
Single-Agent Search in the Presence of Deadlocks

Andreas Junghanns, Jonathan Schaeffer
Department of Computing Science

University of Alberta
Edmonton, Alberta
CANADA T6G 2H1

Emaih {andreas, jonathan}@cs.ualberta.ca

Abstract

Single-agent search is a powerful tool for solving a va-
riety of applications. Most of the application domains
used to explore single-agent search techniques have the
property that if you start with a solvable state, at no
time in the search can you reach a state that is un-
solvable. In this paper we address the implications
that arise when state transitions can lead to unsolv-
able (deadlock) states. Deadlock states are partially
responsible for the failure of our attempts to solve po-
sitions in the game of Sokoban. In this paper, we in-
troduce pattern search, a real-time learning algorithm
that identifies the minimal conditions (pattern) nec-
essary for a deadlock, and applies that knowledge to
eliminate provably irrelevant parts of the search tree.
Identification of deadlock patterns is equivalent to cor-
recting the heuristic lower bound of a position to in-
finity. Generalizing pattern searches to find arbitrary
lower bound increases yields a powerful new search en-
hancement. In the game of Sokoban, pattern searches
result in a 15-fold reduction of the cost of each addi-
tional IDA* iteration.

Keywords: single agent search, heuristic search,
Sokoban, deadlocks, IDA*

Introduction

Single-agent search (A*) has been extensively studied
in the literature. There are a plethora of enhancements
to the basic algorithm that allows one to tailor the al-
gorithms to the problem domains to maximize program
performance. The result is an impressive reduction in
the search effort required to solve challenging applica-
tions (see (Korf 1997) for a recent example).
ever, the applications used to illustrate the advances
in single-agent search efficiency are "easy" in the sense
that they have some (or all) of the following properties:

1) effective, inexpensive lower-bound estimators,
2) small branching factor in the search tree, and
3) moderate solution lengths.

The sliding-tile puzzles are the best known examples
of these problems. Problem domains such as these also

Copyright 1998, American Association for Artificial In-
telligence (www.aaal.org). All rights reserved.

have the important property that given a solvable start-
ing state, every move preserves the solvability, but not
necessarily the optimality of the solution.

Sokoban is a popular one-player game. The rules
of the game are quite simple. Littered throughout
the playing area, consisting of rooms and passageways,
are stones (shown as circular discs) and goals (shaded
squares). There is a man whose job it is to move each
stone to a goal square. The man can only push one
stone at a time and must push from behind the stone.
A square can only be occupied by one of a wall, stone
or man at any time (Junghanns ~ Schaeffer 1998).

Since you cannot pull a stone, a single move can
transform the problem from being solvable to being un-
solvable. Many of these so-called deadlock states are
trivial to identify and avoid in the search. However
some require extensive analysis to prove their existence;
the search trees may be so large that they are essentially
unsolvable by traditional search methods.

Sokoban is a difficult domain for many reasons:

1) it has a complex lower-bound estimator
(O(n3), given n goals (Kuhn 1955)),

2) the branching factor is large and variable
(potentially over 100),

3) the solution may be very long (some problems re-
quire over 500 moves to solve optimally), and

4) some reachable states are unsolvable (deadlock).
For sliding-tile puzzles, there are algorithms for gener-
ating a non-optimal solution. In Sokoban, because of
the presence of deadlock, often it is very difficult to find
any solution.

Our previous attempts to solve Sokoban problems
using standard single-agent search techniques are re-
ported in (Junghanns & Schaeffer 1998). There, us-
ing our program Rolling Stone, we compare the dif-
ferent techniques and their usefulness with respect to
the search efficiency when solving Sokoban problems.
Even though each of the five standard single-agent
search enhancements we investigated resulted in signif-
icant improvements (often several orders of magnitude
in search-tree size reduction), at the time we were able
to only solve 20 problems of a 90-problem test suite
(http://xsokoban.lcs.mit.edu/xsokoban.html).

From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

We concluded that the standard techniques are in-
sufficient to make further progress in the domain of
Sokoban. Additional search enhancements are needed
to enable us to solve significantly more of the problems
from the test set. Since large portions of the search
are wasted searching problem configurations with dead-
locks present, we speculated that the detection of these
deadlocks could lead to significant efficiency gains. The
techniques suggested in this paper are a direct result of
those observations.

