
Theoretical Computer Science 252 (2001) 151–175
www.elsevier.com/locate/tcs

Sokoban: improving the search with relevance cuts(

Andreas Junghanns, Jonathan Schae�er ∗

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1

Abstract

Humans can e�ectively navigate through large search spaces, enabling them to solve problems
with daunting complexity. This is largely due to an ability to successfully distinguish between
relevant and irrelevant actions (moves). In this paper we present a new single-agent search
pruning technique that is based on a move’s in
uence. The in
uence measure is a crude form
of relevance in that it is used to di�erentiate between local (relevant) moves and non-local
(irrelevant) moves, with respect to the sequence of moves leading up to the current state. Our
pruning technique uses the m previous moves to decide if a move is relevant in the current
context and, if not, to cut it o�. This technique results in a large reduction in the search e�ort
required to solve Sokoban problems. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Single-agent search; Heuristic search; Sokoban; Local search; IDA∗

1. Introduction and Motivation

It is commonly acknowledged that the human’s ability to successfully navigate
through large search spaces is due to their meta-level reasoning [4]. The relevance of
di�erent actions when composing a plan is an important notion in that process. Each
next action is viewed as one logically following in a series of steps to accomplish a
(sub-)goal. An action judged as irrelevant is not considered.
When searching small search spaces, the computer’s speed at base-level reasoning

can e�ectively overcome the lack of meta-level reasoning by simply enumerating large
portions of the search space. However, it is easy to identify a problem that is simple
for a human to solve (using reasoning) but is exponentially large for a computer to

(This is a revised and enhanced version of an earlier paper A. Junghanns, J. Schae�er, Relevance cuts:
localizing the search, in: H.J. van den Herik, H. Iida (Eds.), Computers and Games, Lecture Notes in
Computer Science, Vol. 1558, Springer, Berlin, 1999, pages 1–14.

∗ Corresponding author.
E-mail addresses: andreas@cs.ualberta.ca (A. Junghanns), jonathan@cs.ualberta.ca (J. Schae�er).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00080 -3

152 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

solve using standard search algorithms. We need to enhance computer algorithms to
be able to reason at the meta-level if they are to successfully tackle these larger search
tasks. In the world of computer games (two-player search), a number of meta-level
reasoning algorithmic enhancements are well known, such as null-move searches [5]
and futility cut-o�s [15]. For single-agent search, macro moves [11] are an example.
In this paper, we introduce relevance cuts, a meta-level reasoning enhancement for

single-agent search. The search is restricted in the way it chooses its next action. Only
actions that are relevant to previous actions can be performed, with a limited number
of exceptions being allowed. The exact de�nition of relevance is application-dependent.
Consider an artist drawing a picture of a wildlife scene. One way of drawing the

picture is to draw the bear, then the lake, then the mountains, and �nally the vegetation.
An alternate way is to draw a small part of the bear, then draw a part of the mountains,
draw a single plant, work on the bear again, another plant, maybe a bit of lake, etc.
The former corresponds to how a human would draw the picture: concentrate on an
identi�able component and work on it until a desired level of completeness has been
achieved. The latter corresponds to a typical computer method: the order in which the
lines are drawn does not matter, as long as the �nal result is achieved.
Unfortunately, most search algorithms do not follow the human example. At each

node in the search, the algorithm will consider all legal moves regardless of their
relevance to the preceding play. For example, in chess, consider a passed “a” pawn
and a passed “h” pawn. The human will analyze the sequence of moves to, say, push
the “a” pawn forward to queen. The computer will consider dubious (but legal) lines
such as push the “a” pawn one square, push the “h” pawn one square, push the “a”
pawn one square, etc. Clearly, considering alternatives like this is not cost-e�ective.
What is missing in the above examples is a notion of relevance. In the chess example,

having pushed the “a” pawn and then decided to push the “h” pawn, it seems silly
to now return to considering the “a” pawn. If it really was necessary to push the “a”
pawn a second time, why weren’t both “a” pawn moves considered before switching
to the “h” pawn? Usually this switching back and forth (or “ping-ponging”) does not
make sense but, of course, exceptions can be constructed.
In other well-studied single-agent search domains, such as the N-puzzle and Rubik’s

Cube, the notion of relevance is not important. In both these problems, the geographic
space of moves is limited, i.e. all legal moves in one position are “close” (or local)
to each other. For two-player games, the e�ect of a move may be global in scope and
therefore moves almost always in
uence each other (this is most prominent in Othello,
and less so in chess). In contrast, a move in the game of Go is almost always local.
In non-trivial, real-world problems, the geographic space might be large, allowing for
moves with local and non-local implications.
This paper introduces relevance cuts and demonstrates their e�ectiveness in the one-

player maze-solving puzzle of Sokoban. For Sokoban we use a new in
uence metric
that re
ects the structure of the maze. A move is considered relevant only if the
previous m moves in
uence it. The search is only allowed to make relevant moves
with respect to previous moves and only a limited number of exceptions are permitted.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 153

With these restrictions in place, the search is forced to spend its e�ort locally, since
random jumps within the search area are discouraged. In the meta-reasoning sense,
forcing the program to consider local moves is making it adopt a pseudo-plan; an
exception corresponds to a decision to change plans.
The search tree size, and thus the search e�ort expended in solving a problem,

depends on the depth of the search tree and the e�ective branching factor. Relevance
cuts aim at reducing the e�ective branching factor. For our Sokoban program Rolling
Stone, relevance cuts result in a large reduction of the search space. These reductions
are on top of an already highly e�cient searcher. 1 On a standard set of 90 test
problems, relevance cuts allow Rolling Stone to increase the number of problems it
can solve from 40 to 44. 2 Given that the problems increase exponentially in di�culty,
this relatively small increase in the number of problems solved represents a large
increase in search e�ciency.

2. Sokoban

Sokoban is a popular one-player computer game. The game originated in Japan, and
was apparently developed by Thinking Rabbit in 1982. The game’s appeal comes from
the simplicity of the rules and the intellectual challenge o�ered by deceptively easy
problems.
Fig. 1 shows a sample Sokoban problem, the easiest instance of the standard

90-problem suite available at http:==xsokoban.lcs.mit.edu=xsokoban.html. The playing
area consists of rooms and passageways, laid out on a rectangular grid of size 20× 20
or less. Littered throughout the playing area are stones (shown as circular discs) and
goals (shaded squares). There is a man whose job it is to move each stone to a goal
square. The man can only push one stone at a time and must push from behind the
stone. A square can only be occupied at any time by one of a wall, stone or man.
Getting all the stones to the goal squares can be quite challenging; doing this with the
minimum number of man moves and=or stone pushes is much more di�cult.
To refer to squares in a Sokoban problem, we use a coordinate notation. The hori-

zontal axis is labeled from “A” to “T”, and the vertical axis from “a” to “t” (assuming
the maximum sized 20 × 20 problems), starting in the upper left corner. A move
consists of pushing a stone from one square to another. For example, in Fig. 1 the
move Fh–Eh moves the stone on Fh left one square. We use Fh–Eh–Dh to indicate a
sequence of pushes of the same stone. A move is only legal if there is a valid path
by which the man can move behind the stone and push it. Thus, although we only
indicate stone moves (such as Fh–Eh), implicit in this is the man’s moves from its

1 Of course, “highly e�cient” here is meant in terms of a computer program. Humans shake their heads
in disbelief when they see some of the ridiculous lines of play considered in the search.
2 Subsequent to this work, our best Sokoban solver was improved and can now solve 57 problems [17].

