
Automatic Making of Sokoban Problems

Yoshio MURASE

1

, Hitoshi MATSUBARA

2

and Yuzuru HIRAGA

1

1

University of Library and Information Science, 1-2 Kasuga, Tsukuba, Ibaraki, 305

JAPAN

2

Electrotechnical Laboratory,

1-1-4 Umezono, Tsukuba, Ibaraki, 305 JAPAN

Abstract. This paper describes our program that makes Sokoban prob-

lems automatically. Sokoban is one of one-person puzzles invented in

Japan. The program consists of three stages: generation, checking and

evaluation. First, candidates for problems are generated randomly by a

prototype and three templates . Second, unsolvable candidates are re-

moved by the Sokoban solver. Finally trivial or uninteresting candidates

are removed by the evaluator. The problems that the program made are

judged good by human experts. Creation of art by computer is an im-

portant target of Arti�cial Intelligence. Our work can be characterized

one of the attempts to create some arts by computers.

1 Introduction

This paper describes our program that makes Sokoban problems automatically.

Our program consists of three stages: generation, checking and evaluation. First,

candidates for problems are generated with a prototype and three templates

at random. Second, unsolvable candidates are removed by our Sokoban solver.

Finally trivial or uninteresting candidates are removed by our evaluator. The

problems that our program made are judged good by human experts. Creation

of art by computer is an important target of arti�cial intelligence. Our work can

be characterized one of the attempts to create some arts by computers.

2 Sokoban

Sokoban is one of one-person puzzles invented in Japan at 1982. Sokoban is

a Japanese word meaning a warehouse-keeper. The initial state of Fig.1 is an

example of a problem. A \warehouse" consists of \walls" and \passways". The

passway is a connected area of unit squares. A unit square can be occupied by

either \warehouse-keeper", an \object", or can be empty. A number of squares

(equally the number of objects) are designated as \goal areas". The objective of

the puzzle is to operate the warehouse-keeper to push all objects to goal areas

(see the goal state of Fig.1). In the later part of this paper we use the following

items:

{ : wall

{ : goal area

{ : object

{ : warehouse-keeper

{ : place where goal and object are overlapped

(a) Initial state (b) Intermediate state (c) Goal state

Fig. 1. An example of a Sokoban problem

There are two kinds of operations: MOVE and PUSH.

{ MOVE: move the keeper one step toward four directions on the passway: up,

down, right and left.

{ PUSH: move an object one step forward by making the keeper push it from

behind. The keeper can push only one object at a time.

While the rules are simple, the problems can get to be quite hard and inter-

esting. Sokoban problems [Thinking Rabbit 1982, 1989] is one of the bestseller

game softwares in Japan. Xsokoban[Myers 1995], a software of Sokoban on X-

Windows, is played worldwide (in more than 20 countries so far).

Making good (or artistic) and interesting problems is a matter of expertise.

Several human experts of Sokoban make good problems to be solved. Our ob-

jective is to make a program that makes good problems comparable to those of

human experts.

Our program consists of three stages: generation, checking and evaluation.

The latter sections describes these stages by showing an example. In this paper,

we �x the size of warehouse 8� 8 units and the number of objects to three. The

actual program is capable of making larger and more complex Sokoban problems.

3 Generation

In this stage Sokoban problems are generated.

A generator is expected to keep the following conditions:

1. generate original problems.

2. generate problems that have solutions.

3. generate interesting problems.

It is impossible to keep the conditions completely, but we can improve pos-

sibility that good problems are generated by implementing several devices.

The generation stage starts from a prototype (Fig.2 (a)). In the following

example we have chosen three templates (Fig.2 (b)).

Our program places the templates at random on the prototype. In the ex-

ample, the �rst template is at the upper-left (Fig.2 (c)), the second is placed

at the upper-right (Fig.2 (d)), and the third is placed at the lower-right (Fig.2

(e)).

The size of all templates shown in Fig.2 (b) is more than 2� 2. If we use

a template whose size is 1� 3, it is likely that a lot of uninteresting problems

will be generated. The position of the templates are chosen to overlap existing

passways, so the generated passway is guaranteed to be connected.

Next, goal areas are chosen on the passway. Areas to where the keeper cannot

push his object are marked GOAL AVOID (Fig.3 (a)). Goal areas are chosen

randomly avoiding GOAL AVOID (Fig.3 (b)).

Then objects are placed on the passway. A \dead end area" is an area in the

passway from which objects cannot be moved out of. Dead end must be removed

from the candidates of the initial positions of objects provided that there are no

goal areas within them.

Goal areas which are at corner are marked COR GOAL (Fig.3 (c)). On the

assumption that there is only one object, areas where the keeper can push the

object from each goal area are calculated (Fig. 4). The calculated areas are

marked GOAL RANGE.

