of at least one of thetiles is neessary to allow the other to pass. This allows for an inrease of the lowerbound by two.Consider Figure 4.7: The minimummathing lower-bound estimator would returna value of 10. That assumes that both stones an use an optimal path from theirurrent loation to the goal they are targeted to. But an they? No. Similar to thelinear onits in the sliding-tile puzzles, one stone has to move o� its optimal path toallow the seond stone to pass or to allow the man aess, depending on whih stonegets pushed aside. Either the stone on D has to move down one square to allow theman to push the stone on E or, alternatively, the stone on E has to be pushed downto allow the stone on D to pass. In either ase, two extra pushes are required.2 Thatmeans the minimum ost mathing is o� by at least two in this ase. Whenever twostones are on these two squares, we an inrease the Minmathing lower bound bytwo without violating admissibility. We all this inrease a penalty of two.2However, if we would take man moves into aount, we would have to break the linear onitsuh that we minimize man moves as well. In that ase, pushing D-Dd to break the onit takesthe fewest man moves with an equal number of stone pushes. Sine we simpli�ed our objetive toonly minimize stone pushes, we an ignore that issue in the program.55



Figure 4.8: Compliations With Linear ConitsAll this is very well, but... there are two problems that we want to draw thereader's attention to that spoil the beauty3 of the idea of linear onits and, unfor-tunately, will ome up in a later hapter again.First, onsider the left maze in Figure 4.8. There are two linear onits of the kindwe have seen in Figure 4.7. Identifying two linear onits does not automatiallypermit us to inrease the lower bound by 4. By pushing the stone on square Ddown, only one non-optimal push is neessary to push all stones to goals. However,if the middle stone was bloked, say by a wall on square Dd, this maneuver wouldbe impossible and both end stones in the hain of linear onits would have to bepushed. The penalty of 4 would be justi�ed.The seond problem is shown in the right maze of Figure 4.8. Note the additionalentrane. None of the linear-onit reasoning holds anymore, beause the stonemoving down to allow the others to pass an now move towards its goal using thenew entrane. It is therefore important to know if a stone is fored to use one diretionfrom a square to reah all goals in the maze. To make matters even more ompliatedhere, one a stone is pushed towards the lower entrane it an be the only one movingthere without being penalized. Only one stone an enter through the lower entranebeause there is only one goal to be �lled that is reahable from it. That means westill have to break the linear onit with the middle stone, otherwise one non-optimalpush is required. But we digress...44.3.7 Dynami UpdatesThe distanes used for the Minmathing are preomputed before the searh starts.They represent the number of stone pushes required to push a stone from any squarein the maze to any other square. These distanes are optimisti distanes in thatthey assume no interferene with other stones. The only restritions are the walls inthe maze.3If the reader senses a little sarasm here, she is right. It has been a reurring theme while workingin the domain of Sokoban to �nd neat and beautiful ideas that looked so innoently promising {on the surfae. After intense programming and debugging e�orts (beause the results where notfavorable or seemed otherwise wrong) exeptions or speial ases where found that had to be dealtwith.4If the reader feels slightly lost in all this disussion, that is understandable. Even after severalyears of ative researh we are still not able to say that we fully appreiate the depth and subtletythat Sokoban provides us with. We ould not resist the temptation to introdue the reader to someof these wonderfully intriate features here! 56



Figure 4.9: Example for Dynami Distane Updates
Figure 4.10: Limitations of the Lower Bound EstimatorWhen a stone is pushed into a orner, it beomes �xed. If that orner square isnot a goal, the stone will never be able to reah a goal square and the position is adeadlok. The lower bound will detet this deadlok beause of the in�nite distanefrom the orner square to all goal squares.However, if the orner square is a goal, the position is not neessarily a deadlok.Fixed stones on goal squares an be treated as walls. They potentially hange dis-tanes, beause walls are obstales. Consider Figure 4.9. In the left maze, the stoneon Ed an be pushed up. The distane from square Ed to square Eb is 2. However,in the right maze, sine the stone on square Ee is �xed, the distane from Ed to Ebis no longer 2; it is 6.Rolling Stone therefore realulates distanes whenever stones are pushed onto a�xed goal square. Note also that after a stone is �xed, other squares beside it anpotentially beome �xed.4.3.8 LimitationsAs the example of the linear onits shows, dynami interations of groups of stones(and possibly the man) are not reeted in the lower-bound estimator. While lin-ear onits usually result in penalties of two, larger penalties resulting from otherstone interations are possible. This is dramatially illustrated with the deadlokin Figure 4.10: The position of the stones and the man reate a deadlok that thelower-bound estimator annot detet. The searh ould potentially explore a largetree exhaustively just to prove that there is no solution to this problem. It would doso without understanding why no solution exists.
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# MM +BO +LC ALL UB Di�51 118 118 118 118 118 055 118 120 118 120 120 078 134 136 134 136 136 053 186 186 186 186 186 083 190 190 194 194 194 048 200 200 200 200 200 080 219 225 225 231 231 04 331 355 331 355 355 01 95 95 95 95 97 22 119 129 119 129 131 23 128 128 132 132 134 258 189 197 189 197 199 26 104 104 106 106 110 45 135 137 137 139 143 460 148 148 148 148 152 470 329 329 329 329 333 463 425 425 427 427 431 473 433 437 433 437 441 484 147 149 147 149 155 681 167 167 167 167 173 610 494 506 496 506 512 638 73 73 73 73 81 87 80 80 80 80 88 882 131 131 135 135 143 879 164 164 166 166 174 865 181 199 185 203 211 812 206 206 206 206 214 857 215 215 217 217 225 89 215 227 217 229 237 814 231 231 231 231 239 862 235 237 235 237 245 872 284 284 288 288 296 877 360 360 360 360 368 854 177 177 177 177 187 1056 191 193 191 193 203 1076 192 192 194 194 204 1047 197 197 199 199 209 108 220 220 220 220 230 1027 351 351 353 353 363 1086 122 122 122 122 134 1244 167 167 167 167 179 1217 121 201 121 201 213 1259 218 218 218 218 230 1287 221 221 221 221 233 1243 132 132 132 132 146 14

# MM +BO +LC ALL UB Di�34 152 152 154 154 168 1471 290 290 294 294 308 1440 310 310 310 310 324 1435 362 362 364 364 378 1436 501 501 507 507 521 1441 201 219 203 221 237 1645 274 282 276 284 300 1619 278 282 280 286 302 1622 306 306 308 308 324 1620 302 444 304 446 462 1618 90 106 90 106 124 1821 123 127 127 131 149 1813 220 220 220 220 238 1831 228 228 232 232 250 1864 331 367 331 367 385 1825 326 364 330 368 386 1890 436 442 436 442 460 1849 96 104 96 104 124 2042 208 208 208 208 228 2061 241 241 243 243 263 2028 284 284 286 286 308 2268 317 319 319 321 343 2239 650 650 652 652 674 2246 219 223 219 223 247 2467 367 375 369 377 401 2423 286 424 286 424 448 2432 111 111 113 113 139 2616 160 160 162 162 188 2685 303 303 303 303 329 2689 345 349 349 353 379 2624 442 516 442 518 544 2615 94 94 96 96 124 2833 140 150 140 150 180 3026 149 163 149 163 195 3211 197 201 201 207 241 3475 261 261 263 263 297 3429 124 122 124 122 164 4274 158 172 158 172 214 4237 220 242 220 242 290 4888 306 334 308 336 390 5452 365 365 367 367 423 5630 357 357 359 359 465 10666 185 185 187 187 325 13869 207 217 209 219 443 22450 96 96 96 100 370 270Table 4.1: Lower Bounds
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4.3.9 ResultsTable 4.1 shows the e�etiveness of our lower-bound estimate. The table shows thelower bound ahieved by minimum ost mathing (MM), inlusion of the bakoutenhanement (+BO), inlusion of the linear onit enhanement (+LC), and theombination of all three features (ALL). The upper bound (UB) is obtained fromthe global Sokoban sore �le. Sine this �le represents the best that human playershave been able to ahieve, it is an upper bound on the solution length. The table issorted aording to the last olumn (Di�), whih shows the di�erene between thelower bound with all the enhanements (ALL) and the upper bound (UB). Clearly,for some problems (notably problem #50) there is a huge gap. Note that the realgap might be smaller, as it is likely that some of the hard problems have been non-optimally solved by human players. Furthermore, if the di�erene is 0, the optimalsolution lenght is known.Using the IDA* framework and this sophistiated lower-bound funtion, the searhannot �nd even one solution to any of the 90 problems with a limit of 20 millionsearh nodes. Even inreasing our e�ort limit 50 fold to 1 billion nodes did not yielda single solution.Judging the numbers of Table 4.1, one should keep in mind that the eÆienyof the searh depends on the overall quality of the lower-bound estimator for theentire searh tree, not just the root node as shown in the table. This is one of thereasons why we annot solve any of the problems, even though for some problems thelower bound of the root node mathes the upper bound given by the human solution.Usually this would represent the ideal ase in whih the searh should exel and easily�nd the solution. However, even though our lower-bound estimator seems to deliverreasonable results for the root nodes of the problems, the average error throughoutthe searh tree is higher and leads to large and ineÆiently searhed trees. Examplesare deadloks that are reated by the searh, but not deteted by the lower bound.The searh, led by the poor lower-bound estimator, will explore large parts of thesearh spae where no solution an be found.4.4 Transposition Table4.4.1 ImplementationTransposition tables are a standard tool to aomplish two di�erent tasks: to avoidyles and dupliating work by deteting nodes previously visited. Our implementa-tion uses unique 64 bit hash keys that are used to reate an index into a large hashtable. The hash table used for the results reported here has 218 entries. It is organizedas a two-level table.5 The replaement sheme keeps the entry searhed deepest inthe �rst level and stores the most reent entry in the seond level of the table.The hash keys inorporate only the exat stone positions. To math an entry, thekeys must be idential. Sine the position of the man is of importane, a seond test5See [Bre98℄ for a desription and evaluation of two-level transposition tables.59
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Figure 4.11: Adding Transposition Tables (Linear and Log Sale)is performed. The man squares of both positions must be onneted by a legal manpath. This simpli�ation is possible beause we only optimize stone pushes. If weinsisted on idential man positions, we would get fewer suessful mathes from thetransposition table.The value of an entry in the transposition table is omposed of two things: themathing frequeny and the amount of work saved when mathed (the size of the treethat is ut o�). The two-level strategy reets both. An entry that was searheddeeply is most likely going to save a lot of work if mathed again. More reent entrieshave a muh better hane to be mathed again. By keeping both kinds of entries, thetransposition table is used more e�etively than using a single replaement sheme ina one-level transposition table.4.4.2 ResultsAdding transposition tables to IDA* allows the searh to solve 5 problems in ourtest suite, when given a limit of 20 million nodes. 20 million nodes is roughly two tofour hours CPU time on urrent fast mahines. Figure 4.11 shows the e�ort neededto solve those problems ordered by searh-tree size on a linear and a logarithmisale. The vertial axis shows the number of nodes searhed to solve the problems.The horizontal axis shows the number of problems solved. We will use this kind ofgraph throughout the thesis and refer to them as e�ort graphs. The keys of the e�ortgraphs refer to di�erent versions of Rolling Stone. In Figure 4.11, \R0" refers to IDA*plus Minmathing lower bound inluding enhanements. \R1" is a version that addstransposition tables to \R0".A seond experiment was performed to evaluate the power of mathing equivalentman positions instead of exat man positions. Using exat man positions, the numberof suessful hits dropped below 10% and with the same e�ort limit of 20 millionnodes, only problem #1 ould be solved. The node numbers for problem #1 inreasefrom 41,640 to 297,498, roughly 5-fold. Problem #78 was solved with 66,309 nodesbefore. It annot be solved anymore when mathing exat stone positions. Thenumber of nodes inreases by at least 2 orders of magnitude.60
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Figure 4.12: The E�et of Move Ordering (Averaged Over 1% and 5% Depth)4.5 Move OrderingWe have experimented with ordering the moves at interior nodes of the searh. Oneould argue that our inability to solve problem #51 is aused by bad move ordering.For this problem, we have the orret lower bound { it is just a matter of �nding theright sequene of moves.4.5.1 ImplementationWe are using a move ordering sheme that we all inertia. Looking at the solutionfor problem #1 (Figure 3.1 on page 35), one an observe long runs where the samestone is repeatedly pushed. Hene, moves are ordered to preserve the inertia of theprevious move in the following way:1. Inertia moves are onsidered �rst.2. Then all the moves are tried that derease the lower bound (optimal moves),sorted by distane of the stone pushed to the goal it is targeted to, with losestones �rst.3. Then all the \non-optimal" moves are tried, sorted like the optimal moves.Sine the exat distane to the goals an be arbitrary (see Setion 4.3.4 \EntraneImprovement"), the atual distane used for the sorting is the distane to the entrane,exept if the stone is already inside the goal area.4.5.2 ResultsFigure 4.12 shows the e�et of move ordering.6 The vertial axis shows the numberof moves. The horizontal axis shows the depth of the tree in perent of the solution6The data was ompiled from all the positions on solution paths for all the solutions known tothe best version of Rolling Stone used in this thesis.61
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Figure 4.13: Adding Move Ordering (Linear and Log Sale)length. The left and right graphs show the same data. The left graph lusters thedata points for eah 1% of tree depth, the right graph averages 5% of the data points.The upper urve indiates the average number of moves onsidered by the programplotted over the depth of the tree.7 The e�etive branhing fator is hanging withthe depth of the tree. In the beginning, the problem is onstrained beause most ofthe stones are still outside the goal area. As stones are being pushed to goal squares,more room beomes available for the man and other stones to maneuver, hene theinreasing branhing fator. Eventually, after more stones are pushed to the goalsquares where they are �xed, the number of moves dereases, approahing 1.The middle urve shows where the solution move is loated in the move list afterthe move generation and before the move ordering. Not surprisingly, solution movesare on average in the middle of the move list. The third and lowest urve shows thatafter move ordering solution moves are loser to the front of the move list. The earlierthe solution moves are onsidered, the more eÆient the searh is. Spei�ally, thelast iteration will be smaller. Move ordering beomes more aurate with dereasingdistane to the goal. In fat, after about 20% into the depth of the tree, the moveordering is lose to perfet. In the beginning, with many ompliations in the maze,seemingly good moves might atually lead to deadloks. Many of the problems inour test suite are designed in suh a way that an initial \knot" has to be solved by\adding spae". This an most often only be ahieved with non-optimal moves. Afterthe knot is untangled, a \mop-up phase" is entered during whih stones are simplypushed to the goals. This is where our heuristi exels.Figure 4.13 shows an additional urve in the e�ort graph. It shows the e�et ofadding move ordering to the lower bound and the transposition tables (R2). Sur-prisingly, one problem annot be solved anymore and two others need more nodes tobe solved. This result is not favorable for move ordering. However, we will see laterthat after other features are added, move ordering is a valuable ontribution. Ourmove ordering heuristi leads to \ompression". Stones lose to the goals are pushed7Some of the legal moves are disarded immediately beause they lead to trivially provabledeadloks. These moves are not inluded in the graph. See Setion 4.6 for more details!62



loser and loser together, even though pushes away from the goals are neessary�rst. Compression makes deadloks more likely. With additional enhanements thatwe will add later, these deadloks beome less likely and the advantages of the moveordering an work to its full potential.4.6 Deadlok TablesMany trivial deadloks our in the searh. Initially, we hand-oded tests for someof the simple and ommon deadlok patterns into the move generation routine. Thisquikly proved to be of limited value, sine it missed many frequently ourringpatterns, and the ost of omputing the deadlok test grew as eah test was added.Instead, we opted for a more \brute-fore" approah.Pattern databases are suessfully used to improve lower bounds in the sliding-tilepuzzles [CS98, CS96℄ and Rubik's Cube [Kor97℄. We implemented a speial ase ofpattern databases for Sokoban. In an o�-line omputation, all deadlok patterns ina 5x4 square were found and stored in a database whih an be queried during thesearh. If a move is onsidered for generation, the pattern of stones, walls and emptysquares that is about to be reated is looked up in the deadlok table. If the patternis a deadlok, the move is not inserted into the move list.4.6.1 ConstrutionAn o�-line searh was used to enumerate all possible ombinations of walls, stonesand empty squares for a �xed-size region. For eah ombination of squares andtheir ontents, a searh was performed to determine whether or not a deadlok waspresent. This information was stored in the deadlok tables. The deadlok tablesare implemented as deision trees. Interior nodes represent subpatterns, with links tothree suessors. These suessors represent the parent's subpattern plus one moresquare's ontent spei�ed as either empty, wall or stone. Eah level in the deisiontree ontains di�erent subpatterns of the same shape. The leaf nodes in the treerepresent the status of a pattern: deadlok or alive. For implementation details seeAppendix C.1.For our experiments, we built two di�erently shaped deadlok tables for regionsof roughly 5x4 squares (ontaining approximately 22 million entries). The two tablesdi�er in the order the squares in the maze are queried. With two di�erent waysto reate patterns, more potential deadloks an be found, sine onits with goalsquares an sometimes be avoided.4.6.2 Veri�ation and CompressionEah of our deadlok tables was veri�ed by a separate run with a di�erent programto ensure orretness.Sine the information in the tree is enoded in its struture and leaf node val-ues, idential subtrees an be ollapsed into one. Compression ratios of almost 5:163



Figure 4.14: Example Coverage of the Deadlok Tablesare ahieved using this subtree ollapse. This type of ompression does not reateruntime overhead during the searh, sine the lookup is still on a non-ompressedstruture. With this more ompat data struture, ahe oherene may even beimproved beause less memory is used.4.6.3 Usage of the Deadlok TablesWhen a push Xx-Yy is onsidered for generation, the destination square Yy is usedas a base square in the deadlok table and the diretion of the stone push is used torotate the region, suh that it is oriented orretly. If the push Fh-Fg is made in themaze of Figure 4.14, then a deadlok table ould over the 5x4 region bounded by thesquares Hh, Hd, Ed and Eh. Note that the table an be used to over other regions aswell. To maximize the usage of the tables, reetions of asymmetri patterns alongthe diretion the stone was pushed are onsidered as well.4.6.4 Limitations and Open ProblemsA 5x4 region may sound like a signi�ant portion of the 20x20 playing area. However,many deadloks enountered in the test suite extend well beyond the area overed byour tables. Unfortunately, it is not pratial to build larger tables.Most of the e�etiveness of the deadlok table is lost if a deadlok-table patternovers a portion of the board ontaining a goal node. One a stone is on a goalsquare, it never needs to move again. Hene, the normal onditions for deadlok donot apply.Furthermore, for a deadlok to be in the table, all the onditions for the deadlokmust be present within the region overed by the deadlok table. In the exampleof the push Fh-Fg in the maze of Figure 4.14 this is not given; onditions (suhas onnetivity and reahability for stones and man) extend beyond the area of thedeadlok table. That is by far the most limiting fator of preomputed tables thatare restrited to a ertain area.For the game of Go, Cazenave suggests [Caz99℄ using external onditions for pat-terns to improve their e�etiveness dramatially. It remains to be investigated whih64
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Figure 4.15: E�et of Deadlok Tables (Averaged Over 1% and 5% Depth)
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Figure 4.16: Adding Deadlok Tables (Linear and Log Sale)onditions an express the properties of Sokoban mazes suÆiently well to generalizedeadlok patterns.4.6.5 ResultsFigure 4.15 shows the number of moves in the move list over the depth of the tree.Positions on paths to solutions were hosen to avoid pathologial ases. The top urveshows how many legal moves those positions have, averaged over all test positions atertain depths in the tree (1% and 5% lusters as before). The seond urve showshow many legal moves exist that are not diretly pushing stones onto dead squares.Note that this simple test redues the e�etive branhing fator by about 20%. Thethird urve shows how many moves are atually onsidered after sreening moves withthe deadlok tables. The savings are similar to the simple dead-square heking. Onaverage, we an save about two moves per node that the searh does not need toonsider. That is equivalent to dereasing the branhing fator by 2. These urvesalso show that the average number of moves varies onsiderably with the depth ofthe tree.In Figure 4.16, we add another entry to the e�ort graph to indiate the e�et of65



Figure 4.17: A One-Way Tunneladding deadlok tables to the program (R3). Now, we an solve 5 problems again,regaining the one lost with move ordering, reduing the searh-tree size by orders ofmagnitude. It is rather illuminating to see that suh an impressive redution in thebranhing fator does not allow us to solve more problems.4.7 Maro MovesMaros are a potentially powerful tool to redue searh spaes by ombining severalations into one super-ation { a maro. The bene�ts an be dramati. To ahievemaximal savings with maro moves, they annot simply be added to the move list. Inthat ase, all iterations but the last would inrease in node ount sine the branhingfator is inreased. Adding a maro move redues the searh tree only if at least oneother atomi (non-maro) move is deleted from the move list. This way the e�etivebranhing fator is essentially the same (or less if more than one move is deleted),but the depth of the tree is redued. Here we are disussing the spei� maros usedin our implementation.4.7.1 Tunnel MarosA tunnel is the part of a maze where the maneuverability of the man is restritedto a width of one. Figure 4.17 shows one suh onstrut: The squares E to I arepart of a tunnel. Sine there an only be one stone in a tunnel without reating animmediate deadlok, tunnels annot be used to store more than one stone.One-Way Tunnel MarosIf a tunnel is omposed of artiulation squares, as in Figure 4.17, we all the tunnel aone-way tunnel. If a stone is pushed into a one-way tunnel, it is fored to move all theway through to the other side. There is no reason why one would delay those moves;the man annot get to the other side of the tunnel sine the stone in the tunnel utsthe man o�.When the move generator reates a move into the tunnel, in our example the pushD-E, this push is substituted with the maro D-K. Note that the end square isnot just J, but K { pushing the stone through and out away from the entrane ofthe tunnel. Of ourse, the push J-I is equally substituted with the maro J-C.66



Figure 4.18: Two-Way TunnelsBefore substituting a move with a tunnel maro, we have to hek if the tunnelis empty, otherwise the tunnel-maro move is illegal. If this test fails, not only is thesubstitution not exeuted, but the initial move is deleted from the move list, beauseit would reate a deadlok and should not be onsidered by the searh. Thus, thetunnel-maro substitution is also preventing some deadloks.Two-Way Tunnel MarosOne-way tunnels annot be used as \storage" for stones. One the stone is inside,it has to be pushed all the way. What if the man an ome bak from the otherside and push the stone out again? That means the tunnel annot be a one-waytunnel; the end points of the tunnel must be onneted by at least one more path(the tunnel squares are not artiulation points). Figure 4.18 shows two suh tunnels.The following disussion uses the upper tunnel beause the lower one is omposed ofdead squares.The upper two-way tunnel in Figure 4.18 onsists of 5 squares: E,F,G,H, andI. Sine a two-way tunnel ould be used to park a stone (pushing it in, making othermoves in other areas of the maze and later oming bak to push it out), we haveto allow for at least one stop of the stone inside the tunnel. Sine we are interestedin solutions with the fewest stone pushes, parking the stone at the entrane it waspushed in is the most sensible strategy if, for example, we just want to push the stoneout of the way. Therefore, the push D-E into the tunnel is not hanged, beause itis valid if we want to park the stone. However, if we want to ontinue pushing thestone through the tunnel, the only purpose ould be to push it all the way out theother side. Thus, the push E-F is substituted with E-J. Note that this time wehave to stop diretly outside the tunnel, sine the man ould go around a di�erentpath to hange the stone's diretion right after it leaves the tunnel.The substitution of moves with tunnel maros does not a�et any other move thatwas generated. However, sine another stone might be parked in the two-way tunnelalready, before adding a maro, we have to verify the validity of the maro move. Ifit is not valid, we not only anel the substitution, but also the move itself (it leadsto deadlok) { thereby utting down on the e�etive branhing fator.
67
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Figure 4.19: Adding Tunnel Maros (Linear and Log Sale)ResultsIn Figure 4.19 the e�et of tunnel maros is visible: 6 problems an now be solved(R4), one more than in the previous version. The savings for previously solved prob-lems are not as large as for the addition of deadlok tables.4.7.2 Goal MarosPreomputationMany of the Sokoban problems have the goal squares rowded together in rooms.These goal areas are aessible through a few squares whih we all entranes. Onean deompose the problem of solving a maze into� how to get all the stones to the entranes, and� how to pak them into the goal areas.Most of the time these two parts an be solved independently, thus reduing thesearh spae enormously. Problem #1 is a good example. As soon as a stone reahesthe goal area at the right side of the maze, the stone should be pushed diretly to its�nal destination.We ahieve this in priniple by1. de�ning the goal area and marking its entranes,2. preomputing the order in whih goal squares are �lled without introduingdeadlok in the goal area and3. reating a struture to hold that information to be retrieved during the atual(IDA*) searh.The details of the implementation used in Rolling Stone an be found in Ap-pendix C. 68
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Figure 4.20: Comparing Tunnel and Goal Maro E�ets
E-F-G-H-Hb-Gb, Ed-E-F-G-H-I-Id, Gb-Hb-Ib, C-D-E-F-G-H,Dd-D-E-F-G, H-Hd G-H-I, Cd-C-D-E-F-G-HFigure 4.21: Parking in a Goal AreaMove SubstitutionDuring the searh, if a move is generated that pushes a stone into the entrane ofa goal area, that move is substituted with the goal-maro move. Depending on thepreomputation, this ould be one or many goal maros. All other moves are deletedfrom the move list; only the goal-maro moves are onsidered. If we an put a stone\away", nothing else should matter at the moment. That is di�erent from the tunnelmaros, where no other move was a�eted.By utting alternative pushes, the e�et of goal maros is even more dramati thanthe e�et of tunnel maros. Figure 4.20 shows the di�erene in tree-size redution.While tunnel maros yield large savings on their own, if we an introdue a goalmaro, the savings are larger.Limitations and Open ProblemsThe goal maros in their urrent implementation have limitations. One underlyingassumption is that no stone will leave the goal area one inside. Problems like #50annot be solved without pushing stones through the goal area. A seond, evenstriter assumption is that one a stone is inside the goal area, it will never moveagain. This does not allow for parking inside goal areas. Sometimes it is neessary69



to park a stone in a key position inside the goal area until later in the solution whenit an �nally be pushed to its �nal goal square. Figure 4.21 shows one suh problem(assume F is the entrane square). Before any other stone an be pushed onto agoal square, a stone has to be parked at Gb. The stone on Gb an be pushed to itsgoal square only after the square Id ontains a stone. These interations violate theassumption that a stone will never move again after being pushed into the goal areaand onto a goal square.The problem of goal-maro generation in Figure 4.21 is handled orretly in ourimplementation. The goal-maro generation fails and goal maros are disabled. Thatallows the searh to solve the problem, however without the bene�ts of goal maros.Note that we ould not solve the goal-maro generation for this problem withthe urrent algorithms, even with a di�erent goal area that was smaller, say onlyontaining goal squares. In that ase the �rst stone would have to leave the goal areaafter entering it, violating the assumption of a stone never leaving the goal area afterit enters.Another limitation, unrelated to the problem just desribed, is that a goal areaontaining several man entranes is often a traÆ area for the man; ertain parts ofthe maze need to stay onneted to allow the man to push stones in a ertain wayoutside the goal area. Even though we an solve the problem of paking stones insidethe goal area, they might obstrut the man from other areas of the maze. Problem#38 is an example of suh a ase.However, the toughest problem is when stones have to travel through the goalarea to enter again later from a di�erent entrane. Problem #50 is one suh problem.Sine only a limited number of stones an be entered through the lower entrane,stones have to be pushed through the goal area to the other side, parked in the lowerright part of the maze until we an �nally push them bak into the goal area.These open problems show that the goal maro reation is still far from beingsolved satisfatorily. Interations between the goal area and the outside parts of themaze make it diÆult to reate good goal maros. However, their positive impat inthe problems where they work is so large that any high performane Sokoban programneeds to implement them in one form or another.ResultsFigure 4.22 shows the dramati e�ets of goal maros (R5). Instead of solving 6problems, we an now solve 17! The savings for individual problems are again severalorders of magnitude. For example, the searh nodes for problem #55 drop from over20 million down to a mere 333 { almost 5 orders of magnitude! On average, thesearhes are a fator of 20 smaller with the goal maros. These are lower bounds,sine unsuessful searhes are stopped at 20 million nodes.4.7.3 Goal CutsWe are utting all alternative moves when we substitute goal maros. The reasonbeing that if we an push a stone to its �nal destination, it will not a�et other moves70
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Figure 4.22: Adding Goal Maros (Linear and Log Sale)
0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 5 10 15 20 25