154 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

Fig. 1. Sokoban problem 1 and a solution.

current position to the appropriate square to the stone push (for Fh–Eh the man would
have to move from Li to Gh via the squares Lh; Kh; Jh; Ih and Hh).
The solution given in Fig. 1 is optimal with respect to the number of stone pushes.

One could also solve the problem to identify the minimal number of man moves. In
general, a single solution does not minimize both metrics. In this work, we are trying
to minimize the number of stone pushes.
The standard 90 problems range from easy (such as problem 1 above) to di�cult (re-

quiring hundreds of stone pushes). A global score �le is maintained showing who has
solved which problems and how e�cient their solution is (also at http:==xsokoban.lcs.
mit.edu=xsokoban.html). Thus solving a problem is only part of the satisfaction; im-
proving on your solution is equally important. These human solutions also serve as
excellent upper bounds on optimal solution lengths.

2.1. The computational challenge of Sokoban

Single-agent search (A∗) has been extensively studied in the literature. There is
a plethora of enhancements to the basic algorithm, allowing the application devel-
oper to customize their implementation. The result is an impressive reduction in the
search e�ort required to solve challenging applications (see [12] for a recent exam-
ple). However, the applications used to illustrate the advances in single-agent search
e�ciency are “easy” in the sense that they have some (or all) of the following
properties:
1. e�ective, inexpensive lower-bound estimators,
2. small branching factor in the search tree,
3. moderate solution lengths, and
4. all moves are reversible.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 155

Sokoban is a di�cult problem domain for computers, and more challenging than
previously studied domains, because of the following reasons:
1. Sokoban has a complex lower-bound estimator (O(N 3), given N goals). Unfortu-
nately, even this expensive lower bound is not very e�ective. In other domains,
such as the sliding tile puzzles or Rubik’s Cube, a table lookup is often su�cient
to deliver a high-quality lower bound.

2. The branching factor for Sokoban is large and variable (potentially over 100),
whereas the 15-puzzle has an e�ective branching factor of roughly 2 and in Rubik’s
Cube it is less than 14 [12].

3. The solution to a Sokoban problem may be very long (some problems require over
600 moves to solve optimally). In contrast, the maximum solution length for the
15-puzzle is 80, while it is a mere 18 moves for Rubik’s Cube.

4. The search space complexity for Sokoban is O(1098) for problems restricted to a
20× 20 area. Since the 15-puzzle and Rubik’s Cube have both a smaller branching
factor and smaller solution lengths, their search space complexity is considerably
less (O(1013) and O(1019), respectively).

5. Sokoban problems require “sequential” solutions. Many of the subgoals interact,
making it di�cult to divide the problem into independent subgoals.

6. All moves are reversible in the 15-puzzle and Rubik’s Cube. This is not true in
Sokoban, where some moves are not (or not directly) reversible.
The graph underlying a Sokoban problem is directed, unlike the traditional single-

agent search applications which have undirected graphs. Furthermore, there are parts
of the graph that do not contain solutions. Both these properties are necessary and
su�cient conditions for the presence of deadlocks – states that have no solution. In
Fig. 1, pushing the stone Fh–Fg creates an unsolvable problem. It requires a non-trivial
analysis to verify this deadlock. This is a small example, since deadlock con�gurations
can be large and span the entire board. Identifying deadlock is critical to prevent futile
searching.
For sliding-tile puzzles, there are algorithms for generating non-optimal solutions.

In Sokoban, because of the presence of deadlock, often it is very di�cult to �nd any
solution.

2.2. Related work

Sokoban has been shown to be PSPACE-complete [1, 3]. Dor and Zwick show that
the game is an instance of a motion planning problem, and compare it to other motion
planning problems in the literature [3]. For example, Sokoban is similar to Wilfong’s
work with movable obstacles, where the man is allowed to hold on to the obstacle and
move with it, as if they were one object [16]. Sokoban can be compared to the problem
of having a robot in a warehouse move a number of speci�ed goods from their current
location to their �nal destination, subject to the topology of the warehouse and any ob-
stacles in the way. When viewed in this context, Sokoban is an excellent example of us-
ing a game as an experimental test-bed for mainstream research in arti�cial intelligence.

156 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

2.3. Rolling Stone

Our previous attempts to solve Sokoban problems using standard single-agent search
techniques are reported in [7]. There, using our program Rolling Stone, we compared
the di�erent techniques and their e�ect on search e�ciency. The following is a list of
the major components of our program.
IDA∗: Rolling Stone uses the iterative-deepening A∗ (IDA∗) search algorithm [10].

A∗ is potentially exponential in space. IDA∗ trades o� the space requirements for time.
A∗ and IDA∗ use an admissible lower bound on the distance from any state to the goal
state. IDA∗ iterates by searching for a solution of a particular length. If one is found,
the search is �nished. Otherwise, the solution length is incremented and the search
is repeated. The lower-bound estimator allows large portions of the search tree to be
eliminated by proving that a solution cannot be found in the requisite number of moves.
Lower bound: To obtain an admissible estimate of the distance of a position to

a goal, the Minimum-Cost, Perfect Bipartite Matching algorithm is used [13]. The
matching assigns each stone to a goal and returns the total (minimum) distance of all
stones to their goals. The algorithm is O(N 3) in the number of stones N . IDA∗ with
this lower bound cannot solve any of the test problems given one billion search nodes.
Transposition table: The search space of Sokoban is a graph, rather than a tree,

implying that repeated positions and cycles are possible. A transposition table was
implemented to avoid duplicate search e�ort. The transposition table maps positions
using the exact stone locations and equivalent man locations taking man reachability
into account. Using this enhancement can reduce the search tree size by several orders
of magnitude.
Move ordering: The program orders the children of a node based on their likelihood

of leading to a solution. Move ordering may reduce the search tree only in the last
iteration.
Deadlock table: Pattern databases [2] are a recent idea that has been used suc-

cessfully in domains like (N × N)-puzzles and Rubik’s Cube [12]. An o�-line search
enumerated all possible stone=wall placements in a 4 × 5 region and searched them
to determine if deadlock was present. These results were stored in deadlock tables.
During an IDA∗ search, the table is queried to see if the current move leads to a local
deadlock. Thus, deadlock tables contain search results of partial problem con�gura-
tions and are general with respect to all Sokoban problems. They reduce the e�ective
branching factor by eliminating moves that provably lead to local deadlocks.
Tunnel macros: A Sokoban maze often contains “tunnels” (such as the squares