The �rst object is placed on an area that is in GOAL RANGE areas and is not

in COR GOAL areas. New dead end areas (ADD AVOID areas) are calculated.

The second object is placed on an area that is in GOAL RANGE areas and is

not in COR GOAL and is not in ADD AVOID areas. New dead end areas are

calculated. These steps are iterated until all the objects are placed.

In this example setting of objects are done as Fig.5. Finally the warehouse-

keeper is placed on the passway at random. Fig.5 (f) is a generated problem in

this example.

(a) Prototype (b) Templates

(c) First template placed (d) Second template placed (e) Third template placed

Fig. 2. Outline generation

4 Checking

Some of the problems generated by our program are solvable (i.e. the warehouse-

keeper can push all the objects to the goal areas of the problem) while others

are not. Unsolvable problems are illegal and must be rejected. Ueno et al. built

an automatic Sokoban solver[Ueno, Nakayama and Hikita 1994]. which searches

a solution sequence by best-�rst search. So it can sometimes solve problems

that have long solution sequences, but it sometimes cannot solve problems that

have short solution sequences. The best-�rst search is not adequate for checking

solvability of generated problems. So we rewrote Ueno's solver into breadth-

�rst search version. Our solver cannot solve problems that have long solution

(a) GOAL AVOID

A

B

C

(b) Setting of goal areas (c) COR GOAL

Fig. 3. Setting of goal areas

sequences but it can solve all problems that have short solution sequences.

Our program check all the generated problems by the new solver. If the

new solver cannot solve a generated problem, it is removed from the candidate

list. In average about half of the generated problems are removed at this stage

(experimental data are shown later).

5 Evaluation

The remaining problems are all legal. But most of the problems are trivial and

uninteresting. The evaluation program evaluates artistic values of the remaining

problems. The evaluation criteria are:

1. length of solution sequence: if a problem has a very short solution sequence, it

is trivial and is rejected. when the length of a solution sequence of a problem

is less than seven, the problem is rejected.

2. the number of changes in directions of pushing in solution sequence: in inter-

esting problems the keeper has to change the directions of pushing objects

very often. if the number of the changes are less than four, it is trivial and

must be removed.

3. the number of detours in solution sequence: if a solution sequence of a prob-

lem has no detours, it is uninteresting and is rejected.

The above criteria removes trivial or uninteresting problems from the candi-

date lists. In average four �fths of the remaining problems are removed.

(a) For goal A (b) For goal B (c) For goal C

Fig. 4. Calculation of GOAL RANGE

6 Problems that our program made

In this section we show four problems that our program made (see Fig.6). From

the point of human experts' view, these problems have some artistic values.

We made experiments �ve hundred times with the prototype (Fig.2 (a)) and

the templates set (Fig.2 (b)). The results are shown in Table 1. The generation

stage failed seven times. About half of generated problems were unsolvable. Our

programs outputted 44 problems as good problems, but \real" good problems

which are evaluated good by human experts were fourteen out of them.

Table 1. Experimental data

of generation failures 7

of problems that have no solutions 245

solvable problems removed 204

outputted 44

of trials 500

real good problems 14

(a) Candidates for goal A (b) First object is placed (c) Candidates for goal B

(d) Second object is placed (e) Candidates for goal C

(f) Third object and the

keeper are placed

Fig. 5. Setting of the objects and the keeper

7 Concluding Remarks

We have built a program that makes Sokoban problems automatically [Murase 1996].

Some problems that our program made are judged good by human experts. Our

program, however, has several drawbacks. For example, our program cannot

make problems that have very long solution sequences. We have to revise our

program to get more complex problems.

(a) Good Problem 1 (b) Good Problem 2

(c) Good Problem 3 (d) Good Problem 4

Fig. 6. Good problems

References

[Thinking Rabbit 1982, 1989] ThinkingRabbit: Sokoban problems 1,2, perfect

(1982,1989)

[Myers 1995] A. Myers: XSokoban,

http://clef.lcs.mit.edu/ andru/xsokoban.html

(1995)

[Ueno, Nakayama and Hikita 1994] A.Ueno, K.Nakayama and T. Hikita: A program

that solves Sokoban problems (in Japanese), bit,

vol.26, no.12, pp.40-51 & vol.27, no.1, pp.92-100,

Kyoritsu-shuppan, Tokyo (1994)

[Murase 1996] Y. Murase: An attempt of automatic creation of

Sokoban problems (in Japanese), Bachelor Thesis

of University of Library and Information Science,

Tsukuba, Japan (1996)

This article was processed using the L

a

T

E

X macro package with LLNCS style