no
de

s 
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25

no
de

s 
to

 s
ol

ve

problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

Figure 4.23: Adding Goal Cuts (Linear and Log Sale)and we an ignore them. Could we not apply the same reasoning to the move thatpushed the stone to the square from whih it will be \maro"-pushed to the goalsquare? Goal uts do exatly that reursively further up the tree: if a stone is pushedto a goal with a goal maro at the end without interleaving other stone pushes, allalternatives to pushing that stone are deleted from the move list.Currently, we have implemented a sheme that will ut moves only after a stonepush towards its maro move was explored. The searh baks up the ut information,instead of statially trying to dedue that suh a move exists in a ertain position.This ould potentially lead to missed opportunities for additional uts if other movesare explored before the one that leads to the goal ut. Sine the move ordering willsort moves that are lose to goals towards the front of the move list, lead-o� movesto goal maros are likely onsidered early in the move list.ResultsFigure 4.23 shows savings of around one to two orders of magnitude in searh-treesize for the version using goal uts (R6). Now, 24 problems an be solved with asearh node limit of 20 million. Problem #65 was not solved without goal uts. Now71



it is solved with just over 600 nodes { the searh tree is over 4 orders of magnitudesmaller. On average, the searh trees are at least a fator of 6 smaller.4.7.4 Corretness, Completeness and OptimalityTunnel maros preserve orretness, ompleteness and optimality of the original IDA*algorithm. A solution with goal maros is still orret, but might not be optimal. Forall the reasons disussed in 4.7.2, extra moves might have been neessary to �nd asolution. For the same reasons, ompleteness is not guaranteed.4.8 Experimental ResultsTable 4.2 shows the numbers for the e�ort graphs that where presented throughoutthis hapter. There are a few entries worth pointing out. Enabling all searh en-hanements allows problem #1 to be solved with fewer nodes than the length of thesolution. Maro moves and good move ordering allow this eÆient searh. For exam-ple problem #4, enabling goal maros allows the searh to solve it with just under600 nodes. Previously, it was not possible to �nd a solution with 20 million nodes.That is an eÆieny gain of at least 6 orders of magnitude.Eah searh enhanement is able to potentially save orders of magnitude in searh-tree size. However, some searh enhanements yield overlapping savings. That meansthat if two features an eah save 50 perent of the searh tree, together they mayredue the searh tree by less than 75 perent. Savings of individual searh enhane-ments are rarely additive.Comparing searh enhanements the way we did throughout this hapter maybe misleading. If a searh enhanement is introdued late, when others are alreadypresent, it is harder to save on top of an already trimmed down tree. Therefore,omparing the impat of searh enhanements would be unfair to the ones introduedat a later point. To exlude this e�et, we ran an experiment where we turned o� onefeature at a time. All the other searh enhanements were enabled. The results willtell us how unique the savings are that a ertain searh enhanement an ahieve.Figure 4.24 shows that goal maros are indeed the most valuable searh enhane-ment that we have for Sokoban; without goal maros only 6 problems an be solved.That is a loss of 18 problems! Note that if we turn o� goal maros, goal uts arealso disabled. The next most important searh enhanement is the transpositiontable. Turning it o� allows us to solve only 9 problems. With either of these twofeatures missing alone, the searh eÆieny goes down dramatially and other searhenhanements annot substitute for the loss.The version with goal uts disabled solves 7 problems less, and the average tree sizeis about 6 times larger. Turning o� move ordering redues the number of problemssolved to 20, losing 4. The trees grow an average of 4 times and all the problemsneed more nodes to solve. This shows that despite the �ndings in Setion 4.5.2 moveordering is a valuable enhanement. These savings ome only from reduing the lastiteration. Surprisingly, turning tunnel maros o� is not a great loss { we an still solve72
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Figure 4.24: Turning One Searh Enhanement O� at a Time22 problems, 2 less than the full version. The trees are about twie the size withouttunnel maros. Turning o� deadlok tables loses one problem and most problems arebetween 2 and 50 times more expensive to solve. Table 4.3 shows all the numbers forthis experiment.4.9 Summary and ConlusionsSokoban is a hard problem; even �xed-size Sokoban shows exponential behavior. Eahadditional problem beomes exponentially harder for the searh to solve. To solve oneor two more problems with the same amount of e�ort (searh nodes), large portions ofthe searh tree have to be pruned. Reduing the searh tree by 50 perent is usuallynot enough to solve more problems; one to two orders of magnitude are needed tomake signi�ant progress.In many searh domains, an inrease in searh eÆieny by 25% might be aninteresting result. In Sokoban, even performane improvements of 50% are irrelevant.The researh in single-agent searh has so far foused on \simple" domains. Sokobanshows that more powerful searh tehniques are needed.The basi text-book approah of IDA*, even equipped with a good lower-boundestimator, annot even solve one problem. Using state-of-the-art tehniques, suh astransposition tables, move ordering and deadlok tables produes a program that ansolve 5 problems of the standard 90 problem test suite. Simple tunnel maros aninrease the number of solved problems to 6.To make signi�ant progress beyond the �rst 6 problems solved, the idea of maroshas to be arried to its extreme. Goal maros represent the solution to the subproblemof how to arrange the stones in goal areas. The suess of goal maros, the immenseredution of the searh tree, an be attributed to suessfully splitting the solution toa Sokoban problem into two parts: How to get the stones to the goal-area entranesand how to push them from there to their �nal goal square. Despite the short-omings of the urrent implementation of goal maros, their impat on the program'sperformane is the largest of all the searh enhanements introdued into our program.73



# IDA*+ MM IDA*+ MM + TT IDA*+ MM + TT+ MO IDA*+ MM + TT+ MO + DT IDA*+ MM + TT+ MO + DT+ TM IDA*+ MM + TT+ MO + DT+ TM + GM IDA*+ MM + TT+ MO + DT+ TM + GM+ GC1 > 20,000,000 41,640 319 261 223 53 532 > 20,000,000 > 20,000,000 > 20,000,000 640,680 620,030 2,176 3163 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 29,148 2,4934 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 597 5975 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 1,275,1466 > 20,000,000 10,214,381 12,061,182 10,294,734 10,107,621 4,546 2837 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 126,023 48,2099 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 659,97217 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,672,805 120,747 11,91021 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,643,97138 > 20,000,000 2,311,000 2,500,678 460,089 415,485 33,812 19,08343 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,36949 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 8,895,883 5,189,49451 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 390,690 80,50455 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 333 14462 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,33765 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 60478 > 20,000,000 66,309 2,555 1,408 871 480 46579 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 156,203 5,96480 > 20,000,000 6,500,890 > 20,000,000 > 20,000,000 > 20,000,000 115,574 114,93081 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 853,607 221,69082 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 971,093 99,23683 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 31,096 20,84784 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 354,295>480,000,000 >399,134,220 >414,564,734 >391,397,172 >381,817,035 >151,732,061 24,840,912MM { Minimum Mathing, TT { Transposition Table, MO { Move Ordering,DT { Deadlok Tables, TM { Tunnel Maros, GM { Goal Maros, GC { Goal Cuts

Table4.2:E�ortGraphData
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# GM (GC) O� TT O� GC O� MO O� TM O� DT O� All On1 223 53 53 291 63 63 5317 10,672,805 > 20,000,000 120,747 85,367 2,979,182 13,796 11,9102 620,030 1,093 2,176 833 337 1,076 31621 > 20,000,000 > 20,000,000 > 20,000,000 8,927,624 > 20,000,000 > 20,000,000 10,643,9713 > 20,000,000 165,274 29,148 12,050 2,493 7,992 2,49338 415,485 > 20,000,000 33,812 19,582 22,559 49,657 19,0834 > 20,000,000 2,369 597 1,791,400 1,025 1,686 59743 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,369 18,216,241 6,084,36949 > 20,000,000 > 20,000,000 8,895,883 > 20,000,000 > 20,000,000 7,482,856 5,189,4945 > 20,000,000 > 20,000,000 > 20,000,000 3,112,231 1,275,146 1,901,783 1,275,14651 > 20,000,000 > 20,000,000 390,690 46,493 89,038 144,393 80,50455 > 20,000,000 166 333 920 144 180 1446 10,107,621 799 4,546 455 286 1,296 28362 > 20,000,000 52,076 > 20,000,000 595,161 7,391 104,691 6,33765 > 20,000,000 2,179 > 20,000,000 > 20,000,000 667 932 6047 > 20,000,000 > 20,000,000 126,023 44,486 63,857 133,389 48,20978 871 38,951 480 594 984 1,011 46579 > 20,000,000 > 20,000,000 156,203 142,828 6,061 9,630 5,96480 > 20,000,000 > 20,000,000 115,574 85,633 228,536 178,001 114,93081 > 20,000,000 > 20,000,000 853,607 127,657 443,344 588,833 221,69082 > 20,000,000 > 20,000,000 971,093 487,011 101,712 5,797,306 99,23683 > 20,000,000 > 20,000,000 31,096 14,694 39,993 39,666 20,84784 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 466,263 397,257 354,2959 > 20,000,000 > 20,000,000 > 20,000,000 3,431,973 1,503,297 5,797,980 659,972>381,817,035 >300,262,960 >151,732,061 > 98,927,283 > 53,316,747 > 60,869,715 24,840,912MM { Minimum Mathing, TT { Transposition Table, MO { Move Ordering,DT { Deadlok Tables, TM { Tunnel Maros, GM { Goal Maros, GC { Goal Cuts

Table4.3:TurningOneFeatureO�ataTime
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They allow 11 more problems to be solved, for a total of 17. Goal uts extend theidea of the goal maro and an push the number of solved problems to 24.Even though the redutions in searh-tree sizes are impressive and result in aninrease in the number of problems solved from 0 to 24, we should not forget thatthe best version of the program an still only solve 24 of the 90 problems. Eventhough this set is hallenging for humans, many problems not yet solved should bewell within reah of a omputer program.We have seen that rather impressive searh-tree size redutions result in smallinreases in the number of problems solved. If we want to inrease the number ofproblems solved signi�antly, we will have to trim the searh trees radially.We an identify two main ineÆienies in the program:� The lower bound does not apture dynami interations of stones that blokeah other and/or the man. If we ould �nd a way to apture this informationand be able to improve the lower bound with it, the searh should improvedramatially.� The mazes are large and often ontain parts that are virtually non-interating.However, the searh will onsider moves in any of those separate parts in anyorder. Had the program knowledge about whih moves are not inuening theurrently attempted subgoal, legal, but irrelevant, moves ould be ignored. Thisould lead to a redution in the branhing fator that an potentially removelarge portions of the searh tree.We will disuss methods that address these points in the next two hapters.
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Chapter 5Pattern Searh
5.1 IntrodutionIn the previous hapter, we onluded that the standard tehniques are insuÆient tomake further progress in the domain of Sokoban. Additional searh enhanements areneeded to enable us to solve signi�antly more problems from the test set. Sine largeportions of the searh are wasted searhing problem on�gurations with deadlokspresent, we speulated that the detetion of these deadloks ould lead to signi�anteÆieny gains. The tehniques suggested in this hapter are a diret attempt toretify this problem.In this hapter, we introdue a new searh enhanement that dynamially �ndsdeadloks and improves lower bounds. Pattern searh is a real-time learning algorithmthat identi�es the minimal onditions neessary for a deadlok, and applies thatknowledge to eliminate provably irrelevant parts of the searh tree. By speulativelydevoting a portion of the searh e�ort to learning properties about the searh spae,the program trades o� searh-tree size versus aquired knowledge.In the game of Sokoban, the additional knowledge gained by the pattern searhesimproves the program's searh eÆieny. The average growth rate of the tree isroughly a fator of 600 times smaller per IDA* iteration. This results in 48 solvedSokoban problems, and signi�ant progress towards solving many more.We start by introduing the general onepts by looking at deadlok detetionand later in this hapter show how to generalize these onepts and methods to themore general ase of lower-bound improvements.5.2 Basi IdeaAfter making a move, establishing the presene of a deadlok an be quite involved.The deadlok may onsist of as few as one or as many as all the stones in the maze.We will desribe how to prove the presene of deadlok by showing that the onditionsneeded to prevent deadlok are not present.In general, proving that a subset of stones in a maze (a pattern) of stones reatesa deadlok requires a searh to verify that no possible solution path exists. A pattern77



PatternSearh( From, To ) flear TestMaze;StonePath = fTog;FOR( i = 1; i <= MAX PATTERN SIZE AND NOT EffortLimit(); i ++ ) fIF( stone s on a square in StonePath )add losest s to TestMazeELSE IF( stone s on a square in ManPath )add losest s to TestMazeELSE BREAK;solution = PIDA*( TestMaze, SolLength, ManPath, StonePath );/* Test for a deadlok */IF( solution == NO AND NOT EffortLimit() ) fGeneralizeAndAddPattern( TestMaze, infinity );BREAK;g/* Test for a lower bound inrease */IF( solution == YES ) flb = LowerBound( TestMaze );IF( SolLength > lb )GeneralizeAndAddPattern( TestMaze, SolLength - lb );ggg Figure 5.1: Pseudo Code for Pattern Searhessearh onsists of repeated IDA* searhes of patterns with more and more stones.A pattern searh may result in the disovery of a deadlok pattern whih an beused throughout the searh to assign the orret lower bound of in�nity to any stateontaining that deadlok. For maximal reusability it is of interest to �nd the minimalpattern of stones that auses the deadlok.Deteting deadloks is only a speial ase of a more general problem. Stonesare interating in suh a way that the total number of pushes required to get themto goals is more than the lower-bound funtion estimates. Whereas deadloks areorretions of the lower bound to in�nity, the general ase is smaller inreases of thelower bound, so alled penalties.5.3 Basi AlgorithmIn the following, we will refer to two di�erent mazes:� the original maze, whih is the maze with all the stones of the urrent IDA*position, and� the test maze whih will be used for the pattern searhes.78



The pattern searh will perform small searhes in the test maze with a subset ofstones from the original maze to determine if the last move introdued a deadlok.In prinipal, the algorithm performs the following 4 steps:1. Start by putting only the last stone moved into the test maze.2. Try to solve the problem.3. If no solution is found a deadlok is deteted, exit.4. If a solution is found add a stone that is on a square that is needed for thesolution.5. Goto 2.More spei�ally, a pattern searh iterates on the number of stones in the testmaze. If we make a move A-B, we might introdue a deadlok. If this deadlok wasnot present before the move, then the moved stone, now on square B, must be part ofthe deadlok pattern. This is the initial stone inluded in the test maze and PIDA*1is alled to solve it. PIDA* either returns with failure (no solution, hene deadlok),or it �nds a solution. In the latter ase, we are interested in the set of squares that areused by the stone and the man during the solution. We all these sets of squares theStonePath and the ManPath, respetively. These sets of squares are preonditionsfor the solution to work. The ManPath and the StonePath are used to determinewhih stone from the original maze to inlude next in the test maze. Stones in theoriginal maze that are on one of the squares in ManPath or StonePath onit withthe test-maze solution. The stone in StonePath losest to square B (the square thestone was moved to in the original maze) is added next to the test maze. If suh astone does not exist, the stone that is on ManPath losest2 to square A is used. If nosuh square exists, the pattern searh returns without �nding a deadlok.After inluding the next stone, PIDA* is alled again. It returns with a solutionand the two onit sets. If no deadlok was found, then the onit sets are usedagain to add another stone to the test maze. The pattern searh terminates in eitherof three ases:� the e�ort limit is reahed (usually a predetermined number of nodes),� a deadlok was deteted (all frontier nodes have a heuristi value of in�nity orhave no moves), or� no more stones onit with the solution found.See Figure 5.1 for the pseudo ode desribing the pattern searh.1PIDA* is a speial version of IDA*. See Appendix C.3 for details.2Closest is always with respet to the distane of either the stone or the man to the onitingstone. These distane measures are possibly di�erent due to the more restrited movements of thestones. 79



Figure 5.2: Deadlok Example

Figure 5.3: Sequene of Test Mazes as Passed to PIDA* (a, b, , and d)5.4 ExampleFigure 5.2 shows a simple position, before and after the move Gd-Fd. The questionis whether or not this move introdues a deadlok. Figure 5.3 shows how the testmaze is built. Sine the last move ended up on square Fd, the test maze is initializedwith a single stone on Fd (Figure 5.3a). A PIDA* searh �nds a 5-push solution,and returns a ManPath (Gd-Ge-Fe-Fd-Gd-G-F-E-D-C) and a StonePath (Fd-F-E-D-C-B). Sine a solution was found, we ontinue the pattern searh.The original maze has a stone on one of the squares (E) that the stone movedover. Now this stone is inluded in the test maze (Figure 5.3b). PIDA* will solve thetest maze with the two stones and again return a ManPath (Gd-G-F-E-D-Dd-Cd-C-D-E-F-G-Gd-Ge-Fe-Fd-Gd-G-F-E-D-C) and a StonePath (E-D-C-CbFd-F-E-D-C-B). This time, there are no stones in onit with the StonePath.However, there is a onit with the ManPath on square Ge. Therefore, the stone onGe is added to the test maze (Figure 5.3) and another searh is started. A solutionwill be found, requiring a fourth stone to be added (Figure 5.3d).The fourth all to PIDA* will return no solution and announe a deadlok withthis pattern of four stones. Identifying the ritial stones has been driven by whetheror not they onit with a potential solution. The irrelevant parts of the maze (suhas the stone on H) are ignored. 80



Figure 5.4: Penalty Example5.5 Minimizing PatternsThe fewer stones in a deadlok pattern, the more likely it will math an arbitraryposition and be used to eliminate futile branhes of the searh. A minimal deadlokpattern is a deadlok pattern from whih no stone an be removed without makingthe remaining pattern solvable. The attentive reader will have notied that onlythree stones are needed to guarantee the deadlok in Figure 5.3; the stone on Eis unneessary. Before saving the deadlok pattern, our program will attempt tominimize the number of stones in it.The deadlok minimization routine takes an N-stone pattern and onsiders eah ofthe possible (N-1)-stone subpatterns. Eah of the (N-1)-stone subpatterns is searhedto verify whether removing the other stone preserves the deadlok. If the deadlokstill exists, the removed stone was not part of a minimal deadlok set and is removedfrom the deadlok pattern.In general, there might be several di�erent minimal deadlok sets. We exper-imented with di�erent ways of minimizing deadlok sets, but onluded that thegreedy and straightforward removal of stones is the most ost-e�etive way. Oftenthe ost of minimization is greater than the ost of �nding the deadlok pattern itself.5.6 Deadloks and PenaltiesThe presene of a deadlok pattern in a position means that the lower bound inreasesto in�nity. Can we �nd patterns that allow us to inrease the lower bound by anamount less than in�nity?Assume there are three stones in the test maze and PIDA* starts its �rst iterationbut fails to �nd a solution. Hene PIDA* proved that this pattern annot be solvedwith the number of moves that the heuristi lower bound indiated. In other words,the lower bound is wrong.A pattern searh will fail to �nd a deadlok after the push Hd-Gd in Figure 5.4.However, this pattern searh will disover that it requires 2 iterations (4 moves) moreto solve this problem. Hene the lower bound is o� by 4. The pattern just disoveredan be minimized and used throughout the IDA* searh to improve the lower-boundalulations.
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5.7 Speializing Pattern SearhesOur program Rolling Stone uses three speialized pattern searhes. Speializationis a means of improving the eÆieny of pattern searhes, even though they mightmiss a few patterns. By dereasing the ost of the individual pattern searh, morepattern searhes an be exeuted. All three pattern searhes are designed to �nddi�erent types of deadloks and/or penalties. Whereas deadlok searhes are gearedtowards �nding deadloks involving many stones, penalty searhes are designed to�nd penalties with fewer stones. Area searhes are aimed at heaply �nding deadloksaused by inaessible areas. We believe that our attempts at speialization are onlya start. Further progress is ertainly possible. For more details see Appendix C.3.Deadlok Searh: The deadlok searh follows the generi outline of a patternsearh as desribed above. However, a deadlok PIDA* searh is allowed totake a few shortuts. For instane, the de�nition of a goal node is more liberal.A position where the man an reah all squares in the maze (the stones do notblok parts of the maze) is onsidered unlikely to ontain a deadlok. Theseshortuts redue the ost of the deadlok searhes and allow them to inludemore stones. However, deadlok searhes are less likely to �nd inreases in lowerbounds.Penalty Searh: After a deadlok searh fails to produe a uto� (either by prov-ing deadlok or �nding a large enough penalty), a penalty searh is exeuted.Penalty searhes are not allowed to take shortuts. Therefore, they have ahane to �nd penalty patterns that the deadlok searh missed. Penaltysearhes are more expensive (no shortuts) and usually inlude less stones withthe same e�ort limit.Area Searh: If even the penalty searh fails to disover a large enough penalty toause a uto�, a third and �nal pattern searh is exeuted. Instead of using thesolution onits to �nd the next stone to inlude, area searhes use heurististo determine the stone(s) most likely to be involved in a penalty pattern. Theytry to prove that an area inaessible to the man and adjaent to the last stonemoved is enlosed by a deadlok pattern. To that end, prior to alling thePIDA* searh, all the stones are inluded that are surrounding the area that isinaessible to the man. The area PIDA* searhes are as liberal as the deadlokPIDA* searhes. If the searh annot �nd a large enough penalty to ause auto�, more stones are inluded that surround other inaessible areas, thistime not diretly beside the man.5.8 Parameters and Control FuntionPattern searhes an be ostly. There are three main fators involved in their ost:the frequeny of the pattern searhes, the bound on the size of a pattern searh (thee�ort limit), and the bound on the deadlok-pattern size (number of stones allowed).82



Figure 5.5: Example for Control FuntionFrequeny of Pattern Searhes: We annot a�ord to do a pattern searh at ev-ery node in the IDA* searh. We use some non-trivial heuristis (the ontrolfuntion) to deide when to invest in a pattern searh. A pattern searh is exe-uted if any of the three front and two side squares of the stone pushed ontainseither a stone or area the man annot reah. The diretions are with respet tothe orientation of the last move. Otherwise it is unlikely we have introdued apenalty or deadlok.Figure 5.5 shows an example. Assume the move Cd-C was the last, then noneof the squares ahead (Bb, Cb, and Db), nor the side squares are oupied bystones or are inaessible to the man. The move Cd-C is unlikely to haveintrodued a deadlok. Now, assume Cd-Dd was the last move (instead of Cd-C). Ed, the square ahead of the stone moved to square Dd, is not aessibleto the man. Furthermore, there is a stone on De, just to the side of the stonemoved onto square Dd. Either of these two onditions is suÆient to trigger apattern searh.The transposition table stores whether or not a pattern searh was performedto avoid multiple pattern searhes at the same node.Size of the Pattern Searh: Pattern searhes are restrited to a maximum e�ortof 1000 nodes. If this limit is reahed, the searh is aborted. However, whenevera pattern searh is suessful in �nding a penalty, it is allowed to ontinuesearhing for another 1000 nodes.1000 nodes per pattern searh seemed to ahieve most of the bene�ts for astill reasonable overhead. Inreasing the e�ort limit did derease the numberof IDA* nodes, but the additional overhead outweighs the bene�ts. Smallerpattern searhes annot �nd large enough penalties.3Pattern Size: Pattern searhes are stopped one they have inluded all but two4stones from the original maze. This is an arti�ial limitation, but we have3However, the number 1000 is still hosen quite arbitrarily. We will see this kind of \magi"number many times. They are the result of eduated guesses and sometimes tuned by experiments.However, the tuning depends on many other variable searh parameters and the test suite used.Truly optimizing these \magi" numbers is at least omputationally prohibitively expensive, if notimpossible. We will get bak to the issue of tuning in a little more depth in Setion 8.6.4This is another one of these magi numbers.83



not fully explored the tradeo�s of �nding larger deadlok patterns versus thee�ort required to �nd them. Beause large patterns are also less likely to mathagain later in the searh, the bene�ts of large patterns are small. Furthermore,the searhes beome exponentially more expensive the more stones are present.Therefore, it seemed prudent to limit the pattern size.Controlling these three parameters is vital for the suess of the pattern searhes.Too many and too expensive pattern searhes an quikly reate a large overhead,easily o�setting the savings ahieved with the pattern knowledge.5.9 Storage and MathingTo inorporate the deadlok and penalty patterns into the regular IDA* searh, weneed to save the patterns found and use them to math positions in the searh. Thepattern mathing is ompliated by the fat that one needs to math not only thestones, but also the man position. With eah pattern of stones, the squares whihthe man in the test maze annot reah (non-reahable squares) are stored. To matha pattern, the urrent position must have stones in the same plaes as the patternand the man must not be on any one of the non-reahable squares stored with thepattern.As seen with the linear onits, patterns an overlap. To ensure admissibility,eah stone an only be used one for a pattern that is inluded in the total penalty.Therefore, we have to optimize whih of the overlapping patterns to inlude to maxi-mize the total penalty. First, all penalty patterns are olleted that are overlapping.Then, for eah of these sets of oniting patterns a searh is used to �nd the subsetof patterns that maximizes the penalty that an be ahieved.Consider Figure 5.6. Four penalty patterns are mathed for the position shown atthe top. The penalties for the patterns from left to right (a to d) are: 2, 2, 8, and 4.What is the maximal penalty that an admissibly be given to that position? Sine allpatterns overlap with pattern , none an be inluded if pattern  is. However, thepatterns a, b, and d ould not all be inluded at the same time either, beause thepatterns a and b overlap as well. Inluding pattern d and either one of a or b ouldonly lead to a penalty of 6. Therefore, only using pattern  results in the largestadmissible penalty: 8.The penalties of non-overlapping patterns are simply added. We are using aseond improvement in Rolling Stone to speed up the pattern mathing whih weall lazy maximization. The searh passes a parameter to the mathing algorithmthat indiates the minimum (or target) penalty needed to ause a uto�. Whenthe mathing algorithm has produed at least the target penalty, it an prematurelyreturn, thereby saving further mathing e�ort.Figure 5.7 shows maze #30 with a stone on�guration that arises during thesearh. Two penalty patterns are suessfully mathed, resulting in a lower-bound of38 (14+24). 84



Figure 5.6: Maximizing the Total Penalty (a to d)5.10 Cuto�s and Bak-JumpingMathing a deadlok pattern always auses a uto�. Mathing a penalty patternmay allow an inrease in the lower bound. A uto� happens only when the mathedpenalty patterns inrease the lower bound suÆiently (above the urrent threshold).However, these diret uto�s are only part of the bene�ts of the patterns. Thepattern searhes might unover a pattern that wasn't reated by the last move. Inthat ase, when the last move is unmade, the pattern is still present. In fat, thelower bound of a state an hange during the searh of a subtree. Therefore, whenthe searh returns from a reursive all, the searh has to hek if the lower boundis now suÆient to ause a uto�. In that respet, suh a pattern leads to a kindof dependeny-direted baktraking, as known from onstraint-satisfation problems[SS77, Gas79℄. As long as the pattern exists in the maze, the searh ontinues tobakup. When the move that reated that pattern is unmade, the assoiated penaltydisappears and the searh proeeds normally.5.11 San SearhThe auray of the evaluation at the root node determines how many iterations areneeded to �nd a solution. The larger the gap between the lower bound of the rootnode and the orret solution length, the more iterations have to be searhed.Rolling Stone runs one penalty searh for eah of the stones in the initial position to�nd preexisting penalty patterns { the san searh. Finding suh preexisting patterns85