Kh; Lh; Mh and Nh in Fig. 1). Once a stone is pushed into a tunnel, it must eventually
be pushed all the way through. Rather than search to discover this over and over again,
this sequence of moves can be collapsed into a single macro move. By collapsing
several moves into one, the height of the search tree is reduced. Tunnel macros are
identi�ed by pre-processing.
Goal macros: Prior to starting the search, a preliminary search is used to �nd an

appropriate order in which to �ll in the goal squares. In many cases this is a non-trivial

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 157

computation, especially when the goal area(s) has several entrances. A specialized
search is used to avoid �ll sequences that lead to deadlocks in the goal area. The
knowledge about the goal area is then used to create goal macros, where stones are
pushed directly from the goal area entrance(s) to their �nal goal square avoiding dead-
locks. For example, in Fig. 1, square Gh is de�ned as the entrance to the goal area; once
a stone reaches it, a single macro move is used to push it to the next pre-determined
goal square. These macro moves signi�cantly reduce the search depth required to solve
problems and can dramatically reduce the search tree size. Whenever a goal macro
move is possible, it is the only move considered; all alternatives are forward pruned.
Goal cuts: Goal cuts e�ectively push the goal macros further up the search tree.

Whenever a stone can be pushed to a goal entrance square, none of the alternative
moves are considered. The idea behind these cuts is that if one is con�dent about
using macro moves, one might as well prune alternatives to pushing that stone further
up in the search tree.
Pattern search: Pattern searches [6] are an e�ective way to detect lower-bound

ine�ciencies. Small, localized con
ict-driven searches uncover patterns of stones that
interact in such a way that the lower-bound estimator is o� by an arbitrary amount (even
in�nite, in the case of a deadlock). These patterns are used throughout the search to
improve the lower bound. Patterns are speci�c to a particular problem instance and are
discovered on the
y using specialized searches. Patterns represent the knowledge about
dynamic stone interactions that lead to poor static lower bounds, and the associated
penalties are the corrective measures.

2.4. Conclusions

The net e�ect of combining all of the above enhancements results in 40 of the
90 problems being solved [6]. 3 Pattern searches are the most expensive component,
but also the most bene�cial. Although they can be enhanced and made more e�cient,
we concluded that this would still be inadequate to successfully solve all 90 Sokoban
test positions. Even with all the enhancements, and the cumulative improvements of
several orders of magnitude in search e�ciency, the search trees are still too deep and
the e�ective branching factor too high. Hence, we need to �nd further ways to improve
the search e�ciency.

3. Relevance cuts

Analyzing the trees built by an IDA∗ search quickly reveals that the search algorithm
considers move sequences that no human would ever consider. Even completely

3 Note that [6] reports slightly di�erent numbers than this paper, caused by subsequent re�nements to the
pattern searches and bug �xes.

158 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

unrelated moves are tested in every legal combination – all in an e�ort to prove
that there is no solution for the current threshold. How can a program mimic an
“understanding” of relevance? We suggest that a reasonable approximation of relevance
is in
uence. If two moves do not in
uence each other, then it is unlikely that they are
relevant to each other. If a program had a good “sense” of in
uence, it could assume
that in a given position all previous moves belong to a (unknown) plan of which a
continuation can only be a move that is relevant – in our approximation, is in
uencing
whatever was played previously.
A move is considered relevant only if the previous m moves in
uence it. The search

is only allowed to make relevant moves with respect to previous moves, and only a
few exceptions are permitted. With these restrictions in place, the search is forced to
spend its e�ort locally, since random jumps within the search area are discouraged. In
the meta-reasoning sense, forcing the program to consider local moves is making it
adopt a pseudo-plan; an exception corresponds to a decision to change plans.

3.1. In
uence

An in
uence metric can be achieved in di�erent, domain-speci�c ways. The following
shows one implementation for Sokoban. Even though the speci�cs are not necessarily
applicable to other domains, the basic philosophy of the approach is.
We approximate the in
uence of two moves on each other by the in
uence between

the move’s from squares. The in
uence between two squares is determined using the
notion of a “most in
uential path” between the squares. This can be thought of as a
least-cost path, except that in
uence is used as the cost metric.
When judging how two squares in a Sokoban maze in
uence each other, Euclidean

distance is not adequate. Taking the structure of the maze into account would lead to a
simple geographic distance which is not proportional to in
uence either. For example,
consider two squares connected by a tunnel; the squares are equally in
uencing each
other, no matter how long the tunnel is. Elongating the tunnel without changing the
general topology of the problem would change the geographic distance, but not the
in
uence.
The following is a list of properties we would like the in
uence measure to re
ect:
Alternatives: The more alternatives that exist on a path between two squares, the

less the squares in
uence each other. That is, squares in the middle of a room where
stones can go in all 4 directions should decrease in
uence more than squares in a
tunnel, where no alternatives exist. See Fig. 2 for an example. Squares A and B are
in
uencing one another less than squares C and D. There are many more possible
ways to get from A to B, whereas squares C and D are more restricted because they
are situated on a wall.
Goal-skew: For a given square sq, any squares on the optimal path from sq to a

goal should have stronger in
uence than squares o� the optimal path. For example, in
Fig. 3 square B is in
uenced by C more than it is by A. The location of the goals is
important.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 159

Fig. 2. The number of alternatives changes the in
uence.

Fig. 3. The location of the goals matters.

Fig. 4. Tunnels and in
uence.