In this paper, we introduce a new search enhance-
ment that dynamically finds deadlocks and improved
lower bounds. Pattern search is a real-time learning
algorithm that identifies the minimal conditions nec-
essary for a deadlock, and applies that knowledge to
eliminate provably irrelevant parts of the search tree.
By devoting a portion of the search effort to learning
properties about the search space, the program trades
off search-tree size versus acquired knowledge. In the
game of Sokoban, the additional knowledge gained by
the pattern searches improves the program’s search effi-
ciency. The average growth rate of the tree is a factor of
15 times smaller per IDA* (Kerr 1985) iteration. This
results in 29 solved Sokoban problems, and significant
progress towards solving many more.

Pattern Searches
In general, establishing the presence of deadlock can be
quite involved. The deadlock may require as few as one
and as many as all the stones on the board. Proving
that a pattern of stones creates a deadlock will require
a search to verify that no possible solution path exists.
Ideally, having discovered a deadlock pattern, any state
containing that pattern will now be assigned the correct
lower bound of infinity.

This section describes our pattern searches. We de-
scribe how we prove the presence of deadlock by iden-
tifying that the properties needed to prevent deadlock
are not present. A pattern search results in a minimal
pattern which is saved and used throughout the search.
In effect, the program learns the deadlock patterns and
eliminates any search path leading to a position con-
taining a deadlock pattern.

A deadlock implies a lower bound of infinity. While
trying to prove/disprove a deadlock, we may be able
to show that our lower bound is too low. Even if a
deadlock is not present, we may uncover a pattern that
allows the search to improve its admissible lower bound.

Basic Idea
By definition, a deadlock is a configuration of stones
such that not all of the stones can reach a goal. If
we make a move A-B, we might introduce a deadlock.
If this deadlock was not present before the move, then
the moved stone, now on square B, must be part of that
pattern. This is the initial stone used for the pattern
search. The pattern search will perform small searches
with a subset of stones on the board to determine if a
deadlock was introduced.

PatternSearch(From, To)
clear TestMaze ;
set StonePath = {To};
for(i=l; i <= MAX~ATTERN..SIZE

AND NOT gffortLimitO; i++)
if(stone s on a square in StonePatla

add closest s to TestMaze
else if(stone s on a square in ManPath

add closest s to TestMaze
else break ;
solution = PIDA* (TestMaze, SolLength,

ManPath, StonePath)
/* Test for a deadlock */
if(solution --= NO AND NOT EffortLimit()

GeneralizeAndAddPattern(TestMaze, infty)
break ;

}
/* Test for a lower bound increase */
if(solution --= YES)

lb = LowerBound(TestMaze);
if(SolLength > lb

GeneralizeAndAddPat tern (Test~aze,
SolLength- lb);

}
}

}

Figure 1: Pseudo Code for Pattern Searches

In the following, we will refer to two different mazes:
the original maze, which is the maze with all the stones
at the position after the move, and the test maze which
will be used for the pattern searches.

A pattern search iterates on the number of stones
in the test maze. We start by putting only the stone
that was moved to B in the test maze. PIDA* (see
below) is called to solve this test maze. It either re-
turns in failure (no solution, hence deadlock), or
finds a solution. In the latter case, we are interested
in the set of squares that are used by the stones and
the man to effect the solution: the squares occupied by
the stones(s) on their path to the goal(s) (StonePath),
and the squares touched by the man while pushing the
stone(s) to a goal(s) (ManPath). In effect, these sets
squares are preconditions for the solution to work.

The ManPath and StonePath are used to determine
which stone from the original maze to include next in
the test maze. A stone in the original maze on a square
that is on one of the squares in ManPath or StonePath
conflicts with the solution. The stone in StonePath
closest to square B (the square the stone was moved to
in the original maze) is included next. If such a stone
does not exist, the stone on ManPath closest I to square
A is used. If none of those exists, the pattern search
returns without finding a deadlock.

After including the next stone, PIDA* is called again,

1 Closest is always with respect to the distance of either
the stone or the man to the conflicting stone. These distance
measures are possibly different due to the more restricted
movement of the stones.