Figure 5.7: Maze #30 With a Penalty of 38 (24+14)
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inreases the lower bound of the root node and redues the total number of iterationsof the IDA* searh.However, inreasing the lower bound at the root node will only help to save theearly, small iterations, not the latter, large iterations. Sine these early iterationshelp explore and �nd patterns, utting early iterations might be detrimental to theoverall performane of the program. Furthermore, exeuting san searhes omeswith a signi�ant overhead, usually over 20,000 nodes and as muh as 58,000 nodes.Espeially for searhes that are small, this overhead an be signi�ant.5.12 Utility ConsiderationsControlling the number of pattern searhes and their individual osts is only partof the ost of the pattern knowledge. Whenever a lower bound is alulated, allthe patterns in the database have to be tested to �nd whih ones math. This anquikly lead to Minton's utility problem [Min88℄: The osts of mathing patternsslows the program down to the point where the bene�ts in node savings are o�set bythe additional ost of pattern mathing. To redue this ost, a limit an be imposedon the total number of patterns. But, whih of the patterns should be kept and whihshould be deleted?We hose to limit the number of patterns to 8005. When this pattern limit isreahed, we remove the worst pattern before inserting a new one. \Worst" is de�nedas least reently used. To avoid deleting patterns before they have had time to showtheir worth, patterns are given a grae period of 50,0006 nodes from the time theyare reated during whih they are not removed. Also, one a pattern was used morethan 8007 times, it will never be removed. Thus, the pattern limit of 800 is a softlimit, it is possible that more patterns are stored.With this limit in plae, on average about half of the patterns are eliminated.The removal heuristi seems to work well, beause patterns that are removed wouldrarely be mathed. One problem is an exeption: #19. Without the pattern limit,Rolling Stone an solve problem #19 with 17 million nodes. With the pattern limitin plae, the number of nodes needed inreases beyond 20 million. Beause of the\softness" of the pattern limit, further dereasing the pattern limit results only insmall further derease in the number of patterns stored. Note that in many problemsthe pattern limit is never reahed. In other problems, this limit is exeeded exes-sively and massive run time savings are possible when large amounts of patterns aredeleted. Problem #22 is suh an example. Without a pattern limit, 13,458 patternsare olleted. With the soft pattern limit of 800, only 1,742 patterns are stored,signi�antly reduing the ost of pattern mathing.5Yet Another Magi Number (YAMN).6YAMN.7YAMN.
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Figure 5.8: No Penalty5.13 Related WorkThe idea of storing minimal patterns is similar to Ginsberg's Partition Searh [Gin96℄,where the entries of a hash table are generalized to hold information about sets ofproblem states. In Rolling Stone a pattern ontains the information about the lower-bound inrease of the set of problem states in whih this pattern is present.The notion of bit (stone) patterns an be ompared to the Method of Analogies[AVAD75℄. Pattern searhes are a onit-driven top-down proof of orretness, whilethe Method of Analogies is a bottom-up heuristi approximation.5.14 Limitations and Open ProblemsThere are ompliations when reasoning about penalties as we have seen in Se-tion 4.3.6. Pattern searhes assume that a stone will go to its losest goal. If theoptimal path to that goal annot be used beause it is obstruted, a di�erent, poten-tially longer path has to be taken. A penalty is the result.But what if the Minmathing lower bound has already targeted the stone towardsa goal further away? Consider Figure 5.8. Even though we have a stone on�gurationthat might look like a linear onit, it is not. One of the stones has to be pushed tothe goal further away. This knowledge is impliit in the lower bound. But beausethe pattern searh assumes that eah stone will go towards the losest goal, it will�nd a penalty of 2 in this position. Even though we have so far treated the penaltiesresulting from pattern searhes as admissible, there are rare ases in whih they arenot.This problem arises from the disrepany between the pattern searh's assumptionand the reality of where the Minmathing is targeting the stones to. Unfortunately,there is no general way of solving this problem, without onditioning the penalties.These onditions would have to aount for the assumptions of the pattern searhand eah pattern mathing would have to verify that the urrent Minmathing is notviolating these assumptions (e.g. whih goals a stone an/annot move to.) It is anopen problem how to enode these onditions eÆiently. In the version of RollingStone desribed here, this problem is ompletely ignored, resulting in the oasionalwrong penalty (and possibly non-optimal solution).An observation that we have not been able to exploit is the hidden pattern. Assumethat at a node all suessors are searhed without �nding a solution. That means88
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Figure 5.9: Enabling One Pattern Searh (Linear and Log Sale)the searh has just proven that there is no solution for the urrent threshold in thissubtree. However, the lower bound did not ause a uto� when we started searhingthis subtree. At this point, we know that our lower bound is o�. A penalty patternremains undeteted in the urrent position. The searh has no knowledge about whyit failed. Bak-jumping is impossible. Just exeuting a pattern searh to �nd thehidden pattern has two draw-baks:� Presumably we did a pattern searh when we reated this node, starting withthe stone last pushed. With whih stone should we start now?� If we �nd a solution before we revisit this node, then this speulative searhe�ort would be wasted.It seems obvious that the knowledge about the existene of a hidden pattern shouldbe used, but we don't know how to do so eÆiently.A fundamental limitation of the urrent implementation of the penalty patternsand penalty searhes is that stones on goals annot be part of a pattern. The numberand kind of penalty anomalies inreases dramatially when stones on goals are allowedin patterns. This limits the patterns in the kinds of penalties that they an express.We experimented with stones that where �xed on goals, but found that the dynamidistanes apture most of the bene�ts already.5.15 Experimental ResultsRolling Stone an solve 24 Sokoban problems without pattern searhes. Table 5.1 andFigure 5.9 show the e�et of adding eah of the pattern searhes alone: area searh(AR), deadlok searh (DL) and penalty searh (PN). Penalty searhes outperformthe rest of the searhes learly, solving 48 problems, that is an inrease of 24! Areasearhes solve 6 problems less, a total of 42. Deadlok searhes, the initial idea, ansolve only 6 more problems than a version without any pattern searhes: 30. Notethe entries for problem #54. While the program enhaned with the area searh an89



# -AR -DL -PN +AR -DL -PN -AR +DL -PN -AR -DL +PNIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA*1 53 50 728 53 633 53 5732 316 85 4,640 82 5,077 82 4,3473 2,493 166 4,711 119 11,872 107 13,5304 597 187 45,652 187 47,480 187 49,5625 1,275,146 57,723 429,175 2,484 135,636 488 50,7116 283 160 4,110 85 3,954 160 3,9827 48,209 3,998 21,752 3,504 102,281 1,376 21,6458 > 20,000,000 23,729 273,954 > 106,657 > 20,000,000 426 408,7089 659,972 8,460 117,093 3,098 355,472 841 126,35310 > 20,000,000 > 4,589,251 > 20,000,000 > 63,766 > 20,000,000 2,419 1,429,19811 > 20,000,000 > 2,186,237 > 20,000,000 > 310,567 > 20,000,000 44,357 7,818,16412 > 20,000,000 3,613,901 9,394,754 > 565,536 > 20,000,000 300,828 5,852,85417 11,910 7,470 35,424 3,830 17,332 7,838 27,06319 > 20,000,000 > 2,308,996 > 20,000,000 > 133,139 > 20,000,000 61,500 12,365,85121 10,643,971 15,306 168,209 202,317 10,206,666 1,906 145,40925 > 20,000,000 > 2,282,812 > 20,000,000 > 130,791 > 20,000,000 1,396 373,55233 > 20,000,000 > 10,349,835 > 20,000,000 > 195,637 > 20,000,000 5,520 639,63534 > 20,000,000 73,999 697,988 150,281 18,350,039 511 267,40138 19,083 10,166 41,411 11,971 111,629 9,031 53,34143 6,084,369 45,373 421,089 > 385,422 > 20,000,000 17,825 935,19645 > 20,000,000 > 5,363,550 > 20,000,000 > 116,217 > 20,000,000 1,439 467,80949 5,189,494 228,985 851,493 600,506 5,550,628 195,260 357,65151 80,504 145 5,720 2,194 38,390 137 8,53153 > 20,000,000 159 21,334 9,921 597,100 159 24,00454 > 20,000,000 114,481 336,415 > 2,509,932 > 20,000,000 > 3,896,911 > 20,000,00055 144 104 2,072 136 3,803 97 2,39356 > 20,000,000 15,233 99,878 123,173 2,147,733 376 51,99657 > 20,000,000 75,612 339,663 84,591 4,897,724 265 114,40758 > 20,000,000 3,386 85,637 > 154,522 > 20,000,000 723 195,76759 > 20,000,000 1,106,457 2,730,849 > 244,323 > 20,000,000 1,223 499,46660 > 20,000,000 1,111,060 1,584,426 216,622 1,395,471 205 20,37261 > 20,000,000 > 10,696,415 > 20,000,000 > 330,504 > 20,000,000 325 110,86262 6,337 1,996 42,355 18,268 2,519,713 167 56,02463 > 20,000,000 8,836 139,172 > 156,097 > 20,000,000 437 150,21164 > 20,000,000 193,037 2,610,202 > 81,434 > 20,000,000 379 234,40065 604 221 17,899 228 18,343 196 18,74767 > 20,000,000 773,199 7,828,791 > 197,121 > 20,000,000 54,963 654,59468 > 20,000,000 26,908 521,170 > 392,557 > 20,000,000 1,119 229,05570 > 20,000,000 217,772 1,530,250 > 235,488 > 20,000,000 415 118,59572 > 20,000,000 348 26,524 898 257,112 134 39,03873 > 20,000,000 424 23,896 6,389 567,742 205 58,45976 > 20,000,000 1,098,753 4,037,793 > 95,223 > 20,000,000 191,703 4,521,47378 465 64 2,680 75 2,513 64 2,38779 5,964 149 9,032 143 11,715 131 12,66080 114,930 830 30,684 123 19,419 155 24,06381 221,690 25,943 74,914 9,095 536,209 21,505 147,73782 99,236 2,126 59,223 15,362 1,266,520 86 34,69883 20,847 262 5,055 164 8,155 166 9,45184 354,295 142 4,816 227 23,768 95 8,325>524,840,912 > 47,644,501 >174,682,633 > 7,871,059 >429,210,129 > 4,825,891 > 58,760,250Table 5.1: Enabling One Pattern Searh
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Figure 5.10: E�ort Graph Inluding Pattern Searh (Linear and Log Sale)solve problem #54, the program with the penalty searhes annot. Area searhes andpenalty searhes are �nding di�erent kinds of penalties.Figure 5.10 shows the e�ort graph, now inluding the version of Rolling Stone usingall pattern searhes. Turning all the pattern searhes on, we an solve 48 problems,24 more than the previous best version! The last olumn of Table 5.2 shows the exatnumbers.Sine penalty searhes alone an solve 48 problems, why is it bene�ial to inludedeadlok and area searhes? First, small redutions in searh e�ort are ahieved. Moreimportantly however, by allowing di�erent kinds of pattern searhes to be exeuted,we have some insurane against missing some types of patterns that ould prevent usfrom �nding solutions to new, unseen problems. As an be seen in Table 5.2, di�erentombinations of pattern searhes solve di�erent problems.Exept for the small searhes (<20,000 nodes), the ost of performing the addi-tional PIDA* searhes is o�set by the redution in the IDA* searh nodes. Problem#53 is an example. The savings for the IDA* tree are dramati. Previously, with20,000,000 nodes the searh was unable to solve this problem. Now the searh su-eeds with only 159 IDA* nodes and a total of 22,310 nodes (21,081 of those aresan-searh nodes). Clearly, the pattern searhes dominate the searh ost, but theknowledge unovered allows us to solve the problem where we failed previously. Inthis example, Rolling Stone searhes fewer IDA* nodes than the length of the solution!The searh baktraks a mere 13 times for a solution of 186 pushes.Table 5.2 and Figure 5.11 show the version of Rolling Stone that uses all patternsearhes and what happens when one of the pattern searhes is disabled at a time. Thesmallest loss omes from disabling area searh; 48 problems are still solved. Disablingpenalty searhes loses a total of 11 problems. Turning o� the deadlok searh losesone problem, but gains one, problem #19!Problem #19 is an interesting ase. Adding penalty searhes alone allows RollingStone to solve the problem with over 12 million nodes. Further enabling area searhesinreases the number of nodes needed to lose to 16 million. When all the patternsearhes are enabled, the problem annot be solved anymore; the overhead beomestoo high. 91



# -AR +DL +PN +AR -DL +PN +AR +DL -PN +AR +DL +PNIDA* IDA*+PIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA*1 53 826 50 864 50 934 50 1,0422 82 6,122 82 5,790 82 6,468 82 7,5323 94 13,846 107 13,472 110 10,347 94 13,4454 187 49,324 187 49,386 187 48,527 187 50,3695 436 60,141 478 50,071 2,031 138,172 436 59,2496 85 4,691 160 5,120 85 4,603 85 5,1197 1,704 26,633 1,376 23,612 2,814 67,350 1,704 28,5618 408 550,814 328 279,027 10,890 2,141,491 317 339,2559 810 184,307 745 125,123 1,658 210,090 704 168,41210 2,127 2,002,162 1,926 999,098 > 80,071 > 20,000,000 1,909 1,480,11511 14,704 4,429,873 21,985 4,778,984 > 366,200 > 20,000,000 14,048 4,691,92912 162,263 4,233,053 300,669 6,136,043 > 720,970 > 20,000,000 162,129 4,373,80217 3,077 25,702 6,767 44,135 3,045 29,532 2,473 30,11119 > 63,223 > 20,000,000 75,007 15,793,144 > 96,292 > 20,000,000 > 59,433 > 20,000,00021 1,889 190,935 1,904 125,511 32,571 2,655,175 1,853 154,59325 1,351 568,490 1,346 417,736 > 126,416 > 20,000,000 1,239 553,90033 5,009 838,878 5,319 649,862 > 298,642 > 20,000,000 5,035 866,08534 582 401,802 591 299,695 52,733 5,556,437 542 298,67438 7,576 72,264 9,031 75,401 3,363 38,608 2,539 51,27643 16,566 1,417,432 6,758 558,133 17,389 1,205,589 5,308 690,42645 1,086 439,895 1,799 492,574 > 123,327 > 20,000,000 1,685 508,12449 371,153 1,246,597 > 7,229,739 > 20,000,000 403,401 2,459,295 375,293 1,670,23651 137 9,618 137 7,760 145 10,839 137 8,82553 159 24,008 159 22,306 159 22,310 159 22,31054 106,663 788,320 > 2,459,627 > 20,000,000 111,832 981,285 106,663 910,53255 97 2,651 97 2,735 104 3,074 97 2,99356 452 62,281 381 49,590 8,495 209,164 353 57,78557 256 122,994 265 112,900 51,777 1,860,321 256 121,38458 716 315,546 433 170,709 2,382 383,630 426 268,71359 1,198 668,701 812 240,794 > 391,840 > 20,000,000 795 348,21460 205 28,124 223 29,016 2,547 127,104 223 41,31061 290 93,241 325 111,873 > 562,852 > 20,000,000 314 106,20662 167 60,329 211 64,446 1,865 230,463 211 70,47863 437 198,790 567 192,649 123,280 12,431,967 567 259,53764 370 302,697 387 238,103 > 92,640 > 20,000,000 378 300,68465 196 19,885 196 20,433 221 20,486 196 21,44267 52,987 905,298 18,571 620,139 > 205,793 > 20,000,000 18,107 601,17868 1,721 336,291 2,297 359,463 21,054 2,682,015 2,278 541,08070 413 148,995 412 104,721 556 96,670 412 125,45472 134 46,411 134 38,519 348 50,085 134 44,90873 201 87,068 205 58,308 363 84,811 201 87,01976 192,230 6,726,931 334,655 5,046,214 > 300,026 > 20,000,000 185,633 6,236,65678 64 3,219 64 3,646 64 3,702 64 4,45179 125 14,464 131 14,065 141 13,567 125 15,83380 100 19,640 155 22,986 102 13,849 100 16,11481 21,501 221,154 21,505 161,099 25,269 467,708 21,501 234,23582 86 38,450 86 33,506 1,980 183,123 86 33,44583 91 7,867 97 7,879 91 5,759 91 7,29484 94 5,578 95 5,944 137 21,304 94 5,960> 1,035,555 > 48,022,338 > 10,508,581 > 78,662,584 > 4,248,390 >274,475,854 > 976,746 > 46,536,295Table 5.2: Disabling One Pattern Searh
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Figure 5.11: Disabling One Pattern Searh (Linear and Log Sale)Analysis of the data shows that the average growth rate of the searh tree fromiteration to iteration in an IDA* searh dereased by a fator of over 600. Althoughthis represents a signi�ant redution in searh e�ort, it demonstrates how resistantthe problem is to searh. Dereasing the growth rate of the searh-tree size generallyinreases the number of iterations that the main IDA* searh an perform in the sametime.Pattern searhes are a gamble: we invest searh e�ort (PIDA* nodes) expetingto �nd useful knowledge. Problem #78 is one example of where the gamble does notpay o�. Even though the tree size (IDA*) is redued about 50 fold, inluding thePIDA* nodes triples the total number of nodes searhed.Node numbers and suess rates vary for the di�erent pattern searhes. An un-produtive pattern searh osts between roughly 50 and 600 nodes. A produtivepattern searh typially osts between 600 and 3,200 nodes. While penalty searhesare expensive, they are suessful about 10% of the time. On the other hand, areasearhes are heap, but their suess rate is only about 1%. Although this soundslow, the results show the value of the disovered knowledge.The results reported here are not the best numbers that an be ahieved. InTable 5.2, the PIDA* nodes dominate the ost of the searh for some problems.Some additional heuristis for deiding when to exeute pattern searhes ould resultin further improvements in the searh eÆieny. There are numerous parameters inthe searh, eah of whih an be tuned for maximal performane. For example:� the e�ort limit in number of nodes,� the pattern-size limit,� the e�ort limit after �nding a pattern,� the ontrol funtion, and� whih of the multiple oniting stones to inlude next.93



Figure 5.12: Example of C of In�nityBuilding the pattern searhes was easy. All the e�ort was spent in tuning the param-eters for best performane.5.16 Theoretial ConsiderationsThe question arises as to whether or not pattern searhes an be used in domainsother than Sokoban. What fundamental properties of the domain and its heuristisare needed for pattern searhes to be appliable and to produe admissible lowerbounds?5.16.1 State Desription PropertiesFirst, we will examine the domain properties. Let us assume that a state in a domainan be desribed by a set of desriptors S = f1; :::; ng. These i ould relate toobjets and their properties, suh as loation or value. For the domain of Sokobanone ould imagine a i to desribe the loation of a stone. A subset Sk � S is a statewith fewer or the same number of suh desriptors than S, for the Sokoban example,stones. A state desription is reduible, if the solution for any state Sk is at most aslong as the solution for any S: jsol(Sk)j � jsol(S)j: (5.1)The term jsol(S)j stands for the length of an optimal solution for S. It is non-negative(jsol(;)j = 0).A state desription is alled splitable, if for any two disjoint subsets S1 and S2 ofS (S1; S2 � S and S1 \ S2 = ;) the following holds:jsol(S)j = jsol(S1)j+ jsol(S2)j+ jsol(S � (S1 [ S2))j+ C (5.2)This means that the solution of S is at least as long as both subsolutions added.The third term aounts for additional steps that might be needed for onditions ithat are neither in S1 nor S2. The term C stands for subsolution interations. Thesesubsolution interations an only inrease the solution length of S (C � 0).The example Sokoban-state desription is reduible, beause whenever a stone (oreven a wall) is removed, the solution is not getting more ompliated, but potentially94



simpler. This state desription is also splitable. In Sokoban, the term C an beomeas large as in�nity. Consider Figure 5.12 as an example. The two linear onits,shown in the left (S1) and middle maze (S2), ombine to form a deadlok when addedin the right maze (S). The third term in Equation 5.2 (jsol(S � (S1 [ S2))j) is 0,beause S � (S1 [ S2) = ;. Adding the solution to the subproblems S1 and S2 leadsto an in�nitely smaller sum than the atual solution length of the right maze.5.16.2 Heuristi PropertiesNow, let us onsider the properties of the admissible heuristi h used for the applia-tion domain. A heuristi is reduible, if the following holds:h(Sk) � h(S); (5.3)given that Sk � S. A heuristi is splitable, if the following holds:h(S) = h(S1) + h(S2) + h(S � (S1 [ S2)); (5.4)given that S1; S2 � S and S1 \ S2 = ;.The Minmathing heuristi in Sokoban is reduible but not splitable, beauseMinmathing does take stone-goal interations into aount. This is one reason whythe pattern searhes use the simpler heuristi Closest. The lower bound is the sum ofthe distanes of eah stone to their respetive losest goals. This heuristi is reduibleand splitable.5.16.3 PenaltiesThe pattern searh an start with solving any Sk � S and adding new onditionsi will only monotonially inrease the solution lengths, as de�ned in Equation 5.1.A penalty pattern Sk is disovered, when there is a di�erene between jsol(Sk)j andh(Sk). Sine h is admissible, the following must be true:jsol(Sk)j � h(Sk) � 0: (5.5)We will de�ne the penalty of Sk aspen(Sk) = jsol(Sk)j � h(Sk): (5.6)The sum h(Sk) + pen(Sk) is therefore by de�nition admissible.What happens with multiple penalty patterns that math in one state? Whenthese patterns overlap, only one an be used, as previous onsiderations in Se-tion 4.3.6 with the multiple linear onits have shown. What about non-overlappingpatterns? Would the sum of the lower-bound funtion and all their penalties still beadmissible?Let S1 and S2 be two non-overlapping subproblems of S, with the usual onditionsS1; S2 � S and S1\S2 = ;. For h(S)+pen(S1)+pen(S2) to be admissible (jsol(S)j �h(S) + pen(S1) + pen(S2)), the following must hold:pen(S) � pen(S1) + pen(S2): (5.7)95



Using Equations 5.1 to 5.6 this is easy to show.pen(S) = jsol(S)j � h(S)= jsol(S1)j+ jsol(S2)j+ jsol(S � (S1 [ S2))j+ C�(h(S1) + h(S2) + h(S � (S1 [ S2)))= jsol(S1)j � h(S1) + jsol(S2)j � h(S2)+jsol(S � (S1 [ S2))j � h(S � (S1 [ S2))+C= pen(S1) + pen(S2) + pen(S � (S1 [ S2)) + C| {z }�0� pen(S1) + pen(S2) (5.8)Thus, given the properties outlined above for the domain and the heuristi, the penal-ties of non-overlapping patterns an be added and the resulting heuristi remainsadmissible.5.16.4 ConlusionsWe were able to show the suÆient properties of the state desription and the lowerbound that ensure the theoretial appliability of pattern searhes. If the state de-sriptions and the heuristi lower bound for a domain have both the properties ofreduibility and splitability, pattern searhes are possible. Starting with small prob-lems (patterns), pattern searhes an iteratively inrease the pattern size until apenalty pattern is deteted. For Sokoban, we used the onit heuristi to determinethe next i (stone) to inlude, but any other heuristi ould be used. It was also shownthat the penalties of non-overlapping patterns an be added to the lower bound of aposition without losing admissibility. However, in pratie it might not be wise to usepattern searhes. Their use omes with a onsiderable overhead and the ost-bene�tratio will determine if pattern searhes are bene�ial.We previously disussed a few inonsistenies between the pattern knowledge andthe admissibility of the resulting evaluation in Sokoban. Now, we have the theoretialtools to see where these issues arise from. The pattern searhes have to use a di�erentheuristi than the main IDA* searh. Therefore, the admissibility of a pattern doesnot neessarily arry over from the pattern searh into the main IDA* searh. Sokobanproves to be diÆult, again.What about other domains? How ommon are the properties of reduibility andsplitability? The sliding-tile puzzles and Rubik's Cube have these properties. TheManhattan distane used as a lower-bound funtion for the sliding-tile puzzles isreduible and splitable as well. We will see in the next setion, how the ideas developedfor Sokoban an easily be transferred into the di�erent domain of the 15-puzzle.
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5.17 Pattern Searhes in the 15-PuzzleThe 15-puzzle is reduible. Removing tiles introdues more blanks and they allowthe problem to be solved faster. It is also splitable. Traditionally, the Manhattandistane is used as a lower bound. The Manhattan distane has both properties:reduibility and splitability. Therefore, the sliding-tile puzzles are perfet andidatesfor pattern searhes from a theoretial point of view.Pratially, however, there are a number of drawbaks to this domain when tryingto improve run time with pattern searhes.� Pattern searhes exel at �nding loal onits by ignoring irrelevant parts of theproblem. Beause of the limited physial dimensions of the 15-puzzle, almosteverything is loal. Thus, one of the main advantages of the pattern searh isdiminished onsiderably.� The sliding-tile puzzle programs have very little overhead per node. Move gener-ation and lower-bound funtions redue to table lookups of small onstant time.On today's fast PCs (Pentium III 450MHz) they easily searh up to 8 millionnodes per seond. Adding any kind of overhead will slow down the programonsiderably, and that slowdown is hard to o�set with node savings. Patternsearhes will reate onsiderable overhead, beause they have to be exeutedand the patterns have to be mathed.� There are enhanements to the lower bound, suh as the linear onits [HMY92℄,that an eÆiently improve the Manhattan distane.� While in Sokoban a move ould inrease the distane to the goal by an arbitraryamount, in the sliding-tile puzzles, eah move an inrease the distane to thegoal by at most 2, beause every move is reversible. Therefore, the penaltiesthat an be found will be smaller for the 15-puzzle and thus the bene�ts (thelikelihood of uto�s) will be less.Despite these obstales, a signi�ant redution in node ount ould show thefeasibility of pattern searhes beyond the domain of Sokoban.5.17.1 ImplementationWe started with Korf's original implementation of a 15-puzzle solver [Kor85a℄.8 Itontains nothing but the Manhattan distane as lower bound, IDA* as the searh al-gorithm and an enhanement to prevent yles of length 2. There are no transpositiontables, linear onits, maro moves and pattern databases.Pattern SearhesOur implementation of the pattern searh starts with a designated tile that is assumedto be part of a penalty pattern. The pattern searh tries to solve the problem with8We used Korf's original soure ode to implement our ideas.97



the single tile; everything else is assumed to be blanks. The searh returns a solutionand a onit set onsisting of all the squares the tile moved over. The next tileinluded is the one in the onit set whih is losest to the �rst tile, and so forth.Closest in our implementation is a modi�ed Manhattan distane. Every tile in thesame row or olumn has the normal Manhattan distane. All other tiles are assignedthe Manhattan distane plus 2. This ensures that all tiles in the same olumns orrows are inluded �rst, in order to failitate the detetion of linear onits.Patterns are restrited to 4 tiles, and eah pattern searh is given a limit of 50nodes. If a pattern is found, the searh ontinues, but the limit is inreased to 250.Pattern searhes are only exeuted to a searh-tree depth of about half the IDA*threshold (i.e. are restrited to the top of the tree).At the beginning of an IDA* searh, the equivalent of a San Searh is performed.For eah tile a pattern searh is alled. During the IDA* searh, a pattern searh isexeuted if the tile that was moved is not part of a pattern that was inluded in thepenalty for the urrent position. This redues the number of unprodutive patternsearhes, even at the risk of missing a small perentage of the patterns.Pattern Storage and MathingTo speed things up, eah pattern is stored in a number of dynami arrays. Thereare 16 � 16 suh arrays, one for eah tile-square ombination. Eah of these arraysontains all the patterns that have a spei� tile on a spei� square in the puzzle grid.Thus, a linear onit with two tiles would be stored twie, one for eah tile-squareombination in the pattern.To redue the run-time overhead, we use a greedy approah when trying to deter-mine the penalty of a position. For eah tile in the puzzle we try to �nd the maximalpenalty available for this tile using a minimal number of tiles. We ommit to usingthis penalty. The tiles used by ommitted penalties are marked and exluded fromfurther mathes to ensure only non-overlapping patterns are used. This routine is notguaranteed to �nd the maximal penalty, but was a ompromise to obtain most of thebene�ts of the patterns with the least amount of overhead.5.17.2 Experimental ResultsThe parameters given above were tuned only a little, but improvements are ertainlypossible. We use the 100 problems from Korf's original test suite [Kor85a℄.Figure 5.13 shows node numbers orresponding to Korf's original ode (upperline), the orresponding node numbers for the pattern-searh version (dots), and thesame numbers sorted by inreasing size (shown as the lower line). Savings of about66% are possible with our urrent implementation. The nodes searhed split aboutequally among the top-level nodes and pattern-searh nodes.
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Figure 5.13: Pattern Searhes in the 15-Puzzle (Linear and Log Sale)
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Figure 5.14: Pattern Searhes in the 15-Puzzle Reusing Patterns (Linear and LogSale)
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Reusing PatternsIn Sokoban, the patterns found in one problem are not generally usable in anotherproblem, beause the layout of the maze and the loation of the goals hange. Sinethe 15-puzzle does not hange its layout or the goal state, patterns found one arereusable for future problems. A test was run that retains the patterns from problemto problem. An additional 10% savings are possible, reduing the number of nodesrequired to roughly 24%. Figure 5.14 shows the results. Tables 5.3 and 5.4 ontainsthe numbers for both experiments.Run TimeEven though we ould show wins with respet to node numbers, the overall run timeinreases. The overhead of mathing the patterns is not o�set by the node savings.The savings are lower beause the penalties that an be found are smaller than inSokoban, beause all moves are reversible. Thus, the likelihood of them being ableto ause a uto� is smaller as well. The mathing inreases the time spent per nodeabout 35-fold. That is not surprising, sine the original ode has an extremely lowoverhead.5.17.3 ConlusionsThe sliding-tile puzzles are quite di�erent when ompared to the Sokoban domain.However, they have similar properties that allow pattern searhes to work. Eventhough the pattern searhes result in signi�ant node savings, the mathing overheadis larger, beause the 15-puzzle is a low-overhead domain, with an eÆient and e�e-tive lower-bound funtion, reversible moves and high loality. The ost-bene�t ratiois not in favor of pattern searhes for the 15-puzzle.The lower-bound improvement of linear onits an redue the node numbersmuh more, but that knowledge is stati and is hand oded. Pattern searhes andetet muh more general onits of tiles and are not restrited by our understandingof the domain. The main objetive of this setion, to show that pattern searhes havepotential beyond the domain of Sokoban, was realized.5.18 ConlusionsThe property of deadloks in a searh spae adds onsiderable omplexity to thesearh. Deadlok tables are bene�ial for loal deadlok detetion, but inadequate tohandle non-trivial situations. Pattern searhes an detet global deadlok senariosand are able to improve the lower bound onsiderably, resulting in a substantialimprovement in searh eÆieny.Patterns give the searh knowledge about how the stones and the man interat.This additional knowledge allows the searh to avoid parts of the searh spae thathave no solutions and/or only solutions that are longer than the urrent threshold.100