Connection: Two neighboring squares connected such that a stone can move between
them should in
uence each other more than two squares connected such that only the
man can move between them. In Fig. 2, square A in
uences C less than C in
uences
A, because stones can only move towards C, and not towards A.
Tunnel: In a tunnel, in
uence remains the same: It does not matter how long the

tunnel is (one could, for example, collapse a tunnel into one square). Fig. 4 shows
such an example: two problem mazes that are identical, except for the length of the
tunnel. In
uence values should not change because of the length of the tunnel.
Our implementation of relevance cuts uses small o�-line searches to statically pre-

calculate a (20×20)× (20×20) table (In
uenceTable) containing the in
uence values
for each square of the maze to every other square in the maze. Between every pair
of squares, a breadth-�rst search is used to �nd the path(s) with the largest in
uence.
The algorithm is similar to a shortest-path �nding algorithm, except that we are using
in
uence here and not geographic distance. The smaller the in
uence number, the more
two squares in
uence each other.
Note that in
uence is not necessarily symmetric

In
uenceTable[a; b] 6= In
uenceTable[b; a]:

160 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

A square close to a goal in
uences squares further away more than it is in
uenced by
them. Furthermore, In
uenceTable[a; a] is not necessarily 0. A square in the middle
of a room will be less in
uenced by each of its many neighbors than a square in a
tunnel. To re
ect that, squares in the middle of a room receive a larger bias than more
restricted squares.
Our approach is quite simple and can undoubtably be improved. For example, in-

uence is statically computed. A dynamic measure, one that takes into account the
current positions of the stones, would be more e�ective.
Our implementation runs a shortest-path �nding algorithm to �nd the largest in
uence

between any pair of squares. The �rst is referred to as the start square; the second as
the destination square. Each square on a path between the start and destination squares
contributes points depending on how it in
uences that path. The more points associated
with a pair of squares, the less the squares in
uence each other. The exact numbers
used to calculate in
uence are the following:
Alternatives: A square s on a path will have two neighboring squares that are not

on the path. For each of the neighboring squares, n, the following points are added:
2 points if it is possible to push a stone (if present) from s to n; 1 point if it is only
possible to move a man from s to n; and 0 if n is a wall. Thus, the maximum number
of points that one square can contribute for alternatives is 4.
Goal-skew: However, if s is on an optimal path from the start square to any of the

goals in the maze, then the alternatives points are divided by two.
Connection: The connection between consecutive squares along a path is used to

modify the in
uence. If a stone can be pushed in the direction of the destination
square, then 1 point is added. If only the man can traverse the connection between the
squares (moving towards the destination square), then 2 points are added.
Tunnel: If the previous square on a path is in a tunnel, 0 points are added, regardless

of the above properties.
Fig. 5 is used to illustrate in
uence. For a subset of squares in the �gure, Table 1

shows the in
uence numbers. In this example, the program automatically determines

Fig. 5. Example squares.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 161

Table 1
Example in
uence values

A B C D E F G H I J K L M N O

A 1 6 10 18 19 21 13 17 17 24 12 12 10 18 16
B 4 1 5 13 14 18 8 16 16 22 10 11 9 17 15
C 7 4 1 9 10 15 9 15 15 25 13 14 12 20 18
D 11 8 5 3 9 14 12 14 14 29 17 18 16 24 22
E 13 10 7 7 2 7 9 7 7 26 19 12 14 18 20
F 23 19 17 18 10 2 13 6 6 25 34 11 13 17 19
G 12 7 9 15 14 11 1 15 15 34 23 19 17 25 23
H 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8
I 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8
J 16 16 20 27 19 15 23 11 11 1 10 11 12 11 14
K 10 10 14 22 23 26 17 22 22 16 1 17 15 23 21
L 8 8 12 20 14 10 15 6 6 21 14 1 2 7 8
M 7 7 11 19 16 12 14 8 8 23 13 3 1 9 7
N 12 12 16 24 18 14 19 10 10 16 18 5 6 3 6
O 11 11 15 23 20 16 18 12 12 18 17 7 5 8 3

Table 2
Example in
uence calculation

In
uenceTable[C; A] C → q → B → p → A In
uence

Alternatives 1 0 2 0 0 0 4 0 0
Connection 1 1 2 1 0 1 4 1 0
Tunnel 1 1 2 1 0 0 4 1 0
Goal-skew 1 1 1 1 0 0 2 1 0 7

In
uenceTable[A; C] A → p → B → q → C In
uence
Alternatives 2 0 4 0 0 0 1 0 1
Connection 2 1 4 1 0 1 1 2 1
Tunnel 2 0 4 1 0 0 1 2 1
Goal-skew 1 0 4 1 0 0 1 2 1 10

that an in
uence relationship ¿8 implies that two squares are distant with respect to
each other. How this threshold is determined is described in the next section.
In this example, square A is in
uencing squares B and C. However, only B is

in
uencing A (the non-symmetric property). The table shows that there are several
regions with high locality, whereas most of the entries indicate non-local relationships.
Given the high percentage of non-local entries in the table, one might expect relevance
cuts to eliminate most of the search tree. This is not quite true, in that a sequence of
local moves can result in the start and end squares of the move sequence not being
local with respect to each other.
Consider calculating the in
uence between squares A and C, as well as C and A

(see Table 2). The table entries correspond to the contribution of each of the in
u-
ence properties. The table indicates the in
uence scores for squares A; B; C, and the

162 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

intermediate squares p and q, as well as for the connection between the squares (in-
dicated by the arrows). Each line modi�es the previous line (adding new values or
changing existing values). The �nal in
uence, the sum of the preceding columns, is
shown in the last column.

3.2. Relevance cut rules

Given the above in
uence measure, we can now proceed to explain how to use that
information to cut down on the number of moves considered in each position. To do
this, we need to de�ne distant moves. Given two moves, m1 and m2, move m2 is said
to be distant with respect to move m1 if the from squares of the moves (m1:from and
m2:from) do not in
uence each other. More precisely, two moves in
uence each other
if

In
uenceTable[m1:from;m2:from]¡= infthreshold ;

where infthreshold is a tunable threshold.
Relevance cuts eliminate some moves that are distant from the previous moves played

(i.e. do not in
uence), and therefore are considered not relevant to the search. There
are two ways that a move can be cut o�:
1. If within the last m moves more than k distant moves were made. This cut will
discourage arbitrary switches between non-related areas of the maze.

2. A move that is distant with respect to the previous move, but not distant to a move
in the past m moves. This will not allow switches back into an area previously
worked on and abandoned just brie
y.
In our experiments, we set k to 1. This way, the �rst cut criterion will entail the

second.
To re
ect di�erences in mazes, the parameters infthreshold and m are set at the

beginning of the search. The maximal in
uence distance, infthreshold, is computed as
follows:
1. Compute the average value for all entries In
uenceTable[x; y] satisfying the condi-
tion that square y is on an optimal path from x to any goal.

2. The average is too high. Scale it back by dividing it by two.
3. To ensure that the cuts are not too aggressive, infthreshold is not allowed to be less
than 6.

The length of history used, m, is calculated as follows:
1. Compute the average value for all entries In
uenceTable[x; y] satisfying the condi-
tion that a stone on square y can be pushed to a goal (e.g. in Fig. 5, squares F
and G would not be included).