ABCDEF GH I J ABCDEFGHI J

Figure 2: Deadlock example

returning with a solution determination and the two
conflict sets. If deadlock has not been found, then the
conflict sets are used to add another stone to the test
maze. If any of the returning searches indicates a longer
solution length than the lower bound estimate of the po-
sition, the current pattern is stored with a correspond-
ing lower-bound increase. Figure 1 shows the pseudo
code.

The notion of bit (stone) patterns is similar to the
Method of Analogies (Adelson-Velskiy, Arlazarov,
Donskoy 1975). Pattern searches are a conflict-driven
top-down proof of correctness, while the Method of
Analogies is a bottom-up heuristic approximation.

Example

Figure 2 shows a simple position, before and after the
move Gd-Fd. The question is whether this move in-
troduces a deadlock. Figure 3 shows how the test
maze is built. Since the last move ended up on square
Fd, the test maze is initialized with this single stone
(Figure 3a). A PIDA* search reveals a 5-move solu-
tion (Fd-Fc-Ec-Dc-Cc-Bc), and sets ManPath to the
squares needed by the man (Gd-Ge-Fe-Fd-Gd-Gc-Fc-
Ec-Dc-Cc), and StonePath to the squares used by the
stone (Fd-Fc-Ec-Dc-Cc-Be). Since there is a solution,
we continue the pattern search.

The original maze has a stone on one of the squares
that the stone moved over (square Ec) which now gets
included in the test maze (Figure 3b). PIDA* will solve
the test maze with the two stones and again find a so-
lution. The ManPath is (Gd-Gc-Fc-Ec-Dc-Dd-Cd-Cc-
Dc-Ec-Fc-Gc-Gd-Ge-Fe-Fd-Gd-Gc-Fc-Ec-Dc-Cc) and
the StonePath is (Ee-Dc-Cc-Cb Fd-Fc-Ec-Dc-Cc-Bc).
This time there are no stones in conflict with
StonePath. However, there is a conflict with the Man-
Path, square Ge. This stone is added to the test maze
(Figure 3c) and another search is commenced. A solu-
tion will be found, requiring a fourth stone to be added
(Figure 3d).

The fourth call to PIDA* will return no solution
and announce a deadlock with this pattern of four
stones. Identifying the critical stones to examine has
been driven by whether they conflict with a potential
solution. The irrelevant parts of the maze (such as the
stone on He) are ignored.

Generalizing the Patterns

The fewer stones in a deadlock pattern, the more likely
it will match an arbitrary position and be used to elim-
inate futile branches of the search. A minimal dead-
lock pattern is a deadlock pattern from which no stone
can be removed without making the remaining pattern
solvable. The attentive reader will have noticed that
only three stones are needed to guarantee deadlock in
Figure 3; the stone on Ec is unnecessary. Before sav-
ing the deadlock pattern, ohr program will attempt to
minimize the number of stones in it.

The deadlock set minimization routine takes an N-
stone pattern and considers each of the possible N-I-
stone sub-patterns. Each of the N-i-stone sub-patterns
is searched to verify whether removing that stone pre-
serves the deadlock. If the deadlock still exists, then the
removed stone was not part of the minimal deadlock set
and is removed from the deadlock pattern.

Customizing IDA* for Pattern Searches

If the pattern searches used the same IDA* procedure
and lower bound estimator as in Rolling Stone, the
search would be prohibitively large and slow. Instead,
we use a special version of IDA* (PIDA*) that is cus-
tomized for pattern searches, allowing for additional
optimizations that dramatically improve the search ef-
ficiency. By relaxing the rules of Sokoban and introduc-
ing new goal criteria, the resulting search will be more
efficient and will still return an admissible lower bound
on the solution.

One optimization is to remove stones from the test
maze once they reach a goal square or a man-reachable
square. This comes from the observation that most
deadlocks result in a number of stones getting crowded
together. Hence, if a stone "breaks free", we assume
we no longer need to consider it in that search sub-tree.
Another optimization is to relax what we consider a
goal state. Now, goal states are also positions where
the man can reach all squares and at least one conflict
with the current StonePath was found already.

These shortcuts simplify the search leading to large
savings in the cost of a pattern search (from thousands
of nodes to an average of 50). However, this comes at
the cost of possibly missing a deadlock. In practice, the
reduced search effort more than compensates for the
few missed opportunities.