# Plain IDA* Plus Pattern Searhes Plus Pattern Searhes with Reuse of PatternsIDA*+PIDA* IDA* PIDA* IDA*+PIDA* IDA* PIDA*1 540,859 239,547 142,508 97,039 239,547 142,508 97,0392 546,343 276,468 198,862 77,606 267,188 193,074 74,1143 877,822 289,709 201,934 87,775 256,627 182,675 73,9524 927,211 463,991 283,028 180,963 399,477 253,956 145,5215 1,002,926 437,631 274,859 162,772 347,658 229,040 118,6186 1,280,494 794,419 430,652 363,767 674,873 372,343 302,5307 1,337,339 949,669 543,679 405,990 753,357 437,515 315,8428 1,411,293 750,560 480,549 270,011 524,327 347,662 176,6659 1,599,908 718,377 430,931 287,446 534,140 340,121 194,01910 1,650,695 898,062 500,979 397,083 705,983 407,199 298,78411 1,897,727 894,044 578,177 315,867 700,093 471,535 228,55812 1,905,022 696,823 412,605 284,218 496,921 296,423 200,49813 2,196,592 959,296 654,233 305,063 671,943 489,194 182,74914 2,304,425 900,628 562,093 338,535 599,977 400,609 199,36815 2,351,810 823,599 512,078 311,521 556,369 379,907 176,46216 2,725,455 1,566,132 855,726 710,406 1,200,524 664,060 536,46417 3,222,275 1,976,483 1,188,101 788,382 1,511,135 935,646 575,48918 5,934,441 2,611,918 1,734,902 877,016 1,993,995 1,362,206 631,78919 6,158,732 2,454,218 1,666,046 788,172 1,593,941 1,142,821 451,12020 7,096,849 1,387,873 843,966 543,907 900,469 579,749 320,72021 7,115,966 3,535,755 1,963,898 1,571,857 2,798,760 1,557,218 1,241,54222 7,171,136 2,282,133 1,485,085 797,048 1,633,121 1,088,971 544,15023 8,841,526 4,945,501 2,670,870 2,274,631 4,338,745 2,376,398 1,962,34724 8,885,971 1,855,272 1,093,178 762,094 1,179,823 733,615 446,20825 9,982,568 3,576,460 2,262,624 1,313,836 2,406,177 1,565,450 840,72726 10,907,149 4,965,290 3,073,845 1,891,445 3,689,342 2,341,576 1,347,76627 11,020,324 6,196,510 3,496,018 2,700,492 4,692,929 2,702,278 1,990,65128 11,861,704 3,136,569 1,915,277 1,221,292 2,082,440 1,287,875 794,56529 12,808,563 2,587,918 1,532,363 1,055,555 1,587,803 958,001 629,80230 12,955,403 6,900,357 3,904,078 2,996,279 5,689,404 3,244,098 2,445,30631 15,300,441 6,393,789 3,547,776 2,846,013 5,302,386 2,984,188 2,318,19832 15,971,318 3,811,782 2,242,701 1,569,081 2,805,897 1,621,794 1,184,10333 17,954,869 7,914,991 4,198,511 3,716,480 6,326,621 3,375,560 2,951,06134 17,984,050 3,973,317 2,133,762 1,839,555 2,978,373 1,606,509 1,371,86435 18,918,268 8,437,534 4,807,670 3,629,864 6,255,292 3,679,995 2,575,29736 18,997,680 3,756,295 2,417,514 1,338,781 2,380,043 1,602,348 777,69537 19,355,805 6,671,833 3,570,891 3,100,942 4,590,206 2,501,976 2,088,23038 20,671,551 5,313,551 2,954,753 2,358,798 3,859,176 2,248,633 1,610,54339 22,119,319 4,100,671 2,554,452 1,546,219 2,486,509 1,640,228 846,28140 23,540,412 13,843,415 7,789,833 6,053,582 11,430,164 6,424,676 5,005,48841 23,711,066 11,348,938 6,333,195 5,015,743 9,004,498 5,067,043 3,937,45542 24,492,851 6,775,014 4,358,482 2,416,532 4,987,035 3,223,251 1,763,78443 26,622,862 12,666,910 6,667,429 5,999,481 7,827,761 4,443,516 3,384,24544 32,201,659 9,579,153 5,226,829 4,352,324 6,865,400 3,866,877 2,998,52345 39,118,936 8,677,734 5,182,695 3,495,039 5,759,803 3,499,410 2,260,39346 41,124,766 15,859,652 9,256,714 6,602,938 10,856,777 6,696,506 4,160,27147 42,693,208 18,962,035 10,458,390 8,503,645 15,720,595 8,760,179 6,960,41648 42,772,588 8,786,352 4,544,081 4,242,271 6,769,114 3,553,502 3,215,61249 47,506,055 14,785,232 8,744,593 6,040,639 10,364,124 6,382,613 3,981,51150 51,501,543 25,153,931 13,156,713 11,997,218 20,651,664 10,892,728 9,758,936Table 5.3: Experimental Results for the 15 Puzzle (I)101



# Plain IDA* Plus Pattern Searhes Plus Pattern Searhes with Reuse of PatternsIDA*+PIDA* IDA* PIDA* IDA*+PIDA* IDA* PIDA*51 59,802,601 12,074,808 7,129,909 4,944,899 7,198,419 4,642,938 2,555,48152 62,643,178 18,193,320 10,275,974 7,917,346 14,344,342 8,275,975 6,068,36753 63,036,421 20,635,688 12,069,795 8,565,893 14,248,474 8,790,770 5,457,70454 63,276,187 25,257,298 13,569,322 11,687,976 21,132,597 11,433,740 9,698,85755 64,367,798 12,986,228 7,853,068 5,133,160 9,633,860 6,022,843 3,611,01756 64,926,493 14,115,956 7,803,041 6,312,915 10,480,885 5,924,554 4,556,33157 65,533,431 5,740,186 3,704,815 2,035,371 3,885,367 2,573,896 1,311,47158 67,880,055 35,223,825 17,184,643 18,039,182 30,288,769 14,792,560 15,496,20959 83,477,693 30,115,905 18,253,002 11,862,903 23,599,128 14,608,924 8,990,20460 95,733,124 13,243,348 6,998,780 6,244,568 9,588,006 5,208,168 4,379,83861 100,734,843 34,617,503 17,763,516 16,853,987 29,281,463 14,983,111 14,298,35262 106,074,302 26,373,781 15,994,142 10,379,639 18,261,302 11,288,695 6,972,60763 109,562,358 25,511,033 14,047,076 11,463,957 19,080,166 10,744,264 8,335,90264 117,076,110 41,217,374 20,879,485 20,337,889 31,983,878 16,701,461 15,282,41765 126,638,416 62,396,258 31,005,988 31,390,270 53,339,225 26,754,479 26,584,74666 132,945,855 68,225,185 34,463,403 33,761,782 57,658,610 29,456,218 28,202,39267 150,346,071 63,446,995 34,816,085 28,630,910 52,569,497 29,576,740 22,992,75768 151,042,570 46,491,721 24,539,442 21,952,279 37,919,076 20,271,548 17,647,52869 166,571,020 77,540,544 40,375,099 37,165,445 66,931,919 34,669,581 32,262,33870 183,526,882 69,997,313 34,168,994 35,828,319 63,421,285 31,048,124 32,373,16171 198,758,702 87,766,281 42,008,873 45,757,408 76,176,289 36,961,403 39,214,88672 220,374,384 53,558,763 27,602,309 25,956,454 46,973,422 24,213,232 22,760,19073 226,668,644 89,537,891 45,389,557 44,148,334 75,627,138 39,075,879 36,551,25974 252,783,877 62,831,732 33,492,626 29,339,106 56,096,209 30,155,218 25,940,99175 257,064,809 86,979,437 45,004,537 41,974,900 77,236,295 40,110,310 37,125,98576 260,054,151 104,589,901 53,261,229 51,328,672 93,056,576 47,351,110 45,705,46677 276,361,932 81,643,020 42,051,951 39,591,069 63,776,719 32,769,750 31,006,96978 280,078,790 87,685,598 43,861,039 43,824,559 66,929,943 34,529,085 32,400,85879 306,123,420 49,255,148 27,457,411 21,797,737 39,012,336 22,198,724 16,813,61280 377,141,880 79,935,949 38,767,275 41,168,674 65,789,788 32,312,648 33,477,14081 387,138,093 129,453,081 66,898,520 62,554,561 107,124,954 54,052,442 53,072,51282 465,225,697 208,661,165 101,646,975 107,014,190 174,073,215 85,885,772 88,187,44383 480,637,866 134,867,828 73,184,295 61,683,533 108,870,176 59,592,195 49,277,98184 543,598,066 214,335,023 111,301,616 103,033,407 187,555,926 97,691,048 89,864,87885 565,994,202 287,160,880 137,981,294 149,179,586 261,971,051 125,619,342 136,351,70986 602,886,857 192,918,480 94,363,487 98,554,993 174,974,578 85,013,556 89,961,02287 607,399,559 221,127,539 133,786,893 87,340,646 189,874,898 115,809,263 74,065,63588 661,041,935 286,235,800 139,080,450 147,155,350 255,709,707 125,105,040 130,604,66789 750,745,754 204,800,942 105,361,957 99,438,985 178,697,814 92,261,405 86,436,40990 995,472,711 121,031,679 60,948,602 60,083,077 99,164,337 51,023,344 48,140,99391 1,031,641,139 123,558,336 67,093,299 56,465,037 101,684,685 55,108,784 46,575,90192 1,101,072,540 200,479,934 101,685,292 98,794,642 147,986,726 76,928,139 71,058,58793 1,199,487,995 351,686,002 175,182,845 176,503,157 316,488,886 159,031,174 157,457,71294 1,207,520,463 327,199,700 170,091,890 157,107,810 286,948,657 149,565,191 137,383,46695 1,369,596,777 212,473,752 120,284,300 92,189,452 178,676,839 103,461,995 75,214,84496 1,809,933,697 484,738,238 253,644,380 231,093,858 439,595,890 231,180,827 208,415,06397 1,957,191,377 712,647,322 349,499,366 363,147,956 661,802,397 325,793,021 336,009,37698 3,337,690,330 1,269,110,078 586,394,155 682,715,923 1,059,849,206 491,356,136 568,493,07099 5,506,801,122 1,034,169,009 480,236,703 553,932,306 928,186,443 434,107,129 494,079,314100 6,320,047,979 1,633,097,516 774,048,263 859,049,253 1,516,183,963 721,815,799 794,368,16436,302,807,931 10,093,823,634 5,020,547,096 5,073,276,538 8,803,189,857 4,399,402,805 4,403,787,052Table 5.4: Experimental Results for the 15 Puzzle (II)102



This knowledge omes at a prie: exeuting the speulative pattern searhes.However, the overhead of pattern searhes is well worth the e�ort in the domain ofSokoban. The knowledge gained allows dramati improvements in eÆieny and leadsto twie the number of problems solved. Given 20 million nodes of searh e�ort, ourprogram an now solve 48 problems of the 90 problem test suite.Pattern searhes an be used in other domains, if reduable and splitable statedesriptions and heuristis an be found. The 15-puzzle is suh a domain. However,to be of pratial bene�ts, the savings of the pattern searhes must outweight theironsiderable overhead. While this is true for Sokoban, the 15-puzzle did not bene�tfrom pattern searhes in our implementation.
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Chapter 6Relevane Cuts
6.1 Introdution and MotivationIt is ommonly aknowledged that a human's ability to suessfully navigate throughlarge searh spaes is due to their meta-level reasoning [Gin93b℄. The relevane ofdi�erent ations when omposing a plan is an important notion in that proess. Eahnext ation is viewed as one logially following in a series of steps to aomplish a(sub-)goal. An ation judged as irrelevant is not onsidered.When searhing small searh spaes, the omputer's speed at base-level reasoningan e�etively overome the lak of meta-level reasoning by simply enumerating largeportions of the searh spae. However, it is easy to identify a problem that is simplefor a human to solve (using reasoning) but is exponentially large for a omputer tosolve using standard searh algorithms. The pigeonhole problem is an example: �tN +1 stones into N pigeonholes. We need to enhane searh algorithms to be able toreason at the meta-level if they are to suessfully takle these larger searh tasks. Inthe world of omputer games (two-player searh), a number of meta-level reasoningalgorithmi enhanements are well known, suh as null-move searhes [GC90℄ andfutility uto�s [Sh86℄. For single-agent searh, maro moves [Kor85b℄ are an example.In this hapter, we introdue relevane uts, a meta-level reasoning enhanementfor single-agent searh. The searh is restrited in the way it hooses its next ation.Only ations that are related to previous ations an be performed, with a limitednumber of exeptions being allowed. The exat de�nition of relevane is appliationdependent.Consider an artist drawing a piture of a wildlife sene. One way of drawingthe piture is to draw the bear, then the lake, then the mountains, and �nally thevegetation. An alternate way is to draw a small part of the bear, then draw apart of the mountains, draw a single plant, work on the bear again, another plant,maybe a bit of lake, et. The former orresponds to how a human would draw thepiture: onentrate on an identi�able omponent and work on it until a desired levelof ompleteness has been ahieved. The latter orresponds to a typial omputermethod: the order in whih the lines are drawn does not matter, as long as the �nalresult is ahieved. 104



Unfortunately, most searh algorithms do not follow the human example. At eahnode in the searh, the algorithm will onsider all legal moves regardless of theirrelevane to the preeding play. For example, in hess, onsider a passed \a" pawnand a passed \h" pawn. The human will analyze the sequene of moves to, say, pushthe \a" pawn forward to queen. The omputer will onsider dubious (but legal) linessuh as push the \a" pawn one square, push the \h" pawn one square, push the \a"pawn one square, et. Clearly, onsidering alternatives like this is not ost-e�etive.What is missing in the above examples is a notion of relevane. In the hessexample, having pushed the \a" pawn and then deided to push the \h" pawn, itseems silly to now return to onsidering the \a" pawn. If it really was neessary topush the \a" pawn a seond time, why weren't both \a" pawn moves onsidered beforeswithing to the \h" pawn? Usually this swithing bak and forth (or \ping-ponging")does not make sense but, of ourse, exeptions an be onstruted.In other well-studied single-agent searh domains, suh as the N-puzzle and Ru-bik's Cube, the notion of relevane is not important. In both of these problems, thegeographi spae of moves is limited, i.e. all legal moves in one position are \lose"(or loal) to eah other. For two-player games, the e�et of a move may be global insope and therefore moves almost always inuene eah other (this is most prominentin Othello, and less so in hess). In ontrast, a move in the game of Go is almostalways loal. In non-trivial, real-world problems, the geographi spae might be large,allowing for moves with loal and non-loal impliations.This hapter introdues relevane uts and demonstrates their e�etiveness inSokoban. For Sokoban, we use a new inuene metri that reets the struture ofthe maze. A move is onsidered relevant only if the previous m moves inuene it.The searh is only allowed to make relevant moves with respet to previous movesand only a limited number of exeptions are permitted. With these restritions inplae, the searh is fored to spend its e�ort loally, sine random jumps within thesearh spae are disouraged. In the meta-reasoning sense, foring the program toonsider loal moves is making it adopt a pseudo-plan; an exeption orresponds toa deision to hange plans.The searh-tree size, and thus the searh e�ort expended in solving a problem,depends on the depth of the searh tree and the e�etive branhing fator. Relevaneuts aim at reduing the e�etive branhing fator. For Rolling Stone, relevaneuts result in a large redution of the searh spae. On the standard set of 90 testproblems, relevane uts allow Rolling Stone to inrease the number of problems itan solve from 48 to 50. Given that the problems inrease exponentially in diÆulty,this relatively small inrease in the number of problems solved represents a signi�antinrease in searh eÆieny.6.2 Relevane CutsAnalyzing the trees built by an IDA* searh quikly reveals that the searh algorithmonsiders move sequenes that no human would ever onsider. Even ompletely un-related moves are tested in every legal ombination|all in an e�ort to prove that105



Figure 6.1: The Number of Alternatives Changes the Inuene
Figure 6.2: The Loation of the Goals Mattersthere is no solution for the urrent threshold. How an a program mimi an \un-derstanding" of relevane? We suggest that a reasonable approximation of relevaneis inuene. If two moves do not inuene eah other, then it is unlikely that theyare relevant to eah other. If a program had a good \sense" of inuene, it ouldassume that in a given position all previous moves belong to a (unknown) plan ofwhih a ontinuation an only be a move that is relevant|in our approximation, isinuening whatever was played previously.6.2.1 InueneAn inuene metri an be ahieved in di�erent, domain-spei� ways. The followingshows one implementation for Sokoban. Even though the spei�s aren't neessarilyappliable to other domains, the basi philosophy of the approah is.We approximate the inuene of two moves on eah other by the inuene betweenthe move's from squares. The inuene between two squares is determined using thenotion of a \most inuential path" between the squares. This an be thought of as aleast-ost path, exept that inuene is used as the ost metri.When judging how two squares in a Sokoban maze inuene eah other, using theEulidean distane is not adequate. Taking the struture of the maze into aountwould lead to a simple geographi distane whih is not proportional to inueneeither. For example, onsider two squares onneted by a tunnel; the squares areequally inuening eah other, no matter how long the tunnel is. Elongating thetunnel without hanging the general topology of the problem would hange the geo-graphi distane, but not the inuene.The following is a list of properties we would like the inuene measure to reet:Alternatives: The more alternatives exist on a path between two squares, the lessthe squares inuene eah other. That is, squares in the middle of a room wherestones an go in all 4 diretions should derease inuene more than squares106



Figure 6.3: Tunnels and Inuenein a tunnel, where no alternatives exist. See Figure 6.1 for an example. Thesquares A and B inuene one another less than the squares C and D. Thereare more possible ways to get from A to B than from C to D. Squares C and Dare more restrited beause they are situated on a wall.Goal-Skew: For a given square sq, any squares on the optimal path from sq to a goalshould have stronger inuene than squares o� the optimal path. For example,square B in Figure 6.2 is inuened by C more than it is by A. The loation ofthe goals is important.Connetion: Two neighboring squares onneted suh that a stone an move be-tween them should inuene eah other more than two squares onneted suhthat only the man an move between them. In Figure 6.1, square A inuenesC less than C inuenes A, beause stones an only move towards C, and nottowards A.Tunnel: In a tunnel, inuene remains the same: It does not matter how long thetunnel is (one ould, for example, ollapse a tunnel into one square). Figure 6.3shows suh an example: two problem mazes that are idential, exept for thelength of the tunnel. Inuene values should not hange beause of the lengthof the tunnel.Our implementation of relevane uts uses small o�-line searhes to statiallypreompute a (20� 20)� (20� 20) table (InflueneTable) ontaining the inuenevalues for eah square of the maze to every other square in the maze. Between everypair of squares, a breadth-�rst searh is used to �nd the path(s) with the largestinuene. The algorithm is similar to a shortest-path �nding algorithm, exept thatwe are using inuene here and not geographi distane. The smaller the inuenenumber, the more two squares inuene eah other. See Appendix C.4 for details.Note that inuene is not neessarily symmetri.InflueneTable[a; b℄ 6= InflueneTable[b; a℄A square lose to a goal inuenes squares further away more than it is inuenedby them. Furthermore, InflueneTable[a; a℄ is not neessarily 0. A square in themiddle of a room will be less inuened by eah of its many neighbors than a squarein a tunnel. To reet that, squares in the middle of a room reeive a larger bias thanmore restrited squares. 107



Our approah is quite simple and an undoubtedly be improved. For example,inuene is statially omputed. A dynami measure, one that takes the urrentpositions of the stones into aount, would ertainly be more e�etive.6.2.2 Relevane Cut RulesGiven the above inuene measure, we an now proeed to explain how to use thatinformation to ut down on the number of moves onsidered in eah position. To dothis, we need to de�ne distant moves. Given two moves, m1 and m2, move m2 is saidto be distant with respet to move m1 if the from squares of the moves (m1:fromand m2:from) do not inuene eah other. More preisely, two moves inuene eahother if InueneTable[m1:from;m2:from℄ <= infthresholdwhere infthreshold is a tunable threshold.Relevane uts eliminate some moves that are distant from the previous movesplayed (i.e. do not inuene), and therefore are onsidered not relevant to the searh.There are two ways that a move an be ut o�:1. If within the last m moves more than k distant moves were made. This ut willdisourage arbitrary swithes between non-related areas of the maze.2. A move that is distant with respet to the previous move, but not distant toa move in the past m moves. This will not allow swithes bak into an areapreviously worked on and abandoned just briey.In our experiments, we set k to 1. This way, the �rst ut riterion will entail theseond.To reet di�erenes in mazes, the parameters infthreshold and m are set atthe beginning of the searh, taking the average values in the InflueneTable intoaount. By varying infthreshold and m in the de�nition of relevane, the uttingin the searh tree an be made more or less aggressive. The desired aggressiveness isappliation dependent, and should be hosen relative to the quality of the relevanemetri used.6.2.3 ExampleFigure 6.4 shows an example where humans immediately identify that solving thisproblem involves onsidering two separate subproblems. The solution to the left andright sides of the problem are ompletely independent of eah other. An optimalsolution needs 82 pushes; Rolling Stone's lower bound estimator returns a value of70. Standard IDA* will need 7 iterations to �nd a solution (our lower-bound estimatorpreserves the odd/even parity of the solution length, meaning it iterates by 2 at atime). IDA* will try every possible (legal) move ombination, intermixing moves fromboth sides of the problem. This way, IDA* proves for eah of the �rst 6 iterations108



Figure 6.4: Example Maze With Loality(i = 0::5) that the problem annot be solved with 70 + 2 � i moves, regardless of theorder of the onsidered moves. Clearly, this is unneessary and ineÆient. Solvingone of the subproblems requires only 4 iterations, sine the lower bound is o� byonly 6. Considering this position as two separate problems will result in an enormousredution in the searh omplexity.Our implementation onsiders all moves on the left side as distant from those onthe right, and vie versa. This way only a limited number of swithes is onsideredduring the searh. Our parameter settings allow for only one non-loal move per9-move sequene. For this ontrived problem, relevane uts derease the number ofnodes searhed from 32,803 nodes to 24,748 nodes while still returning an optimal so-lution (the pattern searhes were turned o� for simpliity). The savings (25%) appearrelatively small beause the transposition table athes repeated positions (many ofwhih may be the result of irrelevant moves) and eliminates them from the searh.Although the relevane uts provide a welome redution in the searh e�ort required,it is only a small step towards ahieving all the possible savings. For example, eahof the subproblems an be solved by itself in only 329 nodes! The di�erene between329 � 2 and 32,803 illustrates why IDA* in its urrent form is inadequate for solv-ing large, non-trivial real-world problems. Clearly, more sophistiated methods areneeded.6.2.4 DisussionFurther re�nement of the parameters used are ertainly possible and neessary if thefull potential of relevane uts is to be ahieved. Some ideas with regards to this issuewill be disussed in Setion 6.5.The overhead of the relevane uts is negligible, at least for our urrent imple-mentation. The inuene of two moves an be established by a simple table lookup.This is in stark ontrast to the pattern searhes, where the overhead dominates theost of the searh for most problems.
109



6.3 A Closer Look at Relevane CutsThe goal of using relevane uts is to redue the searh-tree size. This is ahievedby eliminating legal moves from the searh, thereby reduing the e�etive branhingfator of the tree. As with many other (unsafe) forward pruning tehniques, thisould potentially remove solutions or postpone their disovery. Therefore, aggressivepruning an inrease the searh e�ort by requiring additional searh to �nd a non-pruned solution. A solution ould be found in the same IDA* iteration, or ouldresult in an additional iteration being started. A good heuristi for relevane is thekey to �nding the right balane between tree redution and the risk of eliminatingsolutions.6.3.1 Relevane Cuts in TheoryTo better understand the impliations of relevane uts, we will now try to applyKorf's theoretial model [Kor97℄ to our algorithm.1 Setion 6.4.2 disusses how wellthe model predits the pratial performane of our algorithm.The number of nodes onsidered in a standard IDA* searh is given by the fol-lowing formula, whih is a generalization of Korf's model.n � d�1Xi=h(root) bi�e| {z }omplete iterations+ bd�e1 + sd| {z }last (partial) iteration (6.1)wheren is the total number of nodes;d is the length of optimal solutions;h(root) is the heuristi value of the root node (<= d);b is the e�etive branhing fator;e is the average heuristi value of the interior nodes in the tree; andsd is the number of solutions with (optimal) length d.In this formula, the variable-depth searh tree is approximated as a �xed-depthtree. With no lower-bound information (h(position) = 0), the searh tree would beof size O(bd). An average lower bound of e redues this exponent to d� e.The �rst part of the formula represents the sum of the sizes of all the iterationsthat have no solution in them. The seond part is the size of the last iteration. It1Korf and Reid re�ne this model in [KR98℄. The irregularity of the searh spae (irreversiblemoves and searh enhanements suh as transposition tables) and heuristi funtion (aused by thenumerous lower-bound enhanements) for Sokoban and Rolling Stonerender this model less suitablethan the one in [Kor97℄. 110



assumes that the solutions are uniformly distributed throughout the leaf nodes. Thus,if there is only one unique solution path, that solution will be found, on average, halfway through the searh of the last (d) iteration.Relevane uts modify the equation in two ways. First, the iterations withoutsolutions are redued in size. This is ahieved by eliminating moves from onsider-ation, in e�et reduing the branhing fator. Seond, there is the possibility thatadditional searh will be needed if the �rst solution happens to be eliminated by arelevane ut. Thus, on iterations >= d the savings from the redued branhingfator an be (partially) o�set by having to do extra work. If all solutions at depth dhappen to be ut o�, then at least one more iteration is required (and possibly more).Equation 6.1 is modi�ed to reet both ways that relevane uts a�et the searh:n � d�1Xi=h(root)(b� r(x))i�e| {z }omplete iterations + d+a(x)�1Xi=d (b� r(x))i�e| {z }additional full iterations + (b� r(x))d+a(x)�e1 + (1� p(x)) � sd+a(x)| {z }last (partial) iteration (6.2)� d+a(x)�1Xi=h(root)(b� r(x))i�e| {z }omplete iterations + (b� r(x))d+a(x)�e1 + (1� p(x)) � sd+a(x)| {z }last (partial) iteration (6.3)wherex is the aggressiveness of the uts (in our relevane metri, this orresponds to hang-ing m or infthreshold);r(x) is the average branhing-fator redution as a funtion of the aggressiveness;p(x) is the probability that a solution is ut from the searh tree, assuming theseprobabilities are independent. This probability also depends on the aggressive-ness x of the relevane uts;a(x) is the expeted number of additional iterations. This number depends on theaggressiveness x of the uts, and the probability that these uts will eliminateall solutions in an iteration; andsd+a(x) is the number of solutions at level d+ a(x).The e�etiveness of relevane uts in reduing the searh-tree size depends solelyon the aggressiveness of the uts, whih ontrols the branhing-fator redution andthe penalty inurred for missing a solution. Inreasing the aggressiveness of the utswill derease the number of nodes searhed in the omplete iterations (iterations < d),but will inrease the risk of solutions being ut o�. When solutions are ut o�, not onlyan the last iteration potentially grow, but we might atually introdue new iterationswhen all the solutions ontained in an iteration are pruned. Hene, relevane utsan introdue non-optimal solutions, or postpone the disovery of solutions beyondthe resoure limits. 111