2. To ensure that the cuts are not too aggressive, m is not allowed to be more than
10.
By varying infthreshold and m in the de�nition of relevance, the cutting in the search

tree can be made more or less aggressive. The desired aggressiveness is application
dependent, and should be chosen relative to the quality of the relevance metric used.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 163

3.3. Example

Fig. 6 shows an example where humans immediately identify that solving this prob-
lem involves considering two separate sub-problems. The solution to the left and right
sides of the problem are completely independent of each other. An optimal solution
needs 82 moves; Rolling Stone’s lower bound estimator returns a value of 70. Standard
IDA∗ will need 7 iterations to �nd a solution (our lower-bound estimator preserves the
odd=even parity of the solution length, meaning it iterates by 2 at a time). IDA∗ will
try every possible (legal) move combination, intermixing moves from both sides of the
problem. This way IDA∗ proves for each of the �rst 6 iterations (i=0::5) that the prob-
lem cannot be solved with 70 + 2 ∗ i moves, regardless of the order of the considered
moves. Clearly, this is unnecessary and ine�cient. Solving one of the sub-problems
requires only 4 iterations, since the lower bound is o� by only 6. Considering this
position as two separate problems will result in an enormous reduction in the search
complexity.
Our implementation considers all moves on the left side as distant from those on

the right, and vice versa. This way only a limited number of switches is considered
during the search. Our parameter settings allow for only one non-local move per 9-
move sequence. For this contrived problem, relevance cuts decrease the number of
nodes searched from 32,803 nodes to 24,748 nodes while still returning an optimal
solution (the pattern searches were turned o� for simplicity). The savings (25%) ap-
pear relatively small because the transposition table catches repeated positions (many
of which may be the result of irrelevant moves) and eliminates them from the search.
Although the relevance cuts provide a welcome reduction in the search e�ort required,
it is only a small step towards achieving all the possible savings. For example, each
of the sub-problems can be solved by itself in only 329 nodes! The di�erence be-
tween 329 × 2 and 32,803 illustrates why IDA∗ in its current form is inadequate for
solving large, non-trivial real-world problems. Clearly, more sophisticated methods are
needed.

Fig. 6. Example maze with locality.

164 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

3.4. Discussion

Further re�nement of the parameters used are certainly possible and necessary if the
full potential of relevance cuts is to be achieved. Some ideas with regards to this issue
will be discussed in Section 6.
The overhead of the relevance cuts is negligible, at least for our current implemen-

tation. The in
uence of two moves can be established by a simple table lookup. This
is in stark contrast to our pattern searches, where the overhead dominates the cost of
the search for most problems.

4. A closer look at relevance cuts

The goal of using relevance cuts is to reduce the search tree size. This is achieved
by eliminating legal moves from the search, thereby reducing the e�ective branching
factor of the tree. As with many other (unsafe) forward pruning techniques, this could
potentially remove solutions or postpone their discovery. Therefore, aggressive prun-
ing can increase the search e�ort by requiring additional search to �nd a non-pruned
solution. A solution could be found in the same IDA∗ iteration, or could result in an
additional iteration being started. A good heuristic for relevance is key to �nding the
right balance between tree reduction and the risk of eliminating solutions.

4.1. Relevance cuts in theory

To better understand the implications of relevance cuts, we will now try to apply
Korf’s theoretical model [12] to our algorithm. Section 5.2 discusses how well the
model predicts the practical performance of our algorithm.
The number of nodes considered in a standard IDA∗ search is given by the following

formula. This is a generalization of Korf’s result [12].

n ≈
d−1∑

i=h(root)

bi−e

︸ ︷︷ ︸
complete iterations

+
bd−e

1 + sd︸ ︷︷ ︸
last (partial) iteration

; (1)

where n is the total number of nodes, d is the length of optimal solutions, h(root) is
the heuristic value of the root node (¡=d), b is the e�ective branching factor, e is
the average heuristic value of the interior nodes in the tree, and sd is the number of
solutions with (optimal) length d.
In this formula, the variable depth search tree is approximated as a �xed depth tree.

With no lower bound information, h(position)= 0, the search tree would be of size
O(bd). An average lower bound of e reduces this exponent to d− e.
The �rst part of the formula represents the sum of the sizes of all the iterations that

have no solution in them. The second part is the size of the last iteration. It assumes
that the solutions are uniformly distributed throughout the leaf nodes. Thus, if there

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 165

is only one unique solution path, that solution will be found, on average, half way
through the search of the last (d) iteration.
Relevance cuts modify the equation in two ways. First, the iterations without solu-

tions are reduced in size. This is achieved by eliminating moves from consideration,
in e�ect reducing the branching factor. Second, there is the possibility that additional
search will be needed if the �rst solution happens to be eliminated by a relevance
cut. Thus, on iterations ¿= d the savings from the reduced branching factor can be
(partially) o�set by having to do extra work. If all solutions at depth d happen to be
cut o�, then at least one more iteration is required (and possibly more). Eq. (1) is
modi�ed to re
ect both ways that relevance cuts a�ect the search:

n≈
d−1∑

i=h(root)

(b− r(x))i−e

︸ ︷︷ ︸
complete iterations

+
d+a(x)−1∑
i=d

(b− r(x))i−e
︸ ︷︷ ︸
additional full iterations

+
(b− r(x))d+a(x)−e

1 + (1− p(x)) ∗ sd+a(x)︸ ︷︷ ︸
last (partial) iteration

(2)

≈
d+a(x)−1∑
i=h(root)

(b− r(x))i−e

︸ ︷︷ ︸
complete iterations

+
(b− r(x))d+a(x)−e

1 + (1− p(x)) ∗ sd+a(x)︸ ︷︷ ︸
last (partial) iteration

; (3)

where x is the aggressiveness of the cuts (in our relevance metric, this corresponds
to changing m or infthreshold), r(x) is the average branching factor reduction as a
function of the aggressiveness, and p(x) is the probability that a solution is cut from
the search tree, assuming these probabilities are independent. a(x) is the expected
number of additional iterations, and it depends on the aggressiveness of the relevance
cuts. Sd+a(x) is the number of solutions at depth d+ a(x).
The e�ectiveness of relevance cuts in reducing the search tree size depends solely on

the aggressiveness of the cuts, which controls the branching factor reduction and the
penalty incurred for missing a solution. Increasing the aggressiveness of the cuts will
decrease the number of nodes searched in the complete iterations (iterations ¡ d), but
will increase the risk of solutions being cut. When solutions are cut, not only can the
last iteration potentially grow, but we might actually introduce new iterations when all
the solutions contained in an iteration are pruned. Hence, relevance cuts can introduce
non-optimal solutions, or postpone discovery of the solution beyond the resource limits.
The performance tuning e�ort must therefore be directed towards �nding the right

balance between savings (reduced search tree size) and cost (the overhead of having
to search further than should be needed).