Since stones get removed from the board when they
reach a goal square, the best lower bound heuristic is
not appropriate (see (Junghanns & Schaeffer 1998)).
cheaper heuristic can be used: the sum of the shortest
distances of each stone to its closest goal. When a stone
moves, this lower bound is easily updated. This results
in large savings in the cost per node compared to the
original O(n3) lower bound. Since the number of stones
is small in a pattern search, most search-related rou-
tines are fast, because their cost depends on the number
of stones in the maze.

ABCDEFGH I J
a

b
C

d
C

f
g

ABCDEFGHI J ABCDEFGHI J

f f
g g

ABCDEFGHI J

Figure 3: Sequence of test mazes as passed to PIDA* (a, b, c and d)

ABCDEFGHI J ABCDEFGHI J

Figure 4: Penalty Example

Tradeoffs

Pattern searches can be costly. There are three main
factors involved in their cost: the frequency of the pat-
tern searches, a bound on the size of a pattern search,
and a bound on the deadlock pattern size.

~-¥equency of Pattern Searches: We cannot af-
ford to do a pattern search at every node in the IDA*
search. We use some simple heuristics for deciding when
to invest in a deadlock search.

The pattern search is always done for a node for
which a deadlock search has not been previously done
before (as retrieved from the transposition table) and
the amount of effort spent below that node on a previ-
ous iteration exceeds a threshold. For our experiments,
we use a threshold of 50 nodes, a number that reflects
the size of a typical pattern search. Furthermore, if a
stone is pushed onto an articulation point of the under-
lying graph structure of the maze, if the stone blocks
an area for the man that was previously accessible, or
if the stone pushed has no more legal moves, the pat-
tern search is executed. These heuristics ensure the
execution of pattern searches where the possibility of
erroneous lower bounds is high.

Size of the Pattern Search: Pattern searches are
restricted to a maximum effort of 1000 nodes. If the
threshold is reached, the search is aborted.

Pattern Size: Deadlock patterns are restricted to 8
stones. This is an artificial limitation, but we have not
fully explored the tradeoffs of finding larger deadlock
patterns, versus the effort required to find them.

Generalizing Pattern Searches

The presence of a deadlock pattern in a position means
the lower bound increases to infinity. Can we find pat-
terns that allow us to increase the lower bound by an

arbitrary amount, not just infinity?
Assume there are three stones in the test maze and

PIDA* starts its first iteration but fails to find a so-
lution. Hence PIDA* proved that this pattern cannot
be solved with the number of moves that the heuristic
lower bound indicated. In other words, the lower bound
is wrong.

Some of the shortcuts used in the pattern searches are
not appropriate when searching for a lower bound in-
crease. Thus a second search routine is used to look for
patterns that allow for arbitrary lower bound increases.
If the first pattern search fails (looking for a deadlock),
the second pattern search is executed, possibly finding
a pattern that allows us to improve the lower bound.

In Figure 4, after the move Hd-Gd a pattern search
looking for a deadlock will fail. A pattern search look-
ing to improve the lower bound will uncover that the
solution requires the non-optimal moves Fd-Fe and Gd-
Hd, proving that the lower bound is off by four moves.

Storage and Retrieval of Patterns

To incorporate the deadlock and penalty patterns into
the search, we need to save the patterns found and
use them to match positions in the search. The pat-
tern matching is complicated by the fact that you need
to match not only the stones, but also the man po-
sition. With each pattern of stones the squares are
stored which the man in the test maze cannot reach.
To increase the usefulness of the information found by
the pattern searches, we use the multi-insert technique.
Instead of the root node only, the top two ply of the
pattern search nodes are stored.

To match a pattern, the test maze must have the
stones in the same places as the pattern and the man
must not be able to reach any of the non-reachable
squares stored together with the pattern. Since several
patterns might match, stones that were used to match
a pattern are not used when looking for a second pat-
tern to match, to avoid double penalization. To max-
imize the penalties, the pattern matching starts with
the highest penalty patterns.

This is similar to Ginsberg’s Partition Search idea
(Ginsberg 1996) where the entries of a hash table were
generalized to hold information about sets of problem
states. In Rolling Stone a pattern is the information
about the lower-bound increase of the set of problem
states in which this pattern is present.