The performane tuning e�ort must therefore be direted towards �nding the rightbalane between savings (redued searh-tree size) and ost (the overhead of havingto searh further than should be needed).6.3.2 Randomizing Relevane CutsIn a deterministi environment, where relevane uts follow the exat same rulesfor the same situation, the searh will always ut o� solutions that depend on amaneuver mistakenly onsidered \irrelevant". Given that relevane uts will makemistakes (albeit, hopefully, at a very low rate), some mehanism must be introduedto avoid worst-ase senarios, suh as eliminating all solutions.A solution is to introdue randomness into the relevane ut deision. If a branhis to be pruned by a relevane ut, a random number an be generated to deidewhether or not to go ahead with the ut. The randomness reets our on�denein the relevane uts. For example, the random deision an be used to approve100% of all possible relevane uts (orresponding to the sheme outlined thus far,on�dent that not all solutions will be eliminated), down to 0% (whih implies noon�dene|relevane uts will never be used). Somewhere between these two ex-tremes is a perentage of uts that balanes the redutions in the searh-tree sizewith the overhead of postponing when a solution is found.6.4 Experimental ResultsOur previous best version of Rolling Stone (R6) was apable of solving 48 of thetest problems within the tree-size limit of 20 million nodes. With the addition ofrelevane uts (no random utting), the number of problems solved has inreased to50. Table 6.1 shows a omparison of Rolling Stone with and without relevane utsfor eah of the 50 solved problems.2The tree size for eah program version given in Table 6.1 is again broken intotwo numbers: IDA* nodes and total nodes, inluding pattern-searh nodes. Thethird olumn gives the number of IDA* iterations that the program took to solvethe problem. Note that problems #9, #11, #12, #21, #25, #34 and #38 are nowsolved non-optimally, taking at least one iteration longer than the program withoutrelevane uts. This on�rms the unsafe nature of the uts. However, sine noneof the problems solved before is lost and 2 more are solved within the 20,000,000node limit, the gamble paid o�. The size of the searh spae ditates radial pruningmeasures if we want to have any hane of solving some of the tougher problems.Table 6.1 shows that relevane uts improve searh eÆieny by at least a fatorof 2 in IDA* nodes. The savings in terms of total nodes are less with about 25%.Clearly, the numbers are dominated by a few problems, suh as #19 and #40.2The numbers reported in [JS98a, JS99b℄ di�er slightly from the ones presented here. Sine thesepubliations, Rolling Stone was signi�antly improved, spei�ally the pattern searhes, allowing fora muh more eÆient searh. The resulting smaller searhes allowed less room for improvement.112



# without relevane uts with relevane utsIDA* nodes total nodes iterations IDA* nodes total nodes iterations1 50 1,042 2 50 1,042 22 82 7,532 1 80 7,530 13 94 13,445 1 87 12,902 14 187 50,369 1 187 50,369 15 436 59,249 2 202 43,298 26 85 5,119 1 84 5,118 17 1,704 28,561 2 1,392 28,460 28 317 339,255 3 291 311,609 39 704 168,412 2 1,884 435,388 510 1,909 1,480,115 1 1,810 1,713,429 111 14,048 4,691,929 10 5,679 2,994,297 1112 162,129 4,373,802 3 4,912 559,184 817 2,473 30,111 7 2,038 29,116 719 59,433 > 20,000,000 9 16,606 7,269,595 921 1,853 154,593 6 1,177 179,734 725 1,239 553,900 6 21,536 5,784,086 733 5,035 866,085 3 2,765 586,684 334 542 298,674 2 11,431 1,981,993 338 2,539 51,276 5 7,011 154,969 640 41,131 > 20,000,000 6 23,274 17,004,253 743 5,308 690,426 7 1,729 421,483 745 1,685 508,124 2 339 181,566 249 375,293 1,670,236 9 53,113 327,643 951 137 8,825 1 256 21,491 153 159 22,310 1 157 22,308 154 106,663 910,532 2 163,757 2,031,577 255 97 2,993 1 97 2,993 156 353 57,785 3 377 61,189 357 256 121,384 2 234 114,416 258 426 268,713 2 211 130,474 259 795 348,214 4 1,420 775,753 460 223 41,310 1 160 27,386 161 314 106,206 5 309 105,411 562 211 70,478 3 195 101,934 363 567 259,537 1 703 312,546 164 378 300,684 4 405 332,402 465 196 21,442 2 196 21,442 267 18,107 601,178 6 12,669 512,488 668 2,278 541,080 6 1,953 538,509 670 412 125,454 3 431 140,765 372 134 44,908 2 134 44,908 273 201 87,019 1 214 94,568 176 185,633 6,236,656 4 74,315 3,775,394 478 64 4,451 1 64 4,913 179 125 15,833 2 122 15,527 280 100 16,114 1 165 26,943 181 21,501 234,235 1 2,662 42,445 182 86 33,445 2 86 33,445 283 91 7,294 1 80 5,631 184 94 5,960 1 106 7,938 11,017,877 > 66,536,295 419,155 49,388,544Table 6.1: Experimental Data113
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Figure 6.5: The E�et of Relevane CutsComparing node numbers of individual searhes is diÆult beause of many volatilefators in the searh. For example, a relevane ut might eliminate a branh from thesearh justi�ably. However, by doing so a pattern searh might now not be done thatould have unovered valuable information that might have been useful for reduingthe searh in other parts of the tree. Problem #80 is one suh example: despite therelevane uts the node ount goes up from 100 to 165; an important disovery wasnot made and the rest of the searh inreases. However, the overall trend is in favorof the relevane uts. An exellent example is problem #49: the total nodes are utby roughly a fator of 5.In Figure 6.5, the amount of e�ort to solve a problem, with and without relevaneuts, is plotted. The numbers from Table 6.1 are used, sorted by the number of nodessearhed by the version without relevane uts. The �gure shows that the exponentialgrowth in diÆulty with eah additional problem solved is being dampened by rele-vane uts, allowing for more problems being solved with the same searh onstraints.For the 25 to 30 \easiest" problems, there is very little di�erene in e�ort required; therelevane uts do not save signi�ant portions of small searh trees. As the searhesbeome larger, the suess of relevane uts gets more pronouned. However, thereare two problems where relevane uts result in a large inrease in node numbers:#25 and #34. Their numbers inrease roughly 10 and 6 fold, respetively.Figure 6.6 shows the e�ort graph, now inluding the relevane uts. Only the lastproblems show that relevane uts are bene�ial.6.4.1 Randomizing Relevane CutsThe numbers presented so far deal with a version of Rolling Stone that exeutes 100%of the relevane uts. A version of Rolling Stone was instrumented to simulate thee�ets of di�erent degrees of randomization, varying from 0% (all relevane uts areignored) to 100% (all relevane uts are used). Thus, the level of, for example, 80%orresponds to randomly aepting 80% of the uts, while rejeting 20% of them.Figure 6.7 illustrates the relevane uts' potential for savings in the searh tree.The graph presents for various degrees of randomness (from 0% to 100% in 10%114
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Figure 6.10: Solution Artiulation Sequeneroot of the searh will eliminate huge portions of the searh spae, and few of theseuts eliminate any optimal solution, the uts must be doing a good job of identifyingirrelevant portions of the searh.Infrequently eliminating solutions may seem important if there are few solutions.In fat, our experiene with Sokoban shows that there are many optimal solutions forevery problem. The number of solution paths grows exponentially with any additionalsearh beyond the optimal solution length. For example, onsider a d-ply optimalsolution. If we now look at solutions of length d + 2,3 then we an randomly insertirrelevant moves into the solution path, giving O(d � b) more solution paths.Equation 6.3 assumes that the probability of a solution being ut o� is independentof any other solution being ut o�. Unfortunately, this is a simplifying assumptionthat does not hold for Sokoban. Sine Sokoban problems have been omposed to behallenging to humans (and, inadvertently, omputers as well), most problems in ourtest suite ontain spei� maneuvers that are mandatory for all solutions. In otherwords, every solution to some problems requires a spei� sequene of moves to bemade. We all these maneuvers solution artiulation sequenes.A solution artiulation sequene is illustrated in Figure 6.10. It shows the set ofmove sequenes that are solutions to the problem of getting from the start state tothe goal state. First, there are many possible sequenes of moves (possibly even movetranspositions) until a spei� maneuver is required. Then a �xed sequene of movesis required (the solution artiulation sequene). Having ompleted the sequene, thenmany di�erent permutations of moves an be used to reah the goal(s). Note thata problem may have multiple solution artiulation sequenes. As well, there may be3In general, this would be d + 1. However, sine Sokoban solutions preserve odd/even parity,solutions inrease by two pushes at a time. 118



lasses of solutions, with eah lass having a di�erent set of artiulation sequenes.Relevane uts use a sequene of moves (the past m moves) to deide whetherto urtail the searh or not. If the moves forming the solution artiulation sequenehappen to meet the riterion for a relevane ut, then it will be falsely onsidered\irrelevant". Consequently, many solution paths will be eliminated from the searh.One an onstrut a senario by whih all solutions ould be removed from the searh.Solution artiulation sequenes illustrate that the assumed solution independeneproperty is, in fat, inorret. Coming up with a realisti model is diÆult. Thesolutions tend to be distributed in lusters. Many lusters of solutions are, essentially,the same solution with minor di�erenes (suh as move transpositions or, for non-optimal solutions, irrelevant moves added).Although the number of optimal solutions appears high from our experiments,relevane uts are vulnerable to solution artiulation sequenes. Hene, a single uthas the potential for eliminating all solutions. Randomization seems to be an e�etiveway of handling this problem.6.4.3 SummaryRelevane uts have been shown experimentally to result in large redutions in thee�ort required to solve Sokoban problems. Given the exponentially inreasing natureof the searh trees, solving an extra 2 problems represents a substantial improvement.Although it would be nie to have a lean analyti model for Sokoban searhesthat ould be used to predit searh e�ort, this is proving elusive. Although a modelfor single-agent searh exists [Kor97℄, it is inadequate to handle the non-uniformity ofSokoban. In the past, numerous analyti models for tree-searhing algorithms haveappeared in the literature. They are all based on simplifying assumptions that makethe analysis tratable, but result in a model that mimis an arti�ial reality. Histor-ially, these models orrelate poorly with empirial data from real-world problems.An interesting reent example from two-player searh an be found in [PSPdB96℄.6.5 ConlusionsRelevane uts provide a rude approximation of human-like problem-solving methodsby foring the searh to favor loal moves over global moves. This simple idea provideslarge redutions in the searh-tree size at the expense of possibly returning a longersolution. Given the breadth and depth of Sokoban searh trees, �nding optimalsolutions is a seondary onsideration; �nding any solution is hallenging enough.We have numerous ideas on how to improve the e�etiveness of relevane uts.Some of them inlude:� Use di�erent distanes depending on rowding. If many stones are rowdingan area, it is likely that the relevant area is larger than it would be with fewerstones bloking eah other. Dynami inuene measures should be better thanstati approahes. 119



� There are several parameters used in the relevane uts. The settings of thoseare already dependent on properties of the maze. These parameters are ritialfor the performane of the uts and are also largely responsible for inreasedsolution lengths. More researh on these details is needed to fully exploit thepossibilities relevane uts are o�ering.� Using the analogy from Setion 6.1, one ould haraterize Rolling Stone as\painting" loally but not yet painting in an \objet oriented" way. If a owerand the bear are lose, painting both at the same time is very likely. Bettermethods are needed to further understand subgoals, rather than loalizing byarea.Although relevane uts introdue non-optimality, this is not an issue. Onehumans solve a Sokoban problem, they have two hoies: move on to another problem(they are satis�ed with the result), or try and re-solve the same problem to get a bettersolution. Rolling Stone ould try something similar. Having solved the problemone, if we want a better solution, we an redue the probability of introduing non-optimality in the searh by dereasing the aggressiveness of the relevane uts. Thiswill make the searhes larger but, on the other hand, the last iteration does not haveto be searhed, sine a solution for that threshold was already found.Relevane uts are yet another way to signi�antly prune Sokoban searh trees.We have no shortage of promising ideas, eah of whih potentially o�ers another orderof magnitude redution in the searh-tree size. Although this sounds impressive, ourexperiene suggests that eah fator of 10 improvement seems to yield no more than2 or 3 additional problems being solved.
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Chapter 7Overestimation
7.1 Introdution and MotivationTo ensure optimality of solutions produed by A*-based algorithms, suh as IDA*,the heuristi has to be admissible. The admissibility onstraint limits the hoie ofknowledge. Even if some knowledge orrelates well with the distane to the goal,but there is the slightest hane that it overestimates, it annot be used. Solutionoptimality would not be guaranteed.This shows that optimality has its prie. Instead of �tting the funtion h as loselyas possible to h�, we are restrited to reating a lower bound. The error of suh alower-bound funtion is often larger than a funtion that is allowed to oasionallyoverestimate. The larger the error of the lower-bound funtion, the less eÆient thesearh.We have seen in previous hapters that an aggressive treatment of the searhspae is needed to make signi�ant progress. The examples of the goal maros andrelevane uts have shown the bene�ts that are ahievable when the small risk oflosing optimality and ompleteness is taken. Therefore, it seems logial to questionthe admissibility onstraint for the heuristi funtion. The hope is to ahieve a loser�t of the heuristi funtion h to the orret distane h�, albeit at the ost of non-optimal solutions.7.2 WIDA*To ahieve a better approximation of h�, one an sale the admissible heuristi bya onstant fator. Statistial tests measuring the di�erene between h and h� anprodue a onstant w that an be used. Weighted IDA* (WIDA*) uses the ostfuntion f(s) = g(s) + w � h(s), with w > 1 [Kor93℄.This saling has the e�et of a depth bonus. The further the searh penetratesinto the tree, the more it is enouraged. Nodes lose to the root will have largerh values and the saling will inate these values more in absolute terms than thosenodes loser to the leaves with smaller h values. Eah move that dereases the h valuewill impliitly reeive a small bonus, beause the ost of the move is not balaning121



the derease of h; f drops as the searh approahes leaf nodes. This small derease inthe f value with eah move deeper into the tree will eventually allow a non-optimalmove to be onsidered. This an lead to radial shifts of where the searh e�ort isspent, further towards nodes deeper in the tree. In Sokoban, trees are highly irregularand these shifts an lead to large hanges in the number of nodes searhed per IDA*iteration.WIDA* inreases h uniformly. The only knowledge impliitly entailed in thissheme is that nodes deeper in the tree are preferred, beause they tend to be loserto the goal nodes. Beause of deadloks and arbitrary penalties that might remainundeteted in Sokoban, nodes deeper in the tree are not neessarily loser to goals.The searh might end up expanding more e�ort in parts of the tree that ontain nosolution.7.3 Pattern OverestimationThe lak of domain knowledge used in WIDA* leads to poor performane whentraversing Sokoban searh trees. What knowledge ould be used to improve theoverestimation? The obvious hoie is the dynami pattern knowledge. How an thisbe used e�etively?Sine the pattern searhes are limited in ertain ways to keep them tratable,the orret size of the penalties and shape of the patterns might not be known.Therefore, the patterns represent inomplete knowledge. Furthermore, when patternsare mathed, only some of the penalties an be used to preserve admissibility (seeSetion 5.9 for details). However, eah of the patterns that is mathed in a positionsuggests that there are ompliations in the urrent position. Not using the penaltyof suh a pattern is equivalent to ignoring available knowledge.7.3.1 Maximum Partial PenaltiesThe following is the best of our attempts to use the knowledge ontained in all thepatterns that math in a position. We all this method maximum partial penalties.Instead of maximizing and adding the penalties of patterns, the penalties areattributed to the stones in the maze. The penalty of a pattern that is mathedis split equally among all the stones ontained in the pattern. For eah stone themaximum of these partial penalties is stored. The total penalty of a position is thesum of all the maximum partial penalties for eah stone. Thus, every stone involvedin a penalty pattern ontributes to the total penalty assigned to a stone on�guration.This total penalty is at least as large as the admissible penalty ahieved by themethods desribed in Setion 5.9. The following explains why:� Non-overlapping patterns are ontributing in the same way as before.� For the admissible penalty, some patterns annot be used beause they overlapwith others. That means that some stones do not ontribute to the penalty,even though they are part of a penalty pattern that was mathed. When using122



Figure 7.1: Maximum Partial Penalty Examplepattern penalty partial penaltiesA B C Dleft 2 1.0 1.0 0 0enter 2 1.0 0 1.0 0right 8 2.66 0 2.66 2.66maximum partial penalty 2.66 1.0 2.66 2.66sum of maximum partial penalties 9.0saled by 1.8 16.2rounded for parity 16Table 7.1: Calulation of Maximum Partial Penaltiesmaximum partial penalties, eah stone of a mathing pattern ontributes to thetotal penalty.� The ontribution of eah stone to the total penalty is at least as large in themaximum partial penalty method as it is for the admissible penalty, beausethe maximum of the partial penalties is used.To tune the overestimation further, the penalty is saled by a fator s. A �nalrounding step assures that the total penalty is an even number to preserve the parityproperty of the heuristi.7.3.2 ExampleThe upper maze in Figure 7.1 shows a position with four stones A,B,C, and D. Thelower three mazes show three penalty patterns presumably found by the searh. Thepenalties are 2, 2 and 8 for the patterns from left to right. Table 7.1 shows themaximum partial penalty alulation. For eah pattern (1,2, and 3) the stones in123



that pattern share the penalty evenly. Summing the maximum partial penalties gives9.0. When saling it by s =1.8, a value of 16.2 results1. Rounding it to the nextfator of two sets the �nal penalty to 16, twie the original penalty of 8.The position in Figure 7.1 is a deadlok { any inrease is justi�ed. Other positions,suh as multiple linear onits as seen in Setion 4.3.6, will be inorretly overesti-mated. The saling fator s has to be arefully tuned to optimize the bene�ts of themaximum partial penalties, balaning the advantages and dangers of overestimation.7.3.3 Pruning versus PostponingAdding a limited penalty to the heuristi estimation of the distane to the goal willonly delay the examination of a node. If no solution an be found, the threshold willinrease until the position's estimated f -value does not ause a uto� anymore. Theexploration of the node is only postponed. This is in stark ontrast to forward pruningwith �xed rules, suh as deterministi relevane uts, that will prune the same nodein every iteration.Beause new patterns are added and useless patterns are dropped, the deisionsto postpone a node hange dynamially over the ourse of a searh as new knowledgeis found or other knowledge is disarded.7.4 Experimental Results7.4.1 WIDA*We experimented with di�erent values for w, ranging from 1.025 to 1.25, but theresults suggest an unpreditable behavior. On the one hand, the searh an bene�tgreatly, saving orders of magnitude by extending lines that lead to solutions in earlyiterations. On the other hand, large irrelevant parts of the searh tree might beexplored that have no solution for the urrent threshold. The blind saling of h is note�etive in Sokoban.Figure 7.2 shows that hanging w e�ets the searh-tree sizes almost randomly.The line indiates the searh-tree size of the problems solved by a version of RollingStone that does not use overestimation (R8). The problems are ordered aording toinreasing searh-tree size. The dots in eah olumn represent the orresponding treesizes for Rolling Stone using WIDA* with di�erent settings of w. Table 7.2 shows theexat numbers of total nodes for these versions of Rolling Stone. Even though onemore problem an be solved when using w = 1:15, the errati behavior of the searhmakes it diÆult to justify the use of WIDA*.7.4.2 Pattern OverestimationSeveral di�erent values for the saling fator s of the total penalty were tested. Fig-ure 7.3 shows the results for a seleted number of these tests. The results for this1See the results setion about the origin of the magi number 1.8 for s.124
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Figure 7.2: WIDA*, Varying w (Linear and Log Sale)
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Figure 7.3: Pattern Overestimation, Varying s (Linear and Log Sale)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without overestimation
with overestimation

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without overestimation
with overestimation

Figure 7.4: Satter Plot for Overestimation With s = 1:8 (Linear and Log Sale)
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# w = 1:025 w = 1:050 w = 1:100 w = 1:150 w = 1:200 w = 1:250IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns1 50 1,042 2 50 1,042 2 50 1,042 2 50 1,042 2 52 1,044 2 50 1,042 22 83 7,543 1 83 7,543 1 83 7,543 1 83 7,750 1 83 7,543 1 83 7,543 13 95 14,080 1 88 12,887 1 88 12,887 1 95 14,080 1 95 15,869 1 95 15,869 14 187 50,369 1 187 50,369 1 187 50,369 1 198 60,972 1 198 60,972 1 187 50,369 15 205 43,325 2 209 43,742 2 224 45,909 2 225 45,904 2 247 49,631 2 225 45,939 26 84 5,118 1 106 5,679 1 120 5,647 1 151 6,676 1 150 8,448 2 174 8,901 17 839 25,578 2 1,297 23,527 2 325 18,962 1 134 16,203 1 140 16,263 1 352 19,323 18 268 319,432 3 282 274,534 3 223 237,563 2 236 230,065 2 216 230,593 2 158 141,539 19 1,884 435,449 5 1,897 440,025 5 1,884 435,498 5 1,897 440,025 5 1,369 368,445 4 1,834 429,997 510 1,087 987,188 1 > 18,792 > 20,000,000 1 > 21,066 > 20,000,000 1 > 17,876 > 20,000,000 1 > 21,880 > 20,000,000 1 > 21,050 > 20,000,000 111 8,704 4,436,816 11 5,848 3,104,222 11 16,448 7,271,274 12 10,754 5,406,302 12 10,057 5,315,444 12 12,435 6,463,687 1212 936 354,151 8 1,377 351,783 8 1,068 412,189 9 1,008 378,364 9 1,008 379,934 8 1,083 411,965 817 2,204 31,052 7 1,808 27,202 7 1,845 27,906 7 2,280 32,214 7 1,822 28,577 7 1,794 28,906 719 21,796 9,906,276 9 > 132,815 > 20,000,000 9 119,484 14,041,498 9 14,349 7,241,004 9 20,575 5,522,483 8 15,204 5,365,996 821 784 153,574 6 1,186 180,938 7 1,163 180,532 7 727 149,827 6 572 126,955 6 681 158,387 625 19,511 6,185,785 6 23,143 6,570,080 7 25,678 7,193,315 7 37,364 10,968,201 7 22,729 7,264,953 7 12,445 5,108,715 526 >2,182,655 > 20,000,000 8 > 2,561,324 > 20,000,000 7 3,731 248,845 6 1,260 269,558 6 905 273,594 6 1,008 264,000 633 1,156 353,432 3 1,077 350,680 3 1,360 464,887 3 739 262,206 3 1,340 321,785 3 1,168 366,238 334 10,929 1,426,154 3 891 519,188 2 2,163 313,461 1 948 302,144 2 23,822 1,410,840 1 36,484 2,077,968 138 7,449 156,259 6 3,619 72,532 5 3,296 74,171 5 3,900 75,044 6 5,132 95,851 6 6,718 119,464 640 11,133 8,046,261 6 10,045 7,503,696 5 4,565 3,442,797 4 4,302 3,121,816 4 2,460 2,387,446 3 1,066 819,836 243 1,742 422,391 7 1,742 422,391 7 1,957 452,816 7 1,848 433,746 7 1,539 354,230 7 1,031 250,927 645 380 202,542 2 349 183,349 2 362 185,029 2 381 199,133 2 395 225,558 2 384 210,170 249 51,286 318,704 9 59,827 317,331 8 413,718 2,471,208 9 369,687 2,150,887 8 148,422 1,130,394 8 351,409 2,668,480 851 230 21,400 1 452 20,966 1 146 7,947 1 98 8,119 1 98 8,119 1 98 8,119 153 157 22,308 1 283 25,206 1 > 552,138 > 20,000,000 1 6,558 34,593 1 3,900 49,145 1 8,600 55,589 154 215 40,737 2 854 52,793 2 203,348 2,155,609 1 190 48,644 1 > 1,661,855 > 20,000,000 1 > 1,809,413 > 20,000,000 155 97 2,993 1 105 3,712 1 115 4,239 1 121 4,389 1 123 4,435 1 125 4,639 156 232 56,070 1 220 55,976 1 301 76,642 1 290 64,237 1 288 70,827 1 347 80,166 157 249 120,179 2 248 117,928 2 222 137,332 1 234 126,904 1 238 152,757 1 233 148,843 158 211 130,474 2 276 190,884 2 1,268 229,296 1 213 136,742 1 218 136,761 1 214 153,687 159 1,903 1,077,731 4 425 206,863 2 399 211,000 2 399 211,000 2 1,271 602,470 2 981 435,208 260 158 27,384 1 393 84,848 1 147 19,012 1 241 60,438 1 351 88,837 1 751 172,177 161 304 107,227 5 311 112,473 5 330 115,131 5 337 120,666 5 353 132,410 5 375 135,636 562 225 105,460 3 232 106,869 3 227 106,147 2 208 178,071 2 283 256,023 2 268 248,424 163 548 313,547 1 524 238,083 1 565 306,892 1 671 372,544 1 415 178,149 1 424 193,946 164 319 358,836 4 176 168,047 1 239 200,448 1 314 270,426 1 323 278,368 1 211 231,923 165 136 19,706 1 137 19,830 1 145 21,259 1 156 22,130 1 156 23,204 1 156 23,204 167 473 129,400 5 477 134,723 5 285 99,545 1 323 139,625 1 367 196,735 1 392 209,076 168 1,471 349,388 5 1,162 268,415 5 994 286,392 4 357 247,631 1 303 207,747 1 287 181,097 170 420 149,731 3 456 179,115 3 611 285,603 4 604 288,028 3 546 229,156 3 509 193,981 372 133 45,695 1 140 46,207 1 128 54,712 1 134 51,121 1 759 259,080 1 197 112,411 173 218 106,558 1 226 116,000 1 248 118,004 1 317 128,516 1 317 128,516 1 317 128,516 175 > 36,609 > 20,000,000 8 > 32,282 > 20,000,000 8 > 272,263 > 20,000,000 8 > 69,564 > 20,000,000 7 > 614,488 > 20,000,000 9 441,895 16,042,868 776 43,071 3,660,025 4 20,666 1,600,408 3 760,595 19,264,490 3 702,830 13,111,226 3 > 505,884 > 20,000,000 3 > 343,016 > 20,000,000 177 > 801,181 > 20,000,000 1 924,824 13,368,970 1 362,265 4,141,556 1 57,384 1,021,452 1 204,884 1,835,139 1 1,238,968 8,400,844 178 64 4,916 1 64 4,913 1 64 4,916 1 64 4,916 1 64 4,916 1 64 4,916 179 123 15,518 2 123 15,518 2 105 13,331 1 105 13,331 1 105 13,331 1 107 13,623 180 315 34,638 1 280 48,605 1 288 44,568 1 193 38,801 1 193 38,801 1 193 38,801 181 36,676 409,001 1 143,579 1,166,420 1 2,177 68,565 2 337 43,753 1 192 38,448 1 207 38,460 182 91 35,536 2 94 34,979 2 92 36,825 2 92 36,825 2 115 38,890 2 115 38,178 283 80 5,631 1 108 6,856 1 131 10,387 1 137 9,210 1 127 10,408 1 127 13,598 184 108 7,818 1 110 7,901 1 115 8,018 1 115 8,018 1 115 8,018 1 115 8,018 1>3,251,464 >101,240,428 > 3,957,269 >118,866,248 > 2,781,039 >125,623,214 > 1,313,078 > 88,614,519 > 3,263,539 >110,587,542 > 4,315,823 >112,351,209