4.2. Randomizing relevance cuts

In a deterministic environment, where relevance cuts follow the exact same rules
for the same situation, the search will always cut out solutions that depend on a

166 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

maneuver mistakenly considered “irrelevant”. Given that relevance cuts will make mis-
takes (albeit, hopefully, at a very low rate), some mechanism must be introduced to
avoid worst-case scenarios, such as eliminating all solutions.
A solution is to introduce randomness into the relevance cut decision. If a branch is

to be pruned by a relevance cut, a random number can be generated to decide whether
to go ahead with the cut or not. The randomness re
ects our con�dence in the relevance
cuts. For example, the random decision can be used to approve 100% of all possible
relevance cuts (corresponding to the scheme outlined thus far, con�dent that not all
solutions will be eliminated), down to 0% (which implies no con�dence – relevance
cuts will never be used). Somewhere between these two extremes is a percentage of
cuts that balances the reductions in the search tree size with the overhead of postponing
when a solution is found.

5. Experimental results

Rolling Stone has been tested using the 90-problem test set using searches limited to
25,000,000 nodes. 4 Our previous best version of Rolling Stone was capable of solving
40 of the test problems within this tree size limit. With the addition of relevance cuts
(no random cutting), the number of problems solved has increased to 44. Table 3
shows a comparison of Rolling Stone with and without relevance cuts for each of
the 44 solved problems. For comparison purposes, the 4 extra problems solved with
relevance cuts had their non-relevance-cuts search continued beyond 25,000,000 nodes.
This resulted in 3 of the problems being solved, with the fourth problem’s search
curtailed at 100,000,000 nodes (#49). 5

For each program version in Table 3, the second column gives the number of IDA∗
iterations that the program took to solve the problem. Note that problems #9, #11, #21,
#46, #49 and #51 are now solved non-optimally, taking at least one iteration longer
than the program without relevance cuts. This con�rms the unsafe nature of the cuts.
However, since none of the problems solved before is lost and 4 more are solved within
the 25,000,000 node limit, the gamble paid o�. Long ago we abandoned our original
goal of obtaining optimal solutions to Sokoban problems. The size of the search space
dictates radical pruning measures if we want to have any chance of solving some of
the tougher problems.

4 Although this might seem like a small search, one should keep in mind that the Sokoban lower-bound
function is an O(N 3) algorithm. Instead of examining several million positions per second (as our imple-
mentation of the 15-puzzle can achieve), the program can only examine roughly 10,000 positions per second
on a Silicon Graphics Origin 2000 with a 195 MHz processor. The node counts given are total nodes. In
our previous papers, we break this number down into top-level and pattern search nodes [6].
5 Subsequent runs have been to 300,000,000 nodes without �nding a solution. This information is not

included in Table 3 since it skews the sums even more than they are already.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 167

Table 3
Experimental data

Without relevance cuts With relevance cuts

No. Total nodes No. Iterations Total nodes No. Iterations

1 270 2 270 2
2 3251 2 2764 2
3 10,486 2 10,395 2
4 10,556 1 10,554 1
5 121,502 3 152,082 3
6 1593 3 1574 3
7 156,334 5 68,202 5
8 3,066,098 6 1,806,540 6
9 234,454 5 307,006 8
10 16,678,800 4 6,815,512 4
11 49,087,621 18 6,759,590 19
17 14,891 7 14,740 7
19 17,829,863 9 1,814,505 9
21 765,392 9 970,776 10
34 24,109,262 9 4,495,028 9
38 844,882 42 748,024 42
40 37,346,264 8 6,239,163 8
43 2,270,703 8 1,215,022 8
45 14,646,623 9 5,059,596 9
46 44,535,166 13 20,121,052 15
49 ¿ 100; 000; 000 11 3,047,672 13
51 2611 1 18,368 2
53 3737 1 3740 1
54 4,381,171 9 3,884,844 9
55 3,194,830 3 1,349,908 3
56 34,429 6 31,388 6
57 1,084,732 5 797,766 5
60 116,103 3 24,403 3
62 71,578 5 46,534 5
63 197,922 3 390,422 3
64 3,900,639 10 652,857 10
65 12,971 5 12,971 5
67 2,177,787 13 2,103,866 13
68 2,651,559 11 355,306 11
70 15,003,603 3 1,949,842 3
72 43,260 5 72,647 5
73 247,816 3 292,799 3
78 809 1 783 1
79 4017 5 3512 5
80 15,513 1 48,220 1
81 40,806 4 29,698 4
82 181,571 5 97,406 5
83 15,423 1 13,106 1
84 521,068 4 443,508 4

¿ 345; 637; 966 72,283,961

168 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

Fig. 7. The e�ect of relevance cuts.

Of the 4 new problems solved, #49 is of interest. Without relevance cuts, Rolling
Stone is in its 11th IDA∗ iteration when the extended limit of 100,000,000 nodes
is reached. We know from human solutions that solutions can be found in the 11th
iteration. Relevance cuts allow Rolling Stone to �nd a solution using only 3,047,672
total nodes, but the search needs 13 iterations, producing a non-optimal solution.
Table 3 shows that relevance cuts improve search e�ciency by a factor of 5. This

is a lower bound. Clearly, the numbers are dominated by problem #49. If the node
counts for #49 are ignored, then the savings are roughly a factor of 3.5.
Comparing node numbers of individual searches is di�cult because of many volatile

factors in the search. For example, a relevance cut might eliminate a branch from the
search justi�ably. However, by doing so a pattern search may now not be done that
could have uncovered valuable information that might have been useful for reducing
the search in other parts of the tree. Problem #80 is one such example: despite the
relevance cuts the node count goes up from 15,513 to 48,220; an important discovery
was not made and the rest of the search increases. However, the overall trend is in
favor of the relevance cuts. An excellent example is problem #19: the node count is
cut by roughly a factor of 10.
In Fig. 7, the amount of e�ort to solve a problem, with and without relevance cuts,

is plotted. The numbers from Table 3 are used, sorted by the number of nodes searched
by the version without relevance cuts. The �gure shows that the exponential growth
in di�culty with each additional problem solved is being dampened by relevance cuts,
allowing for more problems being solved with the same search constraints. For the 25
“easiest” problems, there is very little di�erence in e�ort required; the relevance cuts
do not save signi�cant portions of small search trees. However, as the searches become
larger, the success of relevance cuts gets more pronounced.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 169

Fig. 8. Relevance cuts savings.