A B CDE F GH I J K I,M N OP QR S ABCDEFGtl I JKLMNOPQR S
a
b

AB CDEF GH I J KLMNOP QR S
a
b

Figure 5: Maze #30 receives a penalty of 38 (24+14) after 2 patterns were matched

Experimental Results

Figure 5 shows maze #30 with a stone configuration
that arises during the search. Two penalty patterns
were successfully matched, resulting in an increase of
38 (14+28) to the lower bound.

Given 20 million nodes of search effort, our program
can currently solve 29 problems of the 90 problem test
suite. Without the pattern searches, only 22 problems
can be solved2. Table 1 shows the results of search-
ing these problems. Each column is labeled accord-
ing to which of the three features is enabled: penalty
searches (pen), deadlock searches (dl) and multi-insert
(mi), where + and - mean enabled and disabled, respec-
tively. Two node numbers are given: the IDA * nodes
and the IDA * + PIDA * nodes.

Except for the small searches, the cost of perform-
ing the additional PIDA* searches is offset by the re-
duction in the IDA* search nodes. Problem 53 is an
example. Previously, with 20,000,000 nodes of search,
we were unable to solve this problem. Now the search
is accomplished with only 177 IDA* nodes and a total
of 1,229 nodes. Clearly, the pattern searches dominate
the search cost, but the knowledge uncovered allows us
to solve the problem where we failed previously.

Analysis of the data shows that the average growth
rate of the search tree from iteration to iteration in an
IDA* search decreased from 84,669 to 5,559 due to the
pattern searches. Although this represents a significant
reduction in search effort (a factor of 15 per iteration),
it demonstrates how resistant the problem is to search.
Decreasing the growth rate of the search tree size gen-
erally increases the number of iterations that the main
IDA* search can perform in the same time. For exam-
ple, on 13 of the remaining 61 problems 3 or more ad-
ditional IDA* iterations were accomplished (the maxi-
mum was 9 extra iterations). Since the average increase
of the tree size to the next iteration is 5,559, even 3 it-
erations are significant improvements.

Pattern searches are a gamble: you invest search ef-
fort (PIDA* nodes) expecting to find useful knowledge.
A failed pattern search costs roughly 50 nodes. A suc-

2We previously reported 20 problems solved. Increasing
the utility of the goal macros allowed the standard version
to solve two more problems.

cessful pattern search typically costs over 1,000 nodes,
because of the additional difficulty of the search and the
cost of minimizing the pattern. Only 12% of the pattern
searches are successful at discovering something useful.
Although this sounds low, the results show the value of
the discovered knowledge. Problem ~21 is one exam-
ple of where the gamble does not pay off. Even though
the tree size (IDA*) is reduced to about 33%, including
the PIDA* nodes quadruples the total number of nodes
searched.

The results reported here are not the best numbers
that can be achieved. There are numerous param-
eters in the search, each of which can be tuned for
maximal performance. In Table 1, the PIDA* nodes
dominate the cost of the search for some problems.
Some additional heuristics for deciding when to do pat-
tern searches can result in further improvements in the
search efficiency.

Furthermore, examination of the results shows that
lower-bound increases are more beneficial then the
deadlock patterns. More is to be gained by improving
the lower bound than by identifying deadlock states.

Conclusions and Future Work

Sokoban is a challenging puzzle - for both man and ma-
chine. The traditional enhanced single-agent search al-
gorithms are inadequate to solve the entire 90-problem
test suite, even with their dramatic impact on the
search tree size.

The property of deadlocks in a search space adds con-
siderable complexity to the search. The previously in-
troduced deadlock tables (Junghanns &; Schaeffer 1998)
are beneficial for local deadlock detection, but inade-
quate to handle non-trivial situations. Pattern searches
can detect global deadlock scenarios and are able to
improve the lower bound considerably, resulting in a
substantial improvement in search efficiency.

Further work is needed to identify when deadlocks
are likely to occur and either avoid them or invest the
resources to verify their existence. Detecting deadlocks
is critical to any real-time application.