Table7.2:WIDA*,Varyingw
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# no overestimation s = 0:2 s = 0:8 s = 1:4 s = 1:8 s = 2:0 s = 2:2IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns1 50 1,042 2 50 1,067 2 50 1,042 2 50 1,042 2 55 1,267 3 55 1,267 3 55 1,267 32 80 7,530 1 82 7,532 2 80 7,530 1 80 7,530 1 80 7,530 1 80 7,530 1 80 7,530 13 87 12,902 1 92 13,168 3 87 12,902 1 94 14,095 1 94 14,095 1 95 15,929 1 95 15,929 14 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 1 187 50,369 15 202 43,298 2 215 44,715 3 202 42,224 2 153 33,755 1 153 33,755 1 151 38,041 1 211 40,344 26 84 5,118 1 91 5,659 3 84 5,118 1 84 5,503 1 84 5,503 1 84 5,503 1 84 5,503 17 1,392 28,460 2 1,351 29,306 4 967 22,624 2 748 25,931 2 338 14,832 2 132 14,194 3 111 17,040 38 291 311,609 3 300 362,122 5 279 313,066 4 285 351,139 4 315 409,714 5 321 465,538 5 249 252,727 49 1,884 435,388 5 2,032 470,297 8 1,872 429,765 5 1,472 349,224 4 1,591 385,084 4 1,626 395,046 4 1,644 402,507 410 1,810 1,713,429 1 2,685 3,110,294 3 16,970 13,999,701 2 3,919 2,702,015 2 2,920 2,539,524 3 5,535 4,324,956 3 > 37,634 > 20,000,000 411 5,679 2,994,297 11 6,464 3,453,690 19 4,483 2,438,271 12 1,919 1,272,688 10 4,058 2,527,286 12 4,744 2,872,254 13 3,071 1,766,229 1412 4,912 559,184 8 6,330 847,715 9 5,967 670,189 8 26,773 1,637,292 8 951 372,264 8 954 378,407 8 986 396,851 817 2,038 29,116 7 2,115 31,024 7 2,035 29,258 7 2,125 29,600 8 2,158 30,242 9 2,063 26,631 9 2,010 25,531 919 16,606 7,269,595 9 22,146 9,650,935 10 18,147 7,590,151 8 > 143,629 > 20,000,000 8 14,178 6,631,475 10 16,767 7,952,770 11 16,196 7,675,969 1221 1,177 179,734 7 1,254 223,583 11 1,219 191,023 7 606 116,004 5 573 113,042 3 752 132,953 3 556 120,465 323 > 59,498 > 20,000,000 7 > 52,530 > 20,000,000 9 > 65,636 > 20,000,000 8 40,379 11,282,331 11 23,337 6,555,398 12 11,944 2,550,595 11 12,122 2,771,673 1325 21,536 5,784,086 7 28,330 10,556,135 11 20,643 6,479,152 7 435 193,212 5 683 366,035 7 426 195,203 6 1,267 393,192 626 >2,125,116 > 20,000,000 9 >2,010,809 > 20,000,000 13 >2,137,211 > 20,000,000 10 >2,727,425 > 20,000,000 5 380 122,997 7 354 120,553 7 359 130,072 633 2,765 586,684 3 3,658 798,615 11 1,595 452,670 3 576 274,321 1 604 283,926 1 1,083 365,889 1 490 227,156 134 11,431 1,981,993 3 12,148 2,221,831 9 11,401 1,962,631 4 14,771 895,284 4 9,746 749,787 2 7,259 504,465 2 29,854 3,014,988 336 > 23,467 > 20,000,000 5 > 19,856 > 20,000,000 10 > 21,205 > 20,000,000 6 24,934 16,799,961 6 18,338 12,150,606 7 7,173 3,911,640 6 23,032 13,542,898 738 7,011 154,969 6 7,067 156,235 8 7,001 154,959 5 6,556 133,843 2 10,473 160,176 1 11,115 165,784 1 8,865 137,754 140 23,274 17,004,253 7 > 24,473 > 20,000,000 8 22,342 16,318,067 7 11,139 6,692,116 8 16,725 10,086,547 9 20,835 11,944,211 10 26,555 15,352,541 1143 1,729 421,483 7 1,871 474,358 8 1,939 468,265 7 2,571 564,007 7 2,225 535,148 8 2,647 592,528 8 3,252 639,213 945 339 181,566 2 884 406,750 8 830 389,749 3 719 372,366 2 602 404,217 2 450 334,328 1 278 174,861 149 53,113 327,643 9 53,575 371,122 12 53,124 328,829 10 17,267 137,288 7 441,638 3,486,905 9 865,286 6,700,434 9 1,677,679 12,600,342 951 256 21,491 1 230 21,400 1 230 21,400 1 256 21,491 1 256 21,491 1 256 21,491 1 256 21,491 153 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 1 157 22,308 154 163,757 2,031,577 2 165,732 2,065,955 5 163,886 2,033,377 2 >1,041,418 > 20,000,000 3 269 45,332 3 282 46,343 3 >1,944,336 > 20,000,000 455 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 1 97 2,993 156 377 61,189 3 709 69,328 7 445 59,326 1 534 42,300 6 911 55,865 7 4,253 136,754 8 8,093 145,689 957 234 114,416 2 1,206 129,778 5 1,067 119,393 2 223 120,485 1 209 128,282 1 211 145,836 1 226 116,911 158 211 130,474 2 443 239,008 2 443 234,188 2 211 130,474 2 231 138,838 3 231 138,838 3 231 138,838 359 1,420 775,753 4 80,206 14,628,874 6 82,403 10,340,916 5 3,638 256,708 5 602 337,905 4 36,157 1,645,577 4 1,462 386,523 460 160 27,386 1 162 24,479 3 150 24,450 1 21,087 122,505 1 18,100 114,642 1 18,100 114,642 1 18,100 114,642 161 309 105,411 5 8 84,242 4 >1,524,270 > 20,000,000 4 387 126,272 8 299 77,555 8 335 122,881 9 308 82,726 962 195 101,934 3 206 105,058 5 172 66,839 3 184 75,002 4 180 69,728 4 183 77,825 5 208 94,658 563 703 312,546 1 765 361,208 3 1,022 354,324 1 520 242,420 1 473 237,196 1 476 263,201 1 942 643,671 164 405 332,402 4 > 860,545 > 20,000,000 11 573 384,994 3 221 173,204 4 193 186,508 1 284 213,755 1 219 311,995 165 196 21,442 2 204 21,535 6 168 20,222 1 145 21,190 1 165 23,004 1 192 24,459 1 156 22,130 167 12,669 512,488 6 12,922 691,462 12 1,727 136,904 5 379 94,003 1 298 104,356 1 298 105,639 1 298 105,639 168 1,953 538,509 6 2,327 399,233 10 1,732 473,317 5 549 239,606 5 324 236,157 1 371 240,815 1 317 232,112 170 431 140,765 3 463 175,073 3 453 155,760 3 428 173,712 4 446 178,657 5 498 211,520 6 498 211,520 672 134 44,908 2 142 45,791 6 136 45,928 2 141 46,012 3 123 45,735 1 123 45,951 1 123 45,951 173 214 94,568 1 219 94,763 2 214 94,568 1 225 103,494 1 225 103,494 1 225 103,494 1 234 107,556 176 74,315 3,775,394 4 361,704 5,681,518 6 644,192 10,062,414 3 23,749 751,299 2 251 183,656 2 1,587 476,069 2 17,332 613,786 277 >1,019,702 > 20,000,000 1 > 973,871 > 20,000,000 4 >1,043,492 > 20,000,000 1 >1,055,068 > 20,000,000 1 >1,108,195 > 20,000,000 1 >1,055,933 > 20,000,000 1 257,001 4,729,912 178 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 1 64 4,913 179 122 15,527 2 132 16,868 5 125 15,530 3 127 16,086 2 127 13,114 2 124 12,869 2 124 12,869 280 165 26,943 1 173 30,199 3 167 26,945 2 176 26,309 1 176 26,309 1 516 48,571 1 104 21,495 181 2,662 42,445 1 5,020 90,840 3 1,183 113,961 1 269 109,570 1 875 111,033 1 19,152 270,782 1 4,625 140,321 182 86 33,445 2 6 33,423 3 95 35,987 3 114 52,160 3 117 45,014 3 120 45,896 3 117 44,995 383 80 5,631 1 84 5,635 3 80 5,631 1 108 6,856 1 108 6,856 1 108 6,856 1 108 6,856 184 106 7,938 1 177 7,534 3 161 6,882 1 107 6,612 1 108 7,818 1 110 7,929 1 110 7,929 1>3,646,938 >129,388,544 >4,728,569 >178,339,940 >5,864,460 >177,221,025 >5,179,478 >126,928,900 >1,686,065 > 70,566,483 >2,102,561 > 68,625,225 >4,102,768 >108,153,380

Table7.3:PatternOverestimation,Varyings
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problems solved ordered by effort

R0 + transposition table = R1
R1 + move ordering = R2

R2 + deadlock tables = R3
R3 + tunnel macros = R4

R4 + goal macros = R5
R5 + goal cuts = R6

R6 + area/deadlock/penalty search = R7
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R8 + overestimation = R9Figure 7.5: Adding Overestimation to Rolling Stone (Linear and Log Sale)experiment are more onlusive, good values for s an be seleted. It appears thatthe value of 1.8 is a good setting for s, allowing three more problems to be solved.Even though setting s to 2.0 an also solve 53 problems, it is inferior beause theaverage number of top-level nodes is almost double that for s = 1:8. See Table 7.3for the node numbers orresponding to Figures 7.3 and 7.4.7.4.3 SummaryFigure 7.5 shows the e�ort diagram, now inluding the version of Rolling Stone withoverestimation using maximum partial penalties and a saling fator of s = 1:8.The improvement appears signi�ant with about one order of magnitude savings insearh-tree size.There are a ouple of interesting points about the data in Table 7.3. With rel-evane uts, almost all problems, exept #49, have smaller or insigni�antly largernumber of nodes. Problem #26, for example, drops from over 20 million nodes to justunder 123,000. Other problems, like #23, #25, #36, #40, #54 and #76, also dropin node numbers signi�antly. While most searhes with overestimation use moreiterations to �nd a goal, the searh for problem #26 uses less. The initial position isoverestimated enough to allow the searh to �nd a solution in fewer iterations. Onaverage, the top-level and total nodes are redued by roughly half, from 3.6 to 1.7million and 129 to 71 million, respetively.7.5 Conlusions and Open ProblemsWith respet to WIDA*, Sokoban is again proving to be a diÆult domain. While inother domains saling h allows at least the opportunity to trade o� solution qualityfor searh e�ort, it seems to only randomly shift the searh e�ort in Sokoban. Thequality of the lower-bound funtion is not good enough to indiate reliably whenprogress is made. Therefore, using depth as an indiator for progress has its pitfalls.Parts of the searh tree that do not ontain solutions are explored with more e�ort128



without the expeted suess.Using knowledge that is readily available (the patterns mathing in eah position)to identify situations that are likely diÆult was proven to be of greater value. RollingStone using this dynami, knowledge-driven overestimation is able to solve three moreproblems.When looking through Tables 7.2 and 7.3 one an see that Rolling Stone has foundsolutions to a total of 54 problems. Problem #77 an be solved when s is set to 2.2.In fat, Rolling Stone has solved 56 di�erent problems with di�erent ombinations ofs and w, but never with one version. A ontrol funtion to set s and w aordingto features of the maze that will have to be identi�ed ould be of bene�t. How toidentify suh features is an open problem. Espeially in domains suh as Sokoban,where the absene of a good heuristi funtion auses ineÆient searhes, disoveringreliable, preditable features seems a daunting task.
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Chapter 8Single-Agent Searh Enhanements
8.1 IntrodutionThe AI researh ommunity has developed an impressive suite of tehniques forsolving state-spae problems. These tehniques range from general-purpose domain-independent methods suh as A*, to domain-spei� enhanements, as we have seenin this thesis. There is a strong movement towards developing domain-independentmethods to solve problems. While these approahes require minimal e�ort to speifya problem to be solved, the performane of these solvers is often limited, exeedingavailable resoures on even simple problem instanes. This requires the developmentof domain-dependent methods that exploit additional knowledge about the searhspae. These methods an greatly improve the eÆieny of a searh-based program,as measured in the size of the searh tree needed to solve a problem instane.Previous hapters reported on our attempts to solve Sokoban problems using anarray of di�erent tehniques and searh enhanements. This allowed 53 problems tobe solved.1 These results show the large gains ahieved by dynamially disoveringand applying knowledge in our program Rolling Stone. With eah enhanement,redutions of searh-tree sizes by several orders of magnitude are possible.Analyzing all the additions made to Rolling Stone reveals that the most valu-able searh enhanements are based on searh (both on-line and o�-line) to improvethe lower bound. In this hapter, we lassify the searh enhanements along severaldimensions inluding their generality, omputational model, ompleteness and admis-sibility. Not surprisingly, the more spei� an enhanement is, the greater its impaton searh performane.When presented in the literature, single-agent searh (usually IDA*) onsists of afew lines of ode. Most textbooks do not disuss searh enhanements other than yledetetion. In reality, non-trivial single-agent searh problems require more extensiveprogramming (and possibly researh) e�ort. For example, ahieving high perfor-mane at solving sliding-tile puzzles requires enhanements suh as yle detetion,1Due to an oversight, we failed to detet problem # 30 as being solved until it was too lateto inlude the numbers in this thesis. Reent experiments using Rapid Random Restart [GSK98℄inreased this number even further to 57. 130



Figure 8.1: Two Simple Sokoban Problemspattern databases, move ordering and enhaned lower-bound alulations [CS96℄. Inthis hapter, we outline a new framework for high-performane single-agent searhprograms and propose a taxonomy of single-agent searh enhanements.8.2 Appliation-Independent TehniquesIdeally, appliations should be spei�ed with minimal e�ort and a \generi" solverwould be used to ompute the solutions. In small domains this is attainable (e.g., ifit is easily enumerable). For more hallenging domains, there have reently been anumber of interesting attempts at domain-independent solvers (e.g., blakbox [KS96℄).Before investing a lot of e�ort in developing a Sokoban-spei� program, it is impor-tant to understand the apabilities of urrent AI tools. Hene, we inlude this in-formation to illustrate the disparity between what appliation-independent problemsolvers an ahieve, ompared to appliation-dependent tehniques.The Sokoban problems in Figure 8.1 [MD98℄ were given to the program blakboxto solve. Blakbox was one of the best programs at the AIPS'98 fastest plannerompetition. The �rst problem was solved within a few seonds and the seondproblem was solved in over an hour.Clearly, domain-independent planners, like blakbox, have a long way to go if theyare to solve the even simplest problem in the test suite. Hene, for this appliationdomain, we have no hoie but to pursue an appliation-dependent implementation.Note also, that many of the domain-desription languages used, suh as STRIPS,often do not allow for eÆient domain desriptions. While Rolling Stone an usesimpli�ations, suh as ignoring the exat position of the man, planners reading aSTRIPS-like problem desription have to deal with a muh larger searh spae, be-ause the man's position is enoded expliitly and annot be handled eÆiently.8.3 Appliation-Dependent TehniquesAppliation-dependent tehniques are not per se appliation dependent, in fat theyan be applied to a variety of domains. We all them appliation (or domain) depen-dent beause the knowledge they use applies to a partiular domain.131
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R8 + overestimation = R9Figure 8.3: E�ort Graph, Repeated (Linear and Log Sale)The preeding hapters of this thesis show the power and limitations of appliation-dependent searh enhanements. Their performane omes at a prie: programmingand researh e�ort. Figure 8.2 shows how these results were ahieved during 2.5 yearsof development time. The development e�ort equates to a full-time PhD student, apart-time professor, a full-time summer student (4 months), and feedbak from manypeople. Additionally, a large number of mahine yles were used for tuning anddebugging. It is interesting to note the oasional derease in the number of problemssolved, the result of (favorable) bugs being �xed. The long, slow, steady inrease isindiative of the reality of building a large system. Progress is inremental and oftenpainfully slow.The large redutions in searh-tree sizes that we have seen previously are notahievable with the urrent state-of-the-art domain-independent tehniques. Unfor-tunately, if solutions to omplex problems are required, appliation-dependent teh-niques are neessary.The performane gap between the �rst and last versions of Rolling Stone in Fig-132
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Figure 8.4: Turning One Enhanement O� (Linear and Log Sale)ure 8.3 is astounding. For example, onsider extrapolating the performane of RollingStone only with transposition tables (R1) so that it an solve the same number ofproblems (53) as the omplete program (R9). 1050 (not a typo!) seems to be areasonable lower bound on the di�erene in searh-tree sizes.As already disussed in Chapter 4, the results in Figure 8.3 may misrepresent theimportane of eah feature. Figure 8.4 shows the results of taking the full versionof Rolling Stone (R9) and disabling one searh enhanement at a time. The exatnumbers an be found split over Tables 8.1 and 8.2. In the absene of a partiularmethod, other searh enhanements might ompensate suh that most of the solutionsan still be found. But if the searh-tree redutions of an enhanement are mostlyunique, turning it o� will redue the total number of problems solved signi�antly.While the lower-bound funtion alone annot solve a single problem, neither anthe omplete system solve a single problem without the lower-bound funtion. Thisexplains why the lower bound is never disabled in our tests. It is of paramountimportane, without it no problem an be solved.Figure 8.4 shows that turning o� goal maros redues the number of problemssolved by 32, more than 50%! When turning o� pattern searhes, the number ofsolved problems drops by 21. Turning o� transposition tables loses 18 problems.Besides the lower-bound funtion, these three enhanements are the most importantones for Rolling Stone; losing any one of them dramatially redues the performane.Relevane uts are responsible for 4 solutions and tunnel maros for 2. Turning o�either move ordering or deadlok tables results in the loss of only one problem. Notethat even though in Setion 4.8 disabling goal uts lost 7 problems, the full version(R9) still solves all problems, only with slightly larger node ounts. Pattern searhes,relevane uts and/or overestimation are able to ompensate for the loss of the goaluts.
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# goal maros (uts) disabled pattern searhes (overestimation) disabled transposition tables disabled relevane uts disabled all enabledIDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns1 111 1,798 3 52 52 2 55 1,752 3 55 1,267 3 55 1,267 32 129 7,775 1 194 194 2 80 9,729 1 82 7,532 1 80 7,530 13 9,975 45,553 1 305 305 2 101 23,614 1 106 15,188 1 94 14,095 14 21,469 665,602 3 392 392 1 187 63,527 1 187 50,369 1 187 50,369 15 811,912 4,145,913 8 20,213 20,213 3 287 121,360 2 218 36,778 1 153 33,755 16 9,163 115,558 1 174 174 3 111 9,922 1 85 5,504 1 84 5,503 17 207 12,177 1 8,295 8,295 5 336 28,439 1 391 13,984 2 338 14,832 28 738,055 2,921,408 4 450,161 450,161 6 540 867,357 5 371 465,263 5 315 409,714 59 2,859 390,770 4 34,514 34,514 8 824 327,033 1 172 80,434 1 1,591 385,084 410 > 99,661 > 20,000,000 3 > 20,000,000 > 20,000,000 2 > 25,983 > 20,000,000 1 19,119 12,029,738 5 2,920 2,539,524 311 > 734,353 > 20,000,000 12 > 20,000,000 > 20,000,000 16 > 32,628 > 20,000,000 8 6,553 2,076,276 12 4,058 2,527,286 1212 > 307,056 > 20,000,000 8 > 20,000,000 > 20,000,000 10 > 252,493 > 20,000,000 1 > 1,674,420 > 20,000,000 1 951 372,264 817 > 2,515,393 > 20,000,000 12 9,182 9,182 7 > 919,122 > 20,000,000 9 2,698 30,287 9 2,158 30,242 919 > 910,691 > 20,000,000 10 > 20,000,000 > 20,000,000 8 > 31,982 > 20,000,000 6 > 59,322 > 20,000,000 8 14,178 6,631,475 1021 > 7,398,297 > 20,000,000 3 286,982 286,982 10 2,762 577,354 10 17,221 884,501 3 573 113,042 323 > 584,364 > 20,000,000 12 > 20,000,000 > 20,000,000 3 > 169,507 > 20,000,000 7 31,868 5,264,113 12 23,337 6,555,398 1225 > 2,440,537 > 20,000,000 7 > 20,000,000 > 20,000,000 5 619 399,815 6 901 409,941 7 683 366,035 726 > 2,240,971 > 20,000,000 7 > 20,000,000 > 20,000,000 15 > 3,219,787 > 20,000,000 13 > 4,285,048 > 20,000,000 7 380 122,997 733 > 863,437 > 20,000,000 2 > 20,000,000 > 20,000,000 7 > 65,650 > 20,000,000 1 2,155 378,220 1 604 283,926 134 32,227 2,500,435 2 2,234,289 2,234,289 9 17,069 6,376,898 3 513 358,480 3 9,746 749,787 236 > 194,690 > 20,000,000 6 > 20,000,000 > 20,000,000 6 2,167 1,461,524 6 259,772 9,570,145 6 18,338 12,150,606 738 22,278 93,959 1 27,259 27,259 9 9,348 174,488 1 2,012 38,114 1 10,473 160,176 140 > 86,192 > 20,000,000 8 > 20,000,000 > 20,000,000 7 > 27,370 > 20,000,000 6 43,639 17,686,156 8 16,725 10,086,547 943 341,553 2,681,897 8 385,869 385,869 8 > 39,775 > 20,000,000 8 10,477 1,025,451 8 2,225 535,148 845 > 462,451 > 20,000,000 2 > 20,000,000 > 20,000,000 7 5,898 3,479,354 5 398 216,082 1 602 404,217 249 > 3,421,140 > 20,000,000 6 320,669 320,669 13 > 2,128,496 > 20,000,000 9 > 4,294,023 > 20,000,000 9 441,638 3,486,905 951 99,047 1,388,288 2 2,819 2,819 1 277 34,152 1 137 8,825 1 256 21,491 153 > 2,164,029 > 20,000,000 1 > 20,000,000 > 20,000,000 1 157 23,416 1 159 22,310 1 157 22,308 154 > 1,382,259 > 20,000,000 4 > 20,000,000 > 20,000,000 3 344 46,619 4 224 40,708 3 269 45,332 355 > 3,408,250 > 20,000,000 1 136 136 1 97 3,490 1 97 2,993 1 97 2,993 156 65,549 156,228 7 > 20,000,000 > 20,000,000 5 2,893 75,141 5 2,415 87,905 7 911 55,865 757 > 3,485,817 > 20,000,000 1 5,070,525 5,070,525 5 252 127,478 2 239 122,033 1 209 128,282 158 > 6,848,326 > 20,000,000 3 > 20,000,000 > 20,000,000 1 > 26,375 > 20,000,000 2 783 439,792 3 231 138,838 359 > 2,468,760 > 20,000,000 7 > 20,000,000 > 20,000,000 6 > 855,045 > 20,000,000 8 1,105 590,482 4 602 337,905 460 259,279 1,138,911 1 12,683 12,683 3 > 3,148,019 > 20,000,000 1 1,375 55,725 1 18,100 114,642 161 > 1,377,709 > 20,000,000 8 > 20,000,000 > 20,000,000 6 > 132,563 > 20,000,000 2 302 76,588 8 299 77,555 862 > 1,549,298 > 20,000,000 5 3,812 3,812 5 184 95,696 5 195 82,351 4 180 69,728 463 > 989,550 > 20,000,000 1 715,579 715,579 3 584 322,947 3 483 217,033 1 473 237,196 164 > 158,253 > 20,000,000 1 369,870 369,870 10 348 406,986 1 191 178,401 1 193 186,508 165 > 387,680 > 20,000,000 1 293 293 5 144 29,983 1 156 21,739 1 165 23,004 167 > 2,539,252 > 20,000,000 1 > 20,000,000 > 20,000,000 10 524 152,897 5 302 115,122 1 298 104,356 168 > 6,935,468 > 20,000,000 9 > 20,000,000 > 20,000,000 6 > 1,467,936 > 20,000,000 10 334 235,911 1 324 236,157 170 > 476,971 > 20,000,000 5 > 20,000,000 > 20,000,000 1 430 252,302 5 480 118,716 4 446 178,657 572 > 785,374 > 20,000,000 1 727,780 727,780 5 148 69,042 5 123 45,735 1 123 45,735 173 > 1,524,435 > 20,000,000 1 408,462 408,462 3 232 151,776 1 212 90,906 1 225 103,494 176 2,208,039 17,583,377 2 > 20,000,000 > 20,000,000 5 > 36,784 > 20,000,000 4 1,044 409,335 3 251 183,656 278 139 5,058 1 75 75 1 64 6,017 1 64 4,451 1 64 4,913 179 591,019 1,612,679 2 723 723 5 155 24,317 5 133 12,788 2 127 13,114 280 > 3,395,043 > 20,000,000 1 842 842 1 205 55,016 1 118 18,004 1 176 26,309 181 > 5,572,202 > 20,000,000 1 48,302 48,302 4 > 2,215,418 > 20,000,000 2 31,962 360,177 1 875 111,033 182 287 46,526 3 39,043 39,043 5 140 121,397 5 104 48,197 3 117 45,014 383 174 6,694 1 297 297 1 138 21,032 1 96 7,440 1 108 6,856 184 2,127,005 10,109,624 1 199,985 199,985 4 106 8,260 1 97 6,127 1 108 7,818 1>75,048,385 >685,630,230 >431,379,776 >431,379,776 >14,842,739 >375,950,130 >10,754,736 >134,063,617 577,870 50,566,483