5.1. Randomizing relevance cuts

The numbers presented so far deal with a version of a program that executes
100% of the relevance cuts. A version of Rolling Stone was instrumented to sim-
ulate the e�ects of di�erent degrees of randomization, varying from 0% (all rele-
vance cuts are ignored) to 100% (all relevance cuts are used). Thus, the level of,
say, 80% corresponds to randomly accepting 80% of the cuts, while rejecting 20%
of them.
Fig. 8 illustrates the search tree savings potential for relevance cuts. The graph

presents for various degrees of randomness (from 0% to 100% in 10% increments)
the percent of the search tree that can be saved by the relevance cuts. For each
search, the relative savings are plotted. Of the 44 solved problems, only searches
where the 0% entry required at least 10,000 nodes were included. The small search
trees (¡10; 000 nodes) were excluded from this and subsequent graphs, since these
trees tend to have very few opportunities for savings. For example, problem #1 is
already a paltry 270 nodes; there is neither need nor room for further improvement.
Each of the data points in a column corresponds to one of the 15 problems that passed
our �lter. The line represents the average of all the savings.
The �gure shows that roughly 80% of the search tree can be eliminated by relevance

cuts. Further, one need only perform 40% of the cuts to reduce the search by 70%.
Thus, even a small amount of cutting can translate into large savings. Keep in mind
that these numbers re
ect our implementation; di�erent implementations could do better
or worse than portrayed here.
To put this in perspective, one might suggest that the relevance cuts are just a fancy

way of randomly cutting branches in the search tree. An additional experiment was
performed where cutting was done randomly, in line with the frequency of relevance

170 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

cuts. The result was some savings for a small amount of cutting, but as the frequency
of cutting increased, so did the search tree sizes! By cutting randomly, more solution
paths were being eliminated from the search, increasing the likelihood of having to
search more iterations.
Eq. (3) essentially broke the relevance cuts search nodes into two components. The

�rst was the search e�ort required to reach the �rst solution. Clearly, relevance cuts
provably reduce this portion of the search since some branches are not explored. In
fact, Fig. 8 is portraying exactly these savings. However, these savings can be o�set
by the second component, the additional e�ort needed to �nd a non-cut-o� solution.
Of the 44 problems solved, 6 have non-optimal solutions. Hence, roughly 13% of

the problems are non-optimal. As stated earlier, solution quality is not a concern since,
given the di�culty of the problem domain, any solution is welcome. The signi�cance
of these non-optimal solutions is discussed in the next subsection.

5.2. Relevance cuts in theory revisited

Let’s revisit Eq. (3). These generic formulas contains several assumptions, some of
which are explicitly stated in [12], while others are implicit. In theory, we should be
able to use our experimental data to con�rm these equations. Of interest in Eq. (3) is
that the term

(b− r)d−e (4)

dominates the calculation. We know d (the optimal solution length), and we can mea-
sure b, r and e. Rolling Stone has been instrumented to measure these quantities.
Fig. 9 shows the average b and r for all 90 solved problems, sorted in order of

increasing b. These statistics were gathered at nodes in the search that were visited by

Fig. 9. Measuring b and r.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 171

both programs (one with relevance cuts; the other without). Searches were limited to
a maximum of 25 million nodes. In other words, nodes which were visited only by
the non-relevance cuts program were not averaged in. As can be seen, the reduction
in branching factor varies dramatically, depending on the problem.
Measuring e, the average heuristic value of the interior nodes in the tree, showed

little di�erence with=without relevance cuts.
Plugging d; e; b and r into Eq. (4) produced a large discrepancy between the

predicted tree size and the observed tree size. Since d is constant in both versions of
the program, and e is e�ectively a constant, the improvements of relevance cuts rests
solely on r, the reduction in the branching factor. However, in most cases the observed
savings are signi�cantly larger than the predicted savings.
Korf’s formula, which led to Eq. (3), has the implicit assumption that the branching

factor is relatively uniform throughout the tree. Certainly this was true for the sliding-
tile puzzle he was studying. But Sokoban has di�erent properties. In particular, the
branching factor can swing wildly from move to move. As well, our data shows that
the branching factor tends to be smaller near the root of the tree (too many obstacles in
the puzzle) and, as the problem simpli�es (log jams get cleared, stones get pushed to
their goal squares), the branching factor increases until near the end of the game when
there are few stones left to move. In addition, the data shows that the relevance cuts
tend to occur early in the search, rather than later. Hence, the majority of the savings
from relevance cuts come from the smaller branching factor b near the root of the
tree combined with a larger branch reduction. Korf’s formula only considers averages
over the entire tree, whereas any bias towards the root of the tree can produce larger
observed reductions.
The other component of Eq. (3) is the additional search e�ort required when

relevance cuts miss the �rst solution. Earlier, it was suggested that the probability
of searching an extra iteration was quite high (13%). This suggests that the rele-
vance cuts are being too extreme in their cutting. Rolling Stone was instrumented to
keep searching subtrees that would have been eliminated by a relevance cut to de-
termine if a solution path lay in that subtree. Fig. 10 shows that only about 0.2%
of the cuts eliminate a solution. Note that some problems have a relatively high
error rate; these results come from the problems that have small searches, where
the total number of cuts is small and a single error can skew the
percentages.
A relevance cut error rate of 0.2% might seem high. However, consider that these

cuts are done throughout the tree, including near the root. Given that a cut near the
root of the search will eliminate huge portions of the search space, and few of these
cuts eliminate any optimal solution, the cuts must be doing a good job of identifying
irrelevant portions of the search.
Infrequently eliminating solutions (0.2%) may seem important if there are few solu-

tions. In fact, our experience with Sokoban shows that there are many optimal solutions
for every problem. The number of solution paths grows exponentially with any addi-
tional search beyond the optimal solution length. For example, consider a d-ply optimal

172 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

Fig. 10. Percent of relevance cuts eliminating solutions.

solution. If we now consider solutions of length d+ 2, 6 then we can randomly insert
an irrelevant move (and its reverse move) into the solution path, giving O(d ∗ b) more
solution paths.
Eq. (3) assumes that the probability of a solution being cut is independent from any

other solution being cut. Unfortunately, that is a simplifying assumption that does not
hold for Sokoban. Since Sokoban problems have been composed to be challenging to
humans (and, inadvertently, computers as well), most problems in our test suite contain
speci�c maneuvers that are mandatory for all solutions. In other words, every solution
to some of the problems requires a speci�c sequence of moves to be made. We call
these maneuvers solution articulation sequences.
A solution articulation sequence is illustrated in Fig. 11. It shows the set of move

sequences that are solutions to the problem of getting from the start state to the goal
state. First, there are many possible sequences of moves (possibly even move transposi-
tions) until a speci�c maneuver is required. Then a �xed sequence of moves is required
(the solution articulation sequence). Having completed the sequence, then many dif-
ferent permutations of moves can be used to reach the goal(s). Note that a problem
may have multiple solution articulation sequences. As well, there may be classes of
solutions, with each class having a di�erent set of articulation sequences.
Relevance cuts use a sequence of moves (the past m moves) to decide whether

to curtail the search or not. If the moves forming the solution articulation sequence
happen to meet the criterion for a relevance cut, then it will be falsely considered

6 In general, this would be d + 1. However, since Sokoban solutions preserve odd/even parity, solutions
increase by two pushes at a time.

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 173

Fig. 11. Solution articulation sequence.