The pattern searches were based on demonstrating
whether there existed a scenario by which all the stones
in a position subset could reach their goals, and in how

d, pen mi Ir +d, pen mi
+dl +pen-mi +dl +pen +mi

IDA* IDA*] IDA*+PIDA* IDA*
I IDA*+PIDA* IDA* I IDA*+PIDA*

1 53 53 125 5O 410 5O 412
2 224 210 1,137 149 3,090 149 3,329
3 393 188 3,734 97 7,231 97 11,753
4 394 310 3,488 187 1,878 187 1,879
5 1,768,356 16,071 110,709 2,813 61,608 2,664 66,658
6 207 168 427 139 2,234 139 3,008
7 30,118 20,833 138,685 2,818 61,879 2,743 61,017
9 198,667 121,868 207,833 7,619 162,999 8,647 160,833

17 10,108 1,676 9,512 1,103 23,771 821 22,588
21 374,843 330,273 2,112,792 145,939 1,668,636 109,913 1,231,217
38 312,017 104,255 128,451 75,244 117,770 75,244 118,835
43 > 20,000,000 > 13,431,042 > 20,000,000 13,834 2,223,154 10,661 2,337,712
51 50,675 97,299 99,754 133 2,564 133 6,042
53 > 20,000,000 177 368 177 1,184 177 1,229

55 > 20,000,000 > 13,198,858 > 20,000,000 4,527,930 12,482,548 4,462~920 12,301,510
57 3,078,112 215,541 521,533 176,413 780,398 79,792 608,261

62 127,434 821,533 872,317 2,036 21,395 440 18,711
63 3,137,313 415,401 2,293,790 25,200 1,086,424 18,024 742,490
65 1,333 1,333 2,272 980 3,848 1,355 4,242
68 > 20,000,000 > 19,519,926 > 20,000,000 203,966 8,214,930 145,528 6,260,529
70 > 20,000,000 > 9,189,442 > 20,000,000 > 619,739 > 20,000,000 185,820 3,639,142

72 > 20,000,000 > 13,142,686 > 20,000,000 49,279 145,276 1,701 49,962
73 > 20,000,000 > 19,011,026 > 20,000,000 29,586 45,309 29,586 45,318

78 75 75 267 75 882 75 882

79 4,474 3,799 5,504 1,970 13,163 1,957 10,555
8O 2,430 109 2,981 98 9,555 98 10,534

81 305,185 16,655 50,344 1,991 28,502 1,908 21,333

82 162,517 151,720 717,656 230 32,395 471 49,323

83 1,198 9O 2,883 9O 7,204 9O 7,271

I z II >149,566,126 > 89,812,617 >127,286,562 II > 5,889,885 > 47,210,237 5,141,390 27,796,575

Table 1: Experimental Data

many moves. There are other proof conditions that can
be tried. One promising avenue for proving that dead-
lock is not being introduced is the reversible move. For
example, assume that in position P move A-B is made.
It may be easy to verify that there is a sequence of
moves that effectively unmakes the move A-B (possibly
as simple as B-A) resulting in all the stones and the
man being back as they were in position P. If this can
be shown, then this is a proof that deadlock was not
introduced by A-B. This property can be verified with
a search where the goal conditions are changed.

Although pattern searches can be enhanced to make
them more efficient, it appears they are inadequate to
successfully solve all 90 Sokoban test positions. This is
the subject of ongoing research.

Acknowledgements

The authors would like to thank the German Aca-
demic Exchange Service, the Killam Foundation and
the Natural Sciences and Engineering Research Coun-
cil of Canada for their support. This paper benefited
from interactions with Yngvi Bjornsson, Russ Greiner,
Peter van Beek and from the referees’ comments.

References
Adelson-Velskiy, G.; Arlazarov, V.; and Donskoy, M.
1975. Some methods of controlling the tree search in
chess programs. Artificial Intelligence 6(4):361-371.
Ginsberg, M. 1996. Partition search. In AAAI-96,
228-233.
Junghanns, A., and Sehaeffer, J. 1998. Sokoban: Eval-
uating standard single-agent search techniques in the
presence of deadlock. In Proceedings AI-98. To ap-
pear in Springer-Verlag’s Lecture Notes in Computer
Science series.
Korf, R. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27(1):97-109.
Korf, 1%. 1997. Finding optimal solutions to Rubik’s
Cube using pattern databases. In AAAI-97, 700-705.
Kuhn, H. 1955. The Hungarian method for the as-
signment problem. Naval Res. Logist. Quart. 83-98.