Table8.1:TurningOneEnhanementO�(I)
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# overestimation disabled tunnel maros disabled move ordering disabled deadlok tables disabled goal uts disabled all enabledIDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns IDA* nodes total nodes itrns1 50 1,042 2 65 1,598 3 114 2,731 3 56 1,272 3 55 1,267 3 55 1,267 32 80 7,530 1 86 8,831 1 124 5,352 1 80 7,598 1 80 7,530 1 80 7,530 13 87 12,902 1 94 14,095 1 149 25,029 1 105 16,153 1 94 14,095 1 94 14,095 14 187 50,369 1 243 67,490 1 406 83,627 1 193 46,980 1 187 50,369 1 187 50,369 15 202 43,298 2 153 33,755 1 131 21,709 1 165 34,731 1 153 33,755 1 153 33,755 16 84 5,118 1 87 5,723 1 128 6,019 1 86 7,746 1 181 7,232 1 84 5,503 17 1,392 28,460 2 118 15,996 3 174 9,785 2 109 15,962 3 1,133 20,776 2 338 14,832 28 291 311,609 3 315 409,714 5 491 389,334 5 238 201,910 2 325 427,271 5 315 409,714 59 1,884 435,388 5 348 146,380 1 4,728 1,070,275 6 2,286 441,909 5 1,591 385,084 4 1,591 385,084 410 1,810 1,713,429 1 2,920 2,539,524 3 > 27,300 > 20,000,000 3 1,782 1,815,042 3 2,920 2,539,524 3 2,920 2,539,524 311 5,679 2,994,297 11 5,161 2,764,259 16 3,813 1,840,154 12 3,584 2,203,618 13 4,071 2,527,299 12 4,058 2,527,286 1212 4,912 559,184 8 951 372,264 8 2,646 603,990 1 1,066 369,286 8 951 372,264 8 951 372,264 817 2,038 29,116 7 2,368 65,480 9 2,946 32,065 9 2,264 30,524 9 2,158 30,242 9 2,158 30,242 919 16,606 7,269,595 9 16,869 8,300,723 9 21,411 9,304,716 11 12,033 5,452,990 10 6,710 3,514,503 10 14,178 6,631,475 1021 1,177 179,734 7 1,843 313,507 4 599 138,481 4 634 122,882 7 576 115,755 3 573 113,042 323 > 59,498 > 20,000,000 7 > 63,547 >20,000,000 12 21,295 5,202,990 11 35,594 8,603,866 9 23,337 6,555,398 12 23,337 6,555,398 1225 21,536 5,784,086 7 723 385,622 7 965 424,750 5 1,977 1,006,404 11 709 366,069 7 683 366,035 726 >2,125,116 > 20,000,000 9 503 119,343 7 126,026 1,787,791 5 657 130,246 7 752 128,806 7 380 122,997 733 2,765 586,684 3 604 283,926 1 3,257 227,672 1 603 291,506 1 604 283,926 1 604 283,926 134 11,431 1,981,993 3 9,746 749,787 2 351,818 9,615,236 2 11,390 780,578 2 93,838 3,978,637 2 9,746 749,787 236 > 23,467 > 20,000,000 5 > 41,993 >20,000,000 8 278,538 17,666,104 6 5,527 2,465,788 6 18,338 12,150,606 7 18,338 12,150,606 738 7,011 154,969 6 11,228 186,979 1 2,789 28,559 1 11,678 166,511 1 14,021 165,930 1 10,473 160,176 140 23,274 17,004,253 7 17,772 10,048,532 9 20,683 11,135,404 9 20,623 10,220,101 9 19,029 11,508,074 9 16,725 10,086,547 943 1,729 421,483 7 2,225 535,148 8 2,357 549,141 8 2,604 612,082 8 2,225 535,148 8 2,225 535,148 845 339 181,566 2 697 434,293 2 986 637,176 2 703 426,790 1 602 404,217 2 602 404,217 249 53,113 327,643 9 774,682 5,413,505 9 72,419 369,491 9 452,534 3,524,020 9 510,730 3,989,973 9 441,638 3,486,905 951 256 21,491 1 264 23,774 1 1,207 51,895 1 260 23,377 1 406 22,269 1 256 21,491 153 157 22,308 1 171 22,345 1 309 45,633 1 157 21,993 1 157 22,308 1 157 22,308 154 163,757 2,031,577 2 >1,503,864 >20,000,000 1 36,390 901,024 2 >1,655,503 >20,000,000 1 269 45,332 3 269 45,332 355 97 2,993 1 97 2,993 1 322 4,084 1 96 2,927 1 97 2,993 1 97 2,993 156 377 61,189 3 911 55,865 7 36,677 252,888 8 961 54,227 7 627 84,730 11 911 55,865 757 234 114,416 2 217 108,909 1 887 222,032 2 235 111,068 1 209 128,282 1 209 128,282 158 211 130,474 2 275 180,500 3 1,584 259,662 3 240 138,725 3 231 138,838 3 231 138,838 359 1,420 775,753 4 778 214,008 7 1,465 292,744 7 7,535 416,503 7 602 337,905 4 602 337,905 460 160 27,386 1 34,700 287,151 1 280 25,623 1 18,320 119,642 1 32,916 126,160 1 18,100 114,642 161 309 105,411 5 493 164,727 7 1,337 179,764 8 334 77,926 8 299 77,555 8 299 77,555 862 195 101,934 3 216 78,095 4 253 116,583 5 190 93,424 5 180 69,728 4 180 69,728 463 703 312,546 1 473 237,196 1 >1,892,813 > 20,000,000 1 698 349,299 3 473 237,196 1 473 237,196 164 405 332,402 4 209 190,724 1 1,859 1,425,833 1 230 193,795 1 193 186,508 1 193 186,508 165 196 21,442 2 181 24,500 1 > 687,199 > 20,000,000 1 167 22,363 1 165 23,004 1 165 23,004 167 12,669 512,488 6 322 108,248 1 17,495 311,723 1 300 101,536 1 298 104,356 1 298 104,356 168 1,953 538,509 6 324 236,157 1 1,140 228,388 4 556 228,978 6 324 236,157 1 324 236,157 170 431 140,765 3 474 188,237 5 1,421 164,454 4 437 160,238 5 446 178,657 5 446 178,657 572 134 44,908 2 123 45,735 1 243 58,255 1 150 39,160 5 123 45,735 1 123 45,735 173 214 94,568 1 225 103,494 1 408 119,498 1 229 105,679 1 225 103,494 1 225 103,494 176 74,315 3,775,394 4 257 193,943 2 2,854 369,255 2 255 185,001 2 251 183,656 2 251 183,656 278 64 4,913 1 70 4,934 1 90 5,017 1 65 6,341 1 64 4,913 1 64 4,913 179 122 15,527 2 132 13,748 2 403 38,396 2 130 13,296 2 219 13,286 2 127 13,114 280 165 26,943 1 285 42,338 1 302 32,638 1 176 28,967 1 176 26,309 1 176 26,309 181 2,662 42,445 1 333 109,338 1 360 101,241 1 925 114,593 1 2,427 113,291 1 875 111,033 182 86 33,445 2 118 45,197 3 184 48,111 3 133 46,823 2 117 45,014 3 117 45,014 383 80 5,631 1 159 12,350 1 303 12,381 1 108 7,472 1 108 6,856 1 108 6,856 184 106 7,938 1 121 8,816 1 219 16,615 1 109 8,004 1 108 7,818 1 108 7,818 1>2,627,236 >109,388,544 >2,501,133 >95,919,796 >3,634,297 >126,461,318 >2,257,070 >61,667,852 747,080 52,686,100 577,870 50,566,483

Table8.2:TurningOneEnhanementO�(II)
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# IDA* IDA* + PIDA* # IDA* IDA* + PIDA*1 14 53 32 4 92 786 830 33 12 913 9 22 34 37 1294 14 38 35 25 1075 23 58 36 15 716 10 30 37 82 1557 6 30 38 43 1838 19 50 39 28 659 6 13 40 20 11910 7 14 41 39 13911 15 26 42 13 6712 10 20 43 34 9513 5 20 44 15 4514 7 16 45 33 10815 16 27 46 49 15716 55 125 47 22 4517 16 26 48 76 13118 15 57 49 18 3619 22 125 50 68 22020 20 40 51 256 84821 22 72 52 79 23222 30 52 53 11 3223 11 54 54 771 1,93824 14 57 55 318 53125 5 22 56 170 29026 63 148 57 135,255 342,78527 4 9 58 > 9,486,886 > 20,000,00028 16 48 59 27 7629 41 112 60 2,866 4,46030 23 49 61 > 11,044,404 > 20,000,00031 19 41 > 20,672,999 > 40,355,448Table 8.3: The Kids Problems
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8.4 Test Sets and Searh E�ortUsing one test set to tune andmeasure progress with will neessarily lead to over�ttingof the program to the test set. We have tested our program Rolling Stone on a setof 61 simple problems to verify that it is at least not geared towards large problems.Rolling Stone solves 59 of the 61 problems. The two it annot solve with 20 millionnodes of searh e�ort require parking in the goal area, a onept the program doesnot know about. Appendix B shows the omplete test set.The limit of 20 million nodes in our experiments is arbitrarily hosen. However,Figures 8.3 and 8.4 show that dereasing the searh e�ort even by 2 orders of mag-nitude would lead to almost the same qualitative results. To see how lose we are tosolving more problems with our 20 million node e�ort limit, we onduted an exper-iment with the best version of Rolling Stone, allowing for 1 billion nodes of searhe�ort. One more problem ould be solved: #24 uses 591,287,416 nodes. This on�rmsthe exponential nature of the domain.8.5 Knowledge TaxonomySeveral di�erent ways of lassifying the domain-spei� knowledge used to solveSokoban problems an be identi�ed:Generality: Classify based on how general the knowledge is: domain (e.g., Sokoban),instane (a partiular Sokoban problem), and subtree (within a Sokoban searh).Computation: Di�erentiate how the knowledge was obtained: stati (suh as adviefrom a human expert) and dynami (gleaned from a searh).Admissibility/Completeness: Knowledge an be: admissible (preserve optimalityin a solution) or non-admissible. Non-admissible knowledge an either preserveompleteness of the algorithm or render it inomplete. Admissible knowledge isneessarily omplete.Figure 8.5 summarizes the searh enhanements used in Rolling Stone. Other en-hanements from the literature ould easily be added into spaes that are still blank,e.g. perimeter databases [Man95℄ (dynami, admissible, instane). Note that some ofthe enhanement lassi�ations are �xed by the type of the enhanement. For exam-ple, any type of heuristi (unsafe) forward pruning is inomplete by de�nition, andmove ordering always preserves admissibility. For some enhanements, the propertiesdepend on the implementation. For example, overestimation tehniques an be statior dynami; goal maros an be admissible or non-admissible; pattern databases anbe domain-based or instane-based.It is interesting to note that, apart from the lower-bound funtion itself, thethree most important program enhanements in terms of program performane areall dynami (searh-based) and instane/subtree spei�. The stati enhanements,while of value, turn out to be of less importane. Stati knowledge is usually rigid137



Classi�ation Domain Instane SubtreeStati admissible lower tunnel movebound maros orderingompleteinomplete relevane goaluts utsDynami admissible deadlok patterntables searhestransposi-tion tableomplete overesti-mationinomplete goalmarosFigure 8.5: Taxonomy of Searh Enhanements in Sokobanand does not inlude the myriad of exeptions that searh-based methods an unoverand reat to.8.6 Control FuntionsThere is another type of appliation-dependent knowledge that is ritial to perfor-mane, but reeives sant attention in the literature. Control funtions are intrinsiparts of eÆient searh programs, ontrolling when to use or not use a searh en-hanement. In Rolling Stone numerous ontrol funtions are used to improve thesearh eÆieny. Some examples inlude:Transposition Table: A �xed-size transposition table an only hold so muh infor-mation. Control knowledge is needed to deide when new information shouldreplae older information in the table. Also, when reading from the table, on-trol information an deide whether or not the bene�ts of the lookup justify theost. For example, searh appliations may not look up table entries lose tothe leaf nodes.Goal Maros: If a goal area has too few goal squares, then goal maros are disabled.With a small number of goals or too many entranes, the searh will likelynot need maro moves, and the potential savings are not worth the risk ofeliminating possible solutions.Pattern Searhes: Pattern searhes are exeuted only when a non-trivial heuristifuntion indiates the likelihood of a penalty being present. Exeuting a patternsearh is expensive, so this overhead should be introdued only when it is likely138



to be ost e�etive. Control funtions are also used to stop a pattern searhwhen suess appears unlikely.Implementing a searh enhanement is often only one part of the programminge�ort. Implementing and tuning its ontrol funtion(s) an be signi�antly more timeonsuming and more ritial to performane. We estimate that whereas the searhenhanements take about 90% of the oding e�ort and the ontrol funtions only 10%,the reverse distribution applies to the amount of tuning e�ort needed and mahineyles onsumed.A lear separation between the searh enhanements and their respetive ontrolfuntions (task and ontrol knowledge) an help the tuning e�ort. For example, whilethe goal maro reation only onsiders whih order the stones should be plaed intothe goal area, the ontrol funtion an determine if goal maros should be reatedat all. Both tuning e�orts have very di�erent objetives: one is searh eÆieny, theother risk minimization. Separating the two seems natural and onvenient.However, this split is not solving the general problem we are faing when tuning.As shown in the NFL disussion, when speializing an algorithm (by tuning or anyother measure, suh as searh enhanements in general) we are trading o� performaneof the algorithm for one kind of problem against the performane for other kinds ofproblems. When tuning parameters using performane on a test suite as a measure ofimprovement, we are impliitly adapting the algorithm to the properties exempli�edin the test suite. For our 90 problems, this is most ertainly true. Humans omposedthe problems, using onepts suh as rooms and hallways, struturing the problemsin a very spei� way. Goal maros are a good example how we exploited one ofthese properties: goals are often together in lumps in a designated area. Randominstanes would defy goal maros. Control funtions are an attempt to reognizethese situations and turn goal maros o�.8.7 Single-Agent Searh FrameworkFigure 8.6 illustrates the basi IDA* routine, with our enhanements inluded (initalis). This routine is spei� to Rolling Stone, but ould be written in more generalterms. It does not inlude a number of well-known single-agent searh enhanementsavailable in the literature. Control funtions are indiated by parameters to searhenhanement routines. In pratie, some of these funtions are implemented as simpleif statements ontrolling aess to the enhanement ode.Examining the ode in Figure 8.6, one realizes that there are really only four typesof searh enhanements:1. Modifying the lower bound (as indiated by the updates to lb). This an taketwo forms: optimally inreasing the bound (e.g. using patterns) whih reduesthe distane to searh, or non-optimally (using overestimation) whih redis-tributes where the searh e�ort is onentrated.139



IDA*() f/** Compute the best possible lower bound **/lb = ComputeLowerBound();lb += UsePatterns(); /** Math Patterns **/lb += UseDeadlokTable();lb += UseOverestimate( CntrlOverestimate() );IF( utoff ) RETURN;/** Preproess **/lb += ReadTransTable();IF( uto� ) RETURN;PatternSearh( CntrlPatternSearh() );lb += UsePatterns();IF( uto� ) RETURN;/** Generate searhable moves **/movelist = GenerateMoves();RemoveDeadMoves( movelist );IdentifyMaros( movelist );OrderMoves( movelist );FOREACH( move ) fIF( Irrelevant( move, CntrlIrrelevant() )) NEXT;solution = IDA*();IF( solution ) RETURN;IF( GoalCut() ) BREAK;UpdateLowerBound(); /** Use New Patterns **/IF( uto� ) RETURN;g/** Post-proess **/SaveTransTable( CntrlTransTable() );RETURN;g Figure 8.6: Enhaned IDA*
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FOREACH( domain ) f/** Preproess **/BuildDeadlokTable( CntrlDeadlokTable() );FOREACH( instane ) f/** Preproess **/FindTunnelMaros();FindGoalMaros( CntrlGoalMaros() );WHILE( NOT solved ) fSetSearhParamaters();IDA*();g/** Postproess **/SavePatterns( CntrlSavingPatterns() );gg Figure 8.7: Preproessing Hierarhy2. Removing branhes unlikely to add additional information to the searh (thenext and break statements in the for loop). This forward pruning an result inlarge redutions in the searh tree, at the expense of possibly removing solutions.3. Collapsing the tree height by replaing a sequene of moves with one move (forexample, maros).4. Move ordering allows for savings in the last iteration by exploring promisinglines �rst.Some of the searh enhanements involve omputations outside of the searh. Fig-ure 8.7 shows where the pre-searh proessing ours at the domain and instane lev-els. O�-line omputation of pattern databases or preproessing of problem instanesare powerful tehniques that reeive sant attention in the literature (hess endgamedatabases are a notable exeption). Yet these tehniques are an important step to-wards the automation of knowledge disovery and mahine learning. Preproessing isinvolved in many of the most valuable enhanements that are used in Rolling Stone.Similar issues our with other searh algorithms. For example, although it takesonly a few lines to speify the alpha-beta algorithm, the Deep Blue hess program'ssearh proedure inludes numerous enhanements (many similar in spirit to thoseused in Rolling Stone) that umulatively redue the searh-tree size by several or-141



ders of magnitude. If nothing else, the Deep Blue result demonstrated the degree ofengineering required to build high-performane searh-based systems.8.8 ConlusionsThis hapter summarizes our experienes working with Sokoban. In ontrast tothe simpliity of the basi IDA* formulation, building a high-performane single-agent searher an be a omplex task that ombines both researh and engineering.Appliation-dependent knowledge, spei�ally that obtained using searh, an resultin an orders-of-magnitude improvement in searh eÆieny. This an be ahievedthrough a judiious ombination of several searh enhanements. Control funtionsare overlooked in the literature, yet are ritial to performane. They represent asigni�ant portion of the program development time and most of the program exper-imentation resoures.Domain-independent tools o�er a quik programming solution when ompared tothe e�ort required to develop domain-dependent appliations. However, with urrentAI tools, performane is ommensurate with e�ort. Domain-dependent solutions anbe vastly superior in performane. The trade-o� between programming e�ort andperformane is the ritial design deision that needs to be made.
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Chapter 9Conlusions and Future WorkResearh into single-agent searh methods has been dominated by relatively simpledomains. Domains, suh as the 15-puzzle or Rubik's Cube, have relatively smallsearh-spae omplexities and/or deision omplexities. The onlusions from theresearh in these domains have simpli�ed our view of single-agent searh. Often,impliit assumptions are made for ertain methods to work. Well-behaved searhspaes with reversible moves and relatively small branhing fators and searh depthsare usually assumed. The availability of high-quality, low-ost lower-bound estimatorsis another one of these assumptions. Naturally, one has to be areful about onlusionsdrawn from domains having suh nie properties.In this thesis, we have seen an instane of a problem domain that de�es thetraditional approahes and requires more sophistiated methods. Sokoban has notjust a large searh spae, but also exhibits the hallenging searh-spae property ofnon-reversible moves whih lead to deadlok on�gurations. Furthermore, an eÆientand e�etive lower-bound funtion remains elusive. Many or even all the impliitlyassumed preonditions of the text-book approahes are violated and the state-of-the-art methods fail.This thesis shows how to takle this hallenge and makes signi�ant progress insolving non-trivial problem on�gurations for Sokoban. New searh enhanements areintrodued. The most suessful of them use small speialized searhes to disoverknowledge that an be used to improve the eÆieny of the main searh. Stati,o�-line searhes produing goal maros show onsiderable improvements in searheÆieny. However, dynami, on-line pattern searhes gather knowledge that leadsto more signi�ant redutions in searh-tree sizes. It appears that searhes, anddynami searhes in partiular, an glean the information that is needed to breakthe omplexity barrier build up by the ombinatorial explosion haraterizing thesehallenging domains. Other enhanements suggested here, suh as relevane utsand the pattern-driven overestimation, indiate that further onsiderable progress ispossible.An interesting observation made in this thesis is that the most powerful of searhenhanements are losely linked to spei� knowledge about the problem instanes,or even spei� problem on�gurations. Examples are:� Transposition table entries store searh results about spei� states.143



� Penalty patterns ontaining information about sets of states of one probleminstane (with these patterns present) are results of searhes.� Goal maros are found by o�-line searhes and represent the knowledge of howto solve the subproblem of goal-paking in one instane.We believe that this is no oinidene. While generalized and broadly appliableheuristis an help to give the searh a general diretion, it annot possibly apturethe subtleties of omplex domains. Exeptions and speial ases make these problemsdiÆult and hallenging and they have to be found by the searh on an instane-by-instane basis. For puzzle games suh as Sokoban, this wealth of intriate details iswhat draws humans and keeps them oming bak. For the pratie, this wealth iswhat haraterizes many of the hallenging real-world problems we are interested insolving. After all, if general guidelines or rules would apply, we would probably notpereive these problems as hard.Even though Sokoban is primarily used as our researh domain here, the meth-ods and enhanements suggested as well as the lessons learned are largely domainindependent and arry therefore over to other domains.Short from exusing ourselves for piking Sokoban as an experimental testbed, wewould like to point out that it ould be a rih and fertile ground for many sub�elds ofAI. Even though we have made onsiderable progress in this domain using advanedsearh methods, searh alone is not going to be suÆient to solve the toughest of theSokoban problems.A Sokoban solver ould bene�t from any of the following areas of AI:� Reasoning in all its di�erent forms (automated, ase-based, probabilisti, geo-metri and spatial,...) ould help to deompose Sokoban instanes into subprob-lems and, taking all the interations of the subproblems into aount, reassemblethe solution for the omplete problem.� Belief revision must ertainly play a role for the dynami disovery of subsolu-tion interations. As new, possibly oniting fats (interations, partial solu-tions, onstraints), are disovered they have to be integrated into the urrentknowledge base.� Case-based reasoning ould help to adapt solutions from similar instanes solvedin the past to new problems urrently at hand.� Knowledge aquisition and representation an help to takle one of the funda-mental problems of AI, of how to represent and store all the knowledge eÆ-iently. As we have seen, this beomes an important problem.� Planning an help to diret the searh by providing it with the global ontextof loal ations to assist in ritial deisions like forward pruning and moveordering.However, these areas an also bene�t from Sokoban! Sokoban o�ers a non-trivial testbed for many tehniques from di�erent sub�elds of AI.144



There are many more searh related hallenges and open questions left to explorein the domain of Sokoban. Searh methods an most ertainly be improved signif-iantly. Some of the immediate issues that ome to mind are: Can relevane utsbene�t from dynamially aumulated knowledge? Can move ordering be improvedwith additional knowledge? Are there better heuristis to deide whih stone to in-lude next in a pattern searh? What ould that knowledge be and how ould it beolleted?However, a muh more fruitful question to explore is probably how to use themethods developed for Sokoban in other domains. Di�erent domains an providedi�erent onditions and properties whih these methods an be subjeted to. Theneessary generalizations an yield interesting new insights into why and how ertainmethods work for di�erent appliation domains.Yet another step is to try to use the methods developed here (and of ourse else-where) in a domain-independent way. It is fairly straightforward for some of thesimpler searh enhanements, like transposition tables, to be instantiated for a newdomain. Espeially transposition tables ould also be turned o�, when simple sta-tistial tests about hit rates show that the savings do not justify their use. But,how an other, more omplex methods be automatially instantiated like that? Howan the knowledge needed for these domain-dependent searh enhanements be au-tomatially extrated? More to the point: How an we invoke a method, instead of asientist? With the example of pattern searhes we have shown that we an identifyneessary onditions for the use of searh enhanements. Can these onditions betested automatially and, depending on the result of the test, searh enhanementsbe enabled or disabled, or even adjusted? Are domain desriptions the soure of mostof the neessary information? Or would example searhes reveal ertain properties ofthe searh spae (of ourse assuming we are dealing with a well behaved, preditabledomain)? Or both?
Humans are inredibly apt in adapting their problem solving methods. They dothis on many di�erent levels, suh as for di�erent domains, as well as for di�erentinstanes of the same domain, and even for di�erent phases of the solution of oneproblem instane. Humans are able to reognize when they are not making anyprogress and they an hange their solution strategies. What are the next stepstowards reating an arti�ial entity with suh apabilities?
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Appendix AThe 90 Problem Test Suite
Problem #1 Problem #2 Problem #3
Problem #4 Problem #5 Problem #6
Problem #7 Problem #8 Problem #9
Problem #10 Problem #11 Problem #12152



Problem #13 Problem #14 Problem #15
Problem #16 Problem #17 Problem #18
Problem #19 Problem #20 Problem #21
Problem #22 Problem #23 Problem #24
Problem #25 Problem #26 Problem #27
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Problem #28 Problem #29 Problem #30
Problem #31 Problem #32 Problem #33
Problem #34 Problem #35 Problem #36
Problem #37 Problem #38 Problem #39
Problem #40 Problem #41 Problem #42
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Problem #43 Problem #44 Problem #45
Problem #46 Problem #47 Problem #48
Problem #49 Problem #50 Problem #51
Problem #52 Problem #53 Problem #54
Problem #55 Problem #56 Problem #57
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Problem #58 Problem #59 Problem #60
Problem #61 Problem #62 Problem #63
Problem #64 Problem #65 Problem #66
Problem #67 Problem #68 Problem #69
Problem #70 Problem #71 Problem #72
Problem #73 Problem #74 Problem #75
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Problem #76 Problem #77 Problem #78
Problem #79 Problem #80 Problem #81
Problem #82 Problem #83 Problem #84
Problem #85 Problem #86 Problem #87
Problem #88 Problem #89 Problem #90
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Appendix BThe 61 Kids Problems
Problem #1 Problem #2 Problem #3 Problem #4 Problem #5
Problem #6 Problem #7 Problem #8 Problem #9 Problem #10
Problem #11 Problem #12 Problem #13 Problem #14 Problem #15
Problem #16 Problem #17 Problem #18 Problem #19 Problem #20
Problem #21 Problem #22 Problem #23 Problem #24 Problem #25
Problem #26 Problem #27 Problem #28 Problem #29 Problem #30
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Problem #31 Problem #32 Problem #33 Problem #34 Problem #35
Problem #36 Problem #37 Problem #38 Problem #39 Problem #40
Problem #41 Problem #42 Problem #43 Problem #44 Problem #45
Problem #46 Problem #47 Problem #48 Problem #49 Problem #50
Problem #51 Problem #52 Problem #53 Problem #54
Problem #55 Problem #56 Problem #57 Problem #58
Problem #59 Problem #60 Problem #61
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Appendix CImplementation DetailsTo improve readability and not to wear the patiene of the reader too thin, we deidedto move most of the implementation details into this appendix. These details are non-essential to the basi ideas of the algorithms, but are important to understand howthe implementation is realized. It is geared towards explaining how something works,without trying to justify anything. There will be more \magi numbers", but we willnot point to them spei�ally anymore.C.1 Constrution of Deadlok TablesThis setion ontains a detailed aount of the implementation used to onstrut thedeadlok tables.An o�-line searh was used to enumerate all possible ombinations of walls, stonesand empty squares for a �xed-size region. For eah ombination of squares and theirontents, a small searh was performed to determine whether or not a deadlok waspresent. This information was stored in a tree data struture.Eah node in the tree of Figure C.1 represents a ertain pattern of stones, wallsand empty squares. The root of the tree is the empty maze, exept for the man andone stone. The three suessors of the root represent a pattern with an additionalstone, wall or empty square. Eah of their suessors represent a pattern ontainingone more stone, wall or empty square, and so on. Figure C.2 shows a possible orderof plaing/querying the squares in a maze. The pattern with a wall on square 1 anda wall on square 2 represents a deadlok, and the tree terminates at that point. To�nd out if a ertain pattern is a deadlok, a speial searh is performed whih triesto push all stones to goal squares. Every square that is not part of the urrentlyinvestigated pattern is a goal square. If the searh fails to �nd a solution { pushingall stones to goals, a deadlok pattern was disovered.There are many optimizations that make the omputation of the tree more eÆ-ient.� If a wall is plaed, suh that a stone beomes immediately deadloked (the wallreates a dead square on whih a stone is positioned), the searh an be avoidedand deadlok is delared immediately.160
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Figure C.2: Example Deadlok Table Query Order
Figure C.3: Goal Maro Example� If neither plaing a wall nor a stone on a partiular square reated a deadlok,plaing an empty square there annot reate deadlok either.� When plaing a stone, we an hek if the patterns omputed so far an identifythis position as a deadlok.� The searh of a deadlok pattern an be sped up by removing stones immediatelywhen they reah a goal square.� The searh an use a heap lower bound that sums the distanes of all stonesto their respetive losest goal.Even with all these enhanements, omputing a deadlok table of approximately 5x4takes several weeks of omputation, sine most interior nodes of the pattern treerepresent a small searh, averaging several hundred nodes. Pushing deadlok tablesfurther would require an enormous number of CPU yles and the e�ets would belimited (see Setion 4.6.4).C.2 Goal MarosC.2.1 Goal RoomsA goal room is a vague onept. Humans rarely de�ne hard boundaries as are neededby a program trying to preompute goal maros. The proedure desribed here shouldnot be viewed as the ultimate answer to the problem of goal room detetion.162