“irrelevant”. Consequently, many solution paths will be eliminated from the search.
One can construct a scenario by which all solutions could be removed from the search.
Solution articulation sequences illustrate that the assumed solution independence

property is, in fact, incorrect. Coming up with a realistic model is di�cult. The solu-
tions tend to be distributed in clusters. Many clusters of solutions are, essentially, the
same solution with minor di�erences (such as move transpositions or, for non-optimal
solutions, irrelevant moves added).
Although the number of optimal solutions appears high from our experiments,

relevance cuts are vulnerable to solution articulation sequences. Hence, a single cut
has the potential for eliminating all solutions. Randomization seems to be an e�ective
way of handling this problem.

5.3. Summary

Relevance cuts have been shown experimentally to result in large reductions in the
e�ort required to solve Sokoban problems. Given the exponentially increasing nature
of the search trees, solving an extra 4 problems represents a substantial improvement.
Although it would be nice to have a clean analytic model for Sokoban searches

that could be used to predict search e�ort, this is proving elusive. Although a model
for single-agent search exists [12], it is inadequate to handle the non-uniformity of
Sokoban. In the past, numerous analytic models for tree-searching algorithms have
appeared in the literature. They are all based on simplifying assumptions that make
the analysis tractable, but result in a model that mimics an arti�cial reality. Histori-
cally, these models correlate poorly with empirical data from real-world problems. An
interesting recent example from two-player search can be found in [14].

174 A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175

6. Conclusions and future work

Relevance cuts provide a crude approximation of human-like problem-solving meth-
ods by forcing the search to favor local moves over global moves. This simple idea
provides large reductions in the search tree size, at the expense of possibly returning a
longer solution. Given the breadth and depth of Sokoban search trees, �nding optimal
solutions is a secondary consideration; �nding any solution is challenging enough.
We have numerous ideas on how to improve the e�ectiveness of relevance cuts.

Some of them include:
– Use di�erent distances depending on crowding. If many stones are crowding an area,
it is likely that the relevant area is larger than it would be with fewer stones blocking
each other. Dynamic in
uence measures should be better than static approaches.

– There are several parameters used in the relevance cuts. The setting of those is al-
ready dependent on properties of the maze. These parameters are critical for the per-
formance of the cuts and are also largely responsible for increased solution lengths.
More research on these details is needed to fully exploit the possibilities relevance
cuts are o�ering.

– Using the analogy from Section 1, one could characterize Rolling Stone as “paint-
ing” locally but not yet painting in an “object oriented” way. If a
ower and the
bear are close, painting both at the same time is very likely. Better methods are
needed to further understand subgoals, rather than localizing by area.
Although relevance cuts introduce non-optimality, this is not an issue. Once humans

solve a Sokoban problem, they have two choices: move on to another problem (they are
satis�ed with the result), or try and re-solve the same problem to get a better solution.
Rolling Stone could try something similar. Having solved the problem once, if we
want a better solution, we can reduce the probability of introducing non-optimality in
the search by decreasing the aggressiveness of the relevance cuts. This will make the
searches larger but, on the other hand, the last iteration does not have to be searched,
since a solution for that threshold was already found.
Relevance cuts are yet another way to signi�cantly prune Sokoban search trees. We

have no shortage of promising ideas, each of which potentially o�ers another order
of magnitude reduction in the search tree size. Although this sounds impressive, our
experience suggests that each factor of 10 improvement seems to only yield another 4
or 5 problems being solved. At this rate, we will have to do a lot of research if we
want to successfully solve all 90 problems!

Acknowledgements

This research has been supported by the Killam Foundation and the Natural Sciences
and Engineering Research Council of Canada (NSERC). Computational resources were
provided by the Multimedia Advanced Computational Infrastructure initiative (MACI).

A. Junghanns, J. Schae�er / Theoretical Computer Science 252 (2001) 151–175 175

References

[1] J. Culberson, Sokoban is PSPACE-complete, Technical report TR97-02, Department of Computing
Science, University of Alberta, Edmonton, Alberta, Canada, 1997, ftp.cs.ualberta.ca=pub=TechReports=
1997=TR97-02.

[2] J. Culberson, J. Schae�er, Searching with pattern databases, in: G. McCalla (Ed.), A1’96 Advances in
Arti�cial Intelliegnce, Springer, Berlin, 1996, pp. 402–416.

[3] A. Dor, U. Zwick, SOKOBAN and other motion planning problems, 1995, at: http:=www.math.tau.ac.il=
∼ ddorit.

[4] M. Ginsberg, Essentials in Arti�cal Intelligence, Morgan Kaufman, San Francisco, 1993.
[5] G. Goetsch, M.S. Campbell, Experiments with the null-move heuristic, in: T.A. Marsland, J. Schae�er

(Eds.), Computers, Chess, and Cognition, Springer, New York, 1990, pp. 159–181.
[6] A. Junghanns, J. Schae�er, Single-agent search in the presence of deadlock, in: AAAI, Madison=WI,

USA, July 1998, pp. 419–424.
[7] A. Junghanns, J. Schae�er, Sokoban: evaluating standard single-agent search techniques in the presence

of deadlock, in: R. Mercer, E. Neufeld (Eds.), AI’98 Advances in Arti�cial Intelligence, Springer,
Berlin, 1998, pp. 1–15.

[8] A. Junghanns, J. Schae�er, Domain-dependent single-agent search enhancements, IJCAI, 1999,
pp. 570–575.

[9] A. Junghanns, J. Schae�er, Relevance cuts: localizing the search, in: H.J. van den Herik, H. Iida (Eds.),
Computers and Games, Lecture Notes in Computer Science, Vol. 1558, Springer, Berlin, 1999, pp. 1–14.

[10] R.E. Korf, Depth-�rst iterative-deepening: an optimal admissible tree search, Arti�cial Intelligence
27 (1) (1985) 97–109.

[11] R.E. Korf, Macro-operators: a weak method for learning, Arti�cal Intelligence 26 (1) (1985) 35–77.
[12] R.E. Korf, Finding optimal solutions to Rubik’s Cube using pattern database, AAAI, 1997, pp. 700–705.
[13] H.W. Kuhn, Extensive games and the problem of information, in: H.W. Kuhn, A.W. Tucker (Eds.),

Contributions to the Theory of Games, Vol. 2, Princton University Press, Princeton, 1953, pp. 193–296.
[14] A. Plaat, J. Schae�er, W. Pijls, A. de Bruin, Best-�rst �xed-depth minimax algorithms, Arti�cial

Intelligence 87 (1–2) (1996) 255–293.
[15] J. Schae�er, Experiments in search and knowledge, Ph.D. Thesis, University of Waterloo, Canada, 1986.
[16] G. Wilfong, Motion planning in the presence of movable obstacles, Fourth ACM Symp. on

Computational Geometry, 1988, p. 278–288.
[17] A. Junghanns, New Developments in Single-Agent Search, Ph.D. Thesis, University of Alberta, 1999.
[18] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quartz., (1995)

83–98.