Figure C.4: Two Kinds of EntranesFirst, all goal squares that are diret neighbors are inluded in the goal room.If less than three goal squares are found together, no goal room is reated, sinethe possible savings do not outweight the risk of produing unsafe goal maros (seeSetion 4.7.2). Then, using the goal squares as a start state, a highly pruned depth-�rst branh-and-bound searh is exeuted that searhes through the searh spae ofgoal room on�gurations for the \best" goal room. \Best" is de�ned as follows:� inlude as few stones as possible,� leave as few entranes as possible, and� inlude as many squares as possible.The primary onern is to identify a goal room with a minimum number of en-tranes, and then, if possible, to maximize the number of squares in the goal room.At eah node in this goal-room searh, suessor states are goal-room on�gurationsinreased by one square through whih a stone an enter the urrent goal-room on-�guration. To improve eÆieny, a transposition table is used to prevent dupliatingwork. The result of this searh for the example problem in Figure C.3 is a goal roomwith the entranes at the squares D and Dd. Note, that the squares G and Gdwould also form a goal room with two entranes, but with fewer squares inside.To determine goal rooms is extremely diÆult, beause many problems inueneit. The larger the goal room the larger the potential gains, but also the higher the riskof reating goal maros that ut o� solutions. Fewer entranes are generally preferred,sine many entranes inrease the risk of bloking ommuniation hannels. If goalrooms are too small however, the proedures desribed in the following setions mightnot be able to �nd solutions beause stones have to temporarily leave the goal area.C.2.2 EntranesThere are generally two types of entranes.Man Entrane: an entrane through whih only the man an enter, andStone Entrane: an entrane through whih stones (and man) an enter.If we talk about \entrane" without speifying if it is a man or stone entrane,we will assume it is a stone entrane. For example, assume the entranes to the goal163



room in Figure C.4 are E and Ee, then E is a stone entrane, sine stones an reahgoal squares from E. However, the entrane at Ee is a man entrane only; no stonean reah a goal from this entrane.C.2.3 Goal-Maro TreesHaving identi�ed a goal room, another o�-line searh now reates a goal-maro tree.We all this searh goal-maro tree generation and it is disussed in detail in Se-tion C.2.5. Figure C.5 shows an example of a goal-maro tree1. Eah node in thistree represents a spei� on�guration of stones in the goal room. Edges betweenthe nodes represent maro moves. Eah edge is labeled with the number of pushesrequired by the maro it represents. A maro move is de�ned by the entrane squareand the �nal goal square the stone is pushed to. The root of the tree represents theempty goal area at the beginning of the searh. If at any point in time during thesearh a stone is pushed to the entrane of a goal area, the goal-maro tree is on-sulted as to whih maro(s) should be tried by looking up the node that representsthe urrent stone on�guration in the goal room. To speed up the proess of �ndingthe orret node in the goal-maro tree, a pointer is kept that points to the node inthe goal-maro tree that represents the urrent stone on�guration in the goal area.This pointer is updated every time a goal-maro move is made or undone.C.2.4 Target SquaresGiven a ertain stone on�guration in the goal area, the goal-maro generation hasto solve the problem of whih square(s) should the next stone be pushed to. Thesesquares are alled target squares. There is a potentially di�erent set of target squaresfor eah entrane.Several properties of the empty goal squares are onsidered. Figure C.6 shows anexample goal room that we will be using to explain the following onepts. There are�ve entrane-independent properties used:FIXED: The stone would be �xed if plaed on this square. Squares Ih, Kh and Kehave this property.DEAD: Plaing a stone on this square would render one or more other empty goalsquares immediately inaessible, essentially reating a deadlok. The squaresJg and Jf have this property. Note that the emphasis is on immediately, a one-move look-ahead. Plaing a stone on If reates a deadlok as well, but onlydeeper look-ahead is able to verify that.NONOBSTRUCT: The stone would not obstrut any path to any of the othersquares, meaning if a square is reahable from some entrane under some on-ditions, it still is. The squares Ih,Jh and Kh are suh squares. However, the1In e�et, we treat goal-maro trees as graphs for eÆieny reasons. We still all it a tree, beausethis is more intuitive. 164
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square Ig is not. It obstruts the reahability of square Ih from entrane A. Alonger path is needed to get the stone to Ih.ACCESS: Plaing a stone on this square would render some square inaessible fromsome entrane. Squares If and Je are example squares with this property.COMMUNICATION: Plaing a stone on a square with this property does not uto� any ommuniation paths between stone and man entranes. If possible, oneshould avoid plaing stones on squares that uto� ertain areas of the maze.The following square properties are with respet to a spei� entrane:OPTIMAL: The stone an reah the target square with an optimal number ofpushes; no other stone is plaed suh that we have to make a detour. Allsquares have this property for eah of the two entranes in our empty examplemaze. The man is allowed to leave the goal area.INSIDE: When pushing the stone to a target square with this property, the mandoes not have to leave the goal area. The squares Ig and Ih don't have this prop-erty for entrane A, neither has square Ke for entrane B, given that optimalityis required.STRICT: This property is a ombination of OPTIMAL and INSIDE. Squares Ig,Ih and Ke do not have this property. Either the man needs to leave the goalroom or the maro move will require a non-optimal push sequene.LOOSEST: A target square with this property is only reahable with the man leav-ing the goal area and the stone taking a non-optimal path.CLOSEST: CLOSEST is trying heuristially to guess where stones should go ifthey ome through a spei� entrane. Sine entranes an be arbitrarily faraway from the �rst goal square (see entrane A for example), CLOSEST is withrespet to the losest goal square to that entrane. For entrane A the squaresIf,Ig and Ih are losest, so are the squares Je and Ke for entrane B.A heuristi funtion evaluates eah of the target squares using the propertiesdesribed above. These values and properties are used to order the target squares toallow for a more eÆient goal-maro tree generation.C.2.5 Goal-Maro Tree GenerationGoal-maro tree generation is a searh that traverses the highly pruned searh spaeof stone on�gurations in the goal area to �nd possible ways to pak the stones intothe goal room. Stones an enter through all stone entranes and in any order. Thesearh saves its results in a goal-maro tree, suh that the IDA* searh an reuse theknowledge found by the goal-maro tree generation.Eah node the searh tries a set of target squares for eah entrane. It plaes astone on eah of the squares in turn and reursively alls itself. The reursive all166



Figure C.7: Pivot Point Examplereturns suessfully if at least one possible way was found to pak all the stones intothe goal area. In that ase, the goal maro to the target square is added to the urrentnode. The searh attempts to satisfy eah of the following properties with at least onetarget square: CLOSEST, OPTIMAL, INSIDE and NONOBSTRUCT. If the searhannot �nd any suessful target square at a node, it returns with failure.C.2.6 Pivot PointsIf all of the target squares have the ACCESS property (they ut o� some square fromsome entrane), we all the position a pivot position and all squares are inluded asmaros. This is neessary beause at pivot points in the searh there is no way ofknowing how many stones will be pushed through whih entrane. Figure C.7 showsone suh position. Plaing the stone at any of the remaining goal squares dividesthe goal area into parts aessible only from one entrane. Sine the goal-marogeneration annot know what happens during the IDA* searh, any guess might bewrong. Hene all squares have to be inluded.C.2.7 Inluded StonesThe goal-maro tree reation assumes an empty goal area at the start of the searh.If stones were inluded in the goal area of the start on�guration, then the goal-maro tree that is reated, and the pointer the searh has into it representing theurrent stone on�guration in the goal area, do not orrespond. Whenever a moveis generated for a stone inside the goal area during IDA*, a speial routine is alledthat tries to put the stone in the losest goal square that the urrent goal-maro treenode o�ers.C.2.8 ParkingIf the �rst attempt to build a goal-maro tree fails, it was most likely beause aparking maneuver is needed that the searh annot handle. A seond attempt isstarted, and this time the searh is allowed to keep nodes in the goal maro tree thathave no suessor. It is assumed that at that point, stones need to be parked and thatthe IDA* searh will be able to solve the parking problem. Sine parking happens167



mostly late in the goal paking, we an get most of the bene�ts of goal maros withoutrendering the problems unsolvable.C.3 Customizing IDA* for Pattern SearhesIf the pattern searhes used the same IDA* proedure and lower-bound estimator asin Rolling Stone, the searh would be prohibitively large and slow. Instead, we use aspeial version of IDA* (PIDA*) that is ustomized for pattern searhes, allowing foradditional optimizations that dramatially improve the searh eÆieny. By relaxingthe rules of Sokoban and introduing new goal riteria, the resulting searh is moreeÆient and still returns an admissible lower bound on the solution.C.3.1 Stone RemovalOne enhanement is to remove stones from the test maze one they reah a goalsquare. For deadlok PIDA* searhes, stones are also removed when they are pushedonto a man-reahable square. This omes from the observation that most deadloksresult in a number of stones getting rowded together. Hene, if a stone \breaks free",we assume we no longer need to onsider it in that searh subtree.C.3.2 Multiple Goal StatesAnother optimization is to relax what we onsider a goal state. In this relaxation,goal states are also positions where the man an reah all squares, and at least oneonit with the urrent StonePath has been found. Penalty PIDA* searhes do notuse this simpli�ation.These shortuts simplify the searh leading to large savings in the ost of a patternsearh. However, this omes at the expense of possibly missing a penalty or deadlok.In pratie, the redued searh e�ort more than ompensates for the few missedopportunities.C.3.3 EÆient Lower BoundSine stones get removed from the board when they reah a goal square, the Min-mathing lower-bound heuristi is not appropriate. A heaper heuristi an be used:the sum of the shortest distanes of eah stone to its losest goal. When a stonemoves, this lower bound is easily updated. This results in large savings in the ostper node ompared to the original O(n3) lower bound. Sine the number of stonesis small in a pattern searh, most searh-related routines are fast, beause their ostdepends on the number of stones in the maze.
168



C.3.4 Transposition Table EntriesUsually, if an IDA* searh is started, the transposition table has to be leared, sineold entries are not valid for the urrent searh. Sine multiple PIDA* searhes arerun on the same problem just with di�erent stone on�gurations, we an potentiallyreuse transposition table entries from previous PIDA* searhes within the same IDA*searh. However, speial are has to be taken when updating the transposition tableat the end of an aborted searh. Reusing entries from previous searhes an drastiallyredue the overhead for the PIDA* searhes.C.4 Relevane CutsC.4.1 Inuene TableOur implementation runs a shortest-path �nding algorithm to �nd the largest inu-ene between any pair of squares. The �rst is referred to as the start square; theseond as the destination square. Eah square on a path between the start and des-tination squares ontributes points depending on how it inuenes that path. Themore points are assoiated with a pair of squares, the less the squares inuene eahother. The exat numbers used to alulate inuene are the following:Alternatives: A square s on a path will have two neighboring squares that are noton the path. For eah of the neighboring squares n, the following points areadded: 2 points if it is possible to push a stone (if present) from s to n; 1 pointif it is only possible to move a man from s to n; and 0 if n is a wall. Thus, themaximum number of points that one square an ontribute for alternatives is 4.Goal-Skew: However, if s is on an optimal path from the start square to any of thegoals in the maze, then the alternative points are divided by two.Connetion: The onnetion between onseutive squares along a path is used tomodify the inuene. If a stone an be pushed in the diretion of the destinationsquare, then 1 point is added. If only the man an traverse the onnetionbetween the squares (moving towards the destination square), then 2 points areadded.Tunnel: If the previous square on a path is in a tunnel, 0 points are added, regardlessof the above properties.Figure C.8 is used to illustrate inuene. For a subset of squares in the �gure,Table C.1 shows the inuene numbers. In this example, the program automatiallydetermines that an inuene relationship > 8 implies that two squares are distantwith respet to eah other. How this threshold is determined is desribed in the nextsetion.In this example, square A is inuening squares B and C. However, only B isinuening A (the non-symmetri property). The table shows that there are several169



Figure C.8: Example SquaresA B C D E F G H I J K L M N OA 1 6 10 18 19 21 13 17 17 24 12 12 10 18 16B 4 1 5 13 14 18 8 16 16 22 10 11 9 17 15C 7 4 1 9 10 15 9 15 15 25 13 14 12 20 18D 11 8 5 3 9 14 12 14 14 29 17 18 16 24 22E 13 10 7 7 2 7 9 7 7 26 19 12 14 18 20F 23 19 17 18 10 2 13 6 6 25 34 11 13 17 19G 12 7 9 15 14 11 1 15 15 34 23 19 17 25 23H 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8I 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8J 16 16 20 27 19 15 23 11 11 1 10 11 12 11 14K 10 10 14 22 23 26 17 22 22 16 1 17 15 23 21L 8 8 12 20 14 10 15 6 6 21 14 1 2 7 8M 7 7 11 19 16 12 14 8 8 23 13 3 1 9 7N 12 12 16 24 18 14 19 10 10 16 18 5 6 3 6O 11 11 15 23 20 16 18 12 12 18 17 7 5 8 3Table C.1: Example Inuene Valuesregions with high loality, whereas most of the entries indiate non-loal relationships.Given the high perentage of non-loal entries in the table, one might expet relevaneuts to eliminate most of the searh tree. This is not quite true, in that a sequeneof loal moves an result in the start and end squares of the move sequene not beingloal with respet to eah other.Consider alulating the inuene between squares A and C, as well as C andA (see Table C.2). The table entries orrespond to the ontribution of eah of theinuene properties. The table indiates the inuene sores for the squares A, B,C, and the intermediate squares p and q, as well as for the onnetion between thesquares (indiated by the arrows). Eah line modi�es the previous line (adding newvalues or hanging existing values). The �nal inuene, the sum of the preedingolumns, is shown in the last olumn. 170



InflueneTable[C;A℄ C ! q ! B ! p ! A inuenealternatives 1 0 2 0 0 0 4 0 0onnetion 1 1 2 1 0 1 4 1 0tunnel 1 1 2 1 0 0 4 1 0goal-skew 1 1 1 1 0 0 2 1 0 7InflueneTable[A;C℄ A ! p ! B ! q ! C inuenealternatives 2 0 4 0 0 0 1 0 1onnetion 2 1 4 1 0 1 1 2 1tunnel 2 0 4 1 0 0 1 2 1goal-skew 1 0 4 1 0 0 1 2 1 10Table C.2: Example Inuene CalulationC.4.2 Parameter SettingsTo reet di�erenes in mazes, the parameters infthreshold and m are set at thebeginning of the searh. The maximal inuene distane, infthreshold, is omputedas follows:1. Compute the average value for all entries InflueneTable[x; y℄ satisfying theondition that square y is on an optimal path from x to any goal.2. The average is too high. Sale it bak by dividing it by two.3. To ensure that the uts are not too aggressive, infthreshold is not allowed tobe less than 6.The length of the history used, m, is alulated as follows:1. Compute the average value for all entries InflueneTable[x; y℄ satisfying theondition that a stone on square y an be pushed to a goal (e.g. in Figure C.8,squares F and G would not be inluded).2. To ensure that the uts are not too aggressive, m is not allowed to be morethan 10.
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Appendix DFailed IdeasWe had no shortage of \good" ideas during the Sokoban projet, many of whih didnot produe the expeted results. This appendix ontains a olletion of the mostpromising of these ideas that we tried but did not lead to signi�ant improvements.Even though this might not be onsidered as a ontribution of the thesis (hene theloation in the appendix), it might prove valuable for the keen beginners in Sokobanto aution themselves.We have found disussions about Sokoban invariably leading into ertain dire-tions, suggesting things to try and ideas to pursue. Unfortunately, we then have topoint out that we have tried many of the suggested ideas with little or no suess.Some of the ideas are saving searh nodes, but ome at a ost that prohibits theiruse beause the overall runtime inreases. Other methods work, but only for so fewproblems that we did not want them inluded beause we were afraid they ould domore harm than good.Wherever possible, we try to identify the problems that need to be solved in orderto make some tehnique feasible. This, of ourse, is not neessarily a omplete list,other problems might exist that we are not aware of. The reader might also deteta sarasti tone in the desription of some of our attempts - unfortunately that iswhat often remains. After months of design, implementation, tuning and debugging,redesign, reimplementation and tuning and debugging again, and again, the insightsgained are often demoralizing in nature. The searh-tree size is one of these oneptswe still fail to appreiate ompletely. We are faed with suh an inredibly largesearh spae that searhing in it for solutions seems like the proverbial searh for the\needle in the haystak" - exept that we probably fae an even more daunting task.This appendix might therefore seem like a turno� to many, but it is not meant likethat. We are onvined that a publi reord of \ideas that failed" is needed, not justfor projets like Sokoban, but for Computing Siene in general. This appendix is anattempt to start suh a reord for the domain of Sokoban and single-agent searh.It might help to spark and/or further the disussion into the merits of these ideasin general, ultimately possibly leading to interesting publiations in their own right.The potential bene�ts are manifold and not restrited to avoiding dupliated e�orts,but inlude fousing future researh, improving experimental work and inreasing theommuniation on hard problems. 172



Idea Efficient ImplementationConcrete Algorithmic RepresentationHard ConceptsFigure D.1: Development Chain of SuessWhy is it so hard to make an idea work? Figure D.1 shows what it takes for usto onsider an idea a suess. We need to make three ritial transitions.1. We need to take the idea that was oneived (and often has a vague nature) andform hard onepts around it. It is often easy to utter fuzzy ideas, but the mo-ment one has to be more onrete, it is muh more ompliated to apture whatwas meant when one was thinking about it. For example, what do you meanwith \avoid diÆult stone on�gurations"? Maybe the onept of rowding ismore onrete: \Many stones in a restrited area must be avoided."2. The seond step is to develop a onrete algorithm that represents an idea.How an a hard onept be put into a onrete algorithm? For example, howan rowding be alulated in a Sokoban maze? What is \many stones" for a\restrited area" and what does it mean to \avoid" suh situation in the searh:utting them o�, or postponing them?3. Assuming we haven't failed so far, now we have to �nd a way to implement thealgorithm eÆiently. Saving 50% of the nodes is not good enough if eah nodesearhed beomes 10 times more expensive.Often, even though all three hurdles were passed suessfully, one �nds out thata ertain idea is redundant with another idea already present in the solver and onlysmall additional gains are possible. This is espeially prevalent in high-performanesolvers that are very eÆient already: improving on their performane is often in-redibly hallenging.Worse are interating features. Even though the new searh enhanement workslike a harm, it hinders another one and they onit in suh a way that the overallperformane drops.We have also seen what we all logial bugs. After developing and implementingan idea, thorough testing might reveal that pathologial ases or exeptions exist. Tohandle those exeptions well is often the di�erene between failure and suess of amethod.And then there are implementation errors - or bugs for short...We have enountered all these problems{and more{while working on the Sokobanprojet. The following list of failed ideas provides some insight into our e�orts intakling the \Go of single-agent searh": Sokoban. We fous here on the desription ofthe high-level ideas that failed. Many ideas took weeks of e�ort to onvine ourselvesof their futility.
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Figure D.2: A Problem Where Bakward Searh WinsD.1 Means End AnalysisEven before we started seriously thinking about exhaustive searh, we invested sev-eral weeks in trying to make Means End Analysis (MEA) work. The problem weenountered is how to restrit and order all the possible hoies of moves. Interatingsubgoals do not allow for easy ordering of the hoies. A lot of domain knowledgewould be needed to solve this problem using MEA.D.2 Bakward SearhAs already pointed out in Chapter 2, there is nothing foring us to searh from theinitial position forward to �nd a goal state. We ould also start from a goal state andsearh bakwards. There are several problems we fae when implementing suh anapproah:� Multiple start states: Beause only the stone/goal loations are de�ned, theman an potentially be in di�erent plaes in the goal position. For push-optimalsolutions that is a small number, like 1 to usually not more than 4, but for move-optimal solutions this an be quite a bit more. Of ourse, that inreases thesearh-tree size.� We trade forward deadloks for bakward deadloks. Bakward deadloks areusually easier to detet; the man runs out of moves, beause it is \ompressing"its own spae. But, there are bakward deadloks that are just as hard to detetas forward deadloks. Those are the ones where the man ompresses an areaof the maze, but an esape to do other (futile) work, leaving a few stones ina loked position. We found with the pattern searhes a way to detet forwarddeadloks, but we would have to hange them to detet bakward deadloks.� Usually, goals are in goal areas (forward searhes), but when searhing bak-wards, they are sattered throughout the maze, making it hard to establishorders in whih you want to put stones in. Goal maros, one of our mostvaluable searh enhanements, are useless.We have a maze in whih our bakward searh beats our forward searh, but wehad to speially design it to get the e�et. Figure D.2 shows the maze. The forwardsearh needs 99,829 nodes to solve the maze; the bakward searh needs only 10,244.174



This omparison is not quite fair, sine the bakward searh is not using patternsearhes and thus does not reate their orresponding overhead, nor an it appreiateany bene�ts. However, turning o� pattern searhes in the forward searh is an evenbigger looser (364,006 nodes) against the bakward searh.The feature in the problem in Figure D.2 that makes this problem amenable tobakward searh is that the bakward searh detets early on (high up in the searhtree) that an extra move is needed to get all the stones out of the goal area. Theforward searh detets this only deep in the searh, resulting in a muh larger searhtree before it swithes into the seond iteration at whih point good move orderingresults in a quik suessful termination of the searh.However, in general, the bakward searhes were muh larger than the forwardsearhes, mostly beause of the lost opportunity to apply the goal maros.D.3 Bidiretional SearhLet's assume we solve the problems with the bakward searh. We ould ombineforward and bakward searh to form a bidiretional approah. When using iterativedeepening for forward and bakward searhes, one an easily alternate both diretions.Sine both diretions an have di�erent searh-tree sizes, it seems natural to exploitthis fat. We tried to deepen the searh diretion that had a smaller tree in theprevious iteration.The general idea is the following: Let's say the lower-bound funtion estimates thelength of a solution (distane to the goal from the root node) to be D. We an startthe forward searh using normal IDA* and give it an additional hard depth limit of,say, X � D. Then we start the bakward searh and give it an additional depth limitof D�X. If there was a solution with length D, then the searh frontiers should meetat depths X and D�X. If the frontiers did not meet, no solution exists with lengthD. Consequently, we inrease the target solution length and start either a forward ora bakward searh, now with inreased threshold D and inreased additional depthlimit X or D � X. If of the two initial searhes the forward searh had the smallertree, it is probably a good idea to use forward searh for the next step.However, the meeting of the searh frontiers is still the most important problem.Traditionally, this is regarded as the main drawbak of bidiretional searh. Thetrouble is that the searh frontiers an be so large that one needs lots of memory tostore them. We hanged the transposition table ode to detet that, but the likelihoodof overwriting entries is high. Table replaement shemes usually prefer entries fromdeep searhes, and shallow entries are thrown away. We hanged that to save thefrontier nodes from lobbering. Then, the table is ooded with all the frontier nodes.X is an important variable here. Setting X to about half of the solution lengthwill keep both trees about the same size, maximizing the theoretial savings of bidi-retional searh. Using X biased towards utting one searh shorter than the otherwill keep at least one searh frontier small, allowing it to be stored with pratialamounts of memory.We faed two major problems with our implementation. The �rst was prediting175



whih diretion was more pro�table to searh. The previous searh sizes are only aweak preditor of the size of the next iteration, beause iterations grow rather errat-ially. Seond, what should X be set to? We tried an iterative approah, inreasingX for the bakward searh for the same threshold D, but that is not ost e�etivebeause large portions of the tree are re-searhed.Future diretions might inlude searhing both diretions unbounded, assumingthat the �rst iterations will fail to make the frontiers meet, and to reord how deeplythey penetrated the tree to make a more informed deision as to whih searh diretionto grow next and where to set the depth limit. It beomes obvious here how importantontrol funtions are. They ould ontrol the setting ofX andD and swith the searhdiretions, basially ontrolling the searh using information gathered by previoussearhes.D.4 Real-Time SearhThe searh now spends all its alloated time to �nd a solution. What if we had toontrol a robot that had to move every n seonds? If n is small enough, suh thatwe annot �nd a omplete solution, we have to ommit to a move without knowingif that move leads to a solution. Muh worse, and unique to domains with diretedsearh spaes suh as Sokoban, by making a move, we might introdue a deadlokand thus never be able to solve the problem.Our attempt at real-time searh tried to minimize the risk of being trapped in adeadlok by exeuting the following steps:1. Spend about 25% of the alloated time to order moves by small searhes andusing the searh results to estimate whih move is best. If, by hane, we �nda solution, we are done, the rest of the problem is easy. Else, go to step 2.2. Chek if the urrently best move is reversible (use 25% of e�ort). If the bestmove is reversible, go to step 4. Else, go to step 3.3. Chek if we an �nd a deadlok (use 25% of e�ort). If so, goto step 1. Else, goto step 4.4. Exeute best move. Go to step 1 to �nd next move.The last 25% are \banked" for the ases when we have to return to step 1 beausea deadlok was found in step 3. This proedure usually gets aught in a loop, beauseit �nds reversible moves attrative. Some measure of progress is needed to guide thereal-time searh. Otherwise the threat of deadlok fores the program into a \safe",but unprodutive hoie.D.5 General Pattern DatabasesAfter a searh �nishes, the patterns found by the pattern searhes are just forgotten.We implemented a sheme where these patterns are saved and then reused in later,176



di�erent mazes.We restrited the patterns saved to areas of size 6x6 and �ltered all patternsto remove \loose" walls. These are walls that, when removing the ontext outsidethe 6x6 area, are not onneted to any other wall and do not neighbor any stone.The resulting patterns are then appended to a dynamially growing database of suhpatterns. When starting a searh, all patterns are mathed in all possible ways inthe maze (rotating, mirroring) and veri�ed by a small searh to make sure that thepenalties still hold in the new maze. The approved patterns are then entered into thedatabase.The overheads at the end and the beginning of the searhes are negligible. Eventhe veri�ation searhes, limited to 100 nodes eah, are fast. What kills this ap-proah is the pattern mathing overhead. Too many patterns are entered in theon-line database, and mathing during the searh slows the program down signi�-antly. Moreover, the mathing rate is small. The majority of the patterns are nevermathed and only ost overhead without eÆieny gain. That is a typial instane ofthe utility problem [Min88℄.After we abandoned this idea we implemented the pattern limits. With the patternlimits, this method might work better, but additional investigation is needed.D.6 Stone ReahabilityOne of the most exiting, but failed, ideas we pursued is the idea of stone reahabil-ity. This idea ame up in several serious disussions with interested people and wassuggested in slightly di�erent variations. Don Beal alled it roaming, Bart Masseyalls them equivalene lasses, Neil Burh's version was named stone reah and DaveGombo suggested it as anonial form.The idea is roughly the following: Keep pushing a stone until the reahability ofother stones is e�eted. Reahability of stones is de�ned as the squares the man anpush stones to without pushing other stones in between. Alternatively, one an thinkof it as the area in whih a stone an be pushed around reversibly.The idea is that one ould reate pseudo maro moves: as long as no stone reah-abilities are hanged, keep pushing this stone and do not onsider any alternativepushes. However, Sokoban proves itself more diÆult than foreseen, again. There arefrequently ourring ases when this heuristi fails and trunates solutions. Seond-order reahability onsiderations are of importane. Often, by moving a stone to aertain square, stone reahability is hanged, but only if another stone is moved �rst.We all this shadowing. Moving stone A would hange the reahability of stone B,but stone C shadows (restrits) stone B's reahability suh that the e�et is not im-mediately visible. Only after removing stone C, one an now see that moving stoneA was indeed hanging stone B's reahability.We tried a two-step version of the initial idea. If the �rst-order stone reahabilitywas not e�eted, a seond test was performed. Now, all stones, exept the two inquestion (A and B in the previous example) are removed and it is determined if stoneA's move hanges stone B's reahability. If not, we an treat the sequene of moves of177



stone A as a maro. That works quite well, the searh trees get redued by about 50%,however, the ost of omputing stone reahability inreases the ost of omputationfor eah node by about 10 times! The net loss is about 5 times longer runtimes.The reader is autioned to assume this might be an implementation ineÆieny. Weredued the ost of naively omputing stone reahability by many lever enhanementsby at least one order of magnitude and loser examination reveals why this ost is sohigh. To ompute stone reahability, one has to ompute man reahability many timesover (at least around the stone to be pushed) and that is an expensive omputation(depth- or breadth-�rst searh).It is hard to aept the fat that a beautiful idea fails on something as trivialas omputation ost of a onstant fator. Unfortunately, high-performane problemsolvers annot onveniently ignore these onstants and thus, even nie ideas are of-ten retired after months of intense intelletual, programming, tuning and debugginge�orts. This is espeially frustrating beause one an never be sure when to stopthese e�orts. The brilliant idea might be just around the orner to save the method,or more realistially, one might �nd the bug that aused the implementation to fail.After all, admitting defeat also means giving up on a lot of e�ort spent.D.7 Super MarosAnother exiting idea we pursued was that of super maros. When a penalty searhfails to produe a pattern beause there are no more stones oniting with the urrentStonePath and ManPath, then this is a hint that the set of stones just onsidered anbe pushed to goals independently of other stones. In priniple, the penalty searh hasjust proven that there exists a solution for an independent subproblem in the maze:a set of stones.The knowledge about the independene of a subset of stones an be used to restritthe IDA* searh to this subset, until this entire subset of stones is pushed onto goals.Hene the name super maros. This idea was implemented and proven to work, butthe savings are small, usually less than 5%. We deided not to use it beause thereare a few problems with the above reasoning. Pattern searhes assume that a stoneis going to its losest goal. What if that assumption is wrong? We might not havean independent set of stones; the pattern searh ould be wrong. While we did notwitness suh adverse e�ets, the risk involved seemed too high to ignore ompared tothe possible savings.Why are the savings so small? These independent sets of stones are usually loseto the goal areas. Usually they are few stones and optimal solutions an be found forpushing them to goals. With our move ordering, IDA* will try these optimal moveslose to the goal area �rst anyways. If these moves lead to goal maros, the goal utsare already removing alternatives to these moves in ase no solution was found.Super maros are an example of an idea that is almost entirely subsumed by anarray of other searh enhanements, and adding it on top does not improve the searhany further. 178



D.8 ConlusionsTo put it into one sentene:Ideas are heap; making them work is expensive.Every one of the ideas desribed in this appendix is interesting, even promising.Most of the time, the reasons behind their failure are not obvious. Future researh,hopefully motivated by new insights, might �nd ways to turn some of these ideas intosuessful methods. However, it is unlikely to be easy to overome the problems weenountered.
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