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ABSTRACT

Coordinated motion planning for a large number of three dimensional
objects in the presence of obstacles is a computational problem whose complexity
it seems important to calibrate. In this paper we show that even the restricted 2-

dimensional problem for arbitrarily many rectangles in a rectangxilar region is

PSPACE-haid. This result should be viewed as a guide to the difficulty of the

general problem and lead researchers to consider more tractable restricted classes

of motion problems of practical interest.
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1. Introdaction

In this paper we prove that the coordinated motion planning problem for a collection of dis-

joint 2-dimensional rectangular objects constrained to move within a 2-diniensional rectang\jlar box

is PSPACE-haid. The problem considered can be coined as foUows: Qven an initial and a final

configuration of the objects in question, determine whether there ejosts a continuous coordinated

motion of the objects between the initial and final configurations during which they do not

penetrate either the 'walls' of the enclosing box, or each other.

Previous work on the complexity of motion planning problems of this sort was begun in

[Re], where the motion planning problem for a qertajn kind of many-jointed 3-D system con-

strained to move within a complex system of narrow tunnels was shown to be PSPACE-hard. It

was subsequently shown in [SSI] that the general ,mptiQn-plao^iing problem can be solved in poly-

nomial time, provided that the number of degrees of ^eedom pf the moving body or bodies is

held fixed (and provided that the system is 'algebraic'; sec [SSI] for detail). This motivates our

attempt to find moving systems (necessarily involving arbitrarily many degrees of freedom) whose

geometry is as simple as possible, but for which the motion planning problem is still PSPACE-

hard.

A simple class of systems having these properties is described in [HTW]; it consists of a fam-

ily of systems consisting of many links, all lying in the plane, connected to each other at specified

joints, some of which are fixed to the plane in which the links move. [HTW] shows that the

motions of such a system can simulate an arbitrary linear bounded automaton, so that planning the

motion of such a system is PSPACE-hai± (An interesting feature of the systems described Ln

[HTW] is that their motion is not constrained at all by obstacles.)

Here we consider the case of the coordinated motion of several independent objects. (Ear-

lier work on planning such motions for two and three circular 2-D objects amidst polygonal obsta-

cles is found in [SS2].) The systems on which this paper concentrates have a very simple geometric

structme, involving only 2-D rectangular objects and just one boxmding rectangular obstacle.

Nevertheless we prove that the problem of planning the motion of such a system is PSPACE-hssd
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by showing that such systems, like the systems described in [HTW], can simulate arbitrary linear

bounded automata. This is achieved via a sequence of reductiom, which start with a formal string

manipulation problem, proceed through a motion problem for systems of moving independent

bodies whose shape is somewhat irregular, and finally reduce to the simple 'rectangular' motion

problem described above.
. ^^:. ^..

2. Formal Consideratloos.

Even though the ultimate aim of this paper is to show that a certain type of coordinated

motion planning problem is PSPACE-hard, we begin with a combinatorial problem. Specifically we

observe that a deterministic linear bounded automaton can be simulated by a rewriting system all

of whose productions are of one of the following two forms: AB - AC or AS -CB. Furthermore,

the simulation can begin with a strii^ 5 'bt length n and remain subject to the condition that at

each moment only two producticSis are applicable, and both those productions overlap in at least

one symbol of the string bemg manipulated. If these productions overlap in precisely one symbol

X, then both attempt to modify X. More precisely, suppose in this latter case that near X the

string 5 has the form • • • AXB • • •
. Then the two applicable productions must be of the form

AX ^ AY and XB -^ ZB . With these restrictions, and even if the set of productions is required to

be reversible, i.e. AC -> AB (resp. CB - AB) appears whenever AS -AC (resp. AB - CB) docs,

the question as to whether a given symbol ever appears in the string is PSPACf-complete. (See

[HTW], p. 24 bottom, ff.) Similarly, the question as to whether the string 5 can be transformed

into another string 5' in this manner is also PS/'ACf-complete.

Our first simple step in moving from this conceptual starting point towards a motion-

planning problem is to transform the production system rewrite problem described in the preceding

paragraph to another symbol manipulation problem that is easier to simulate by means of a set of

object motions. This is the symbol transposition problem defined as follows:

(i) A finite string S of symbols is given. Among these there occur two special 'bracket' symbols,

which we will write as '[' and ']'.
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(ii) A sequence of elementary 'moves' can be applied to the string S. Each such 'move' acts by

taking a single (non-bracket) symbol and changing its position within S. However, these moves

are related by a certain set of adjacency rules, which constrain the symbols which can stand next to

each other. (The specific adjacency rules we reqiiire are described in detail below.)

(iii) The transposition problem is: to determine whether there exists a sequence of moves which

takes S into a specified string S'

.

We use this symbol transposition problem as an intermediate step in showing certain

motion-planning f)roblems involving physical objects to be PSPACE-hai± In rewriting systems

symbols appear or disappear. In the case of physical objects we need a reservoir for storing objects

not currently used to encode the string of the transpg^itiop,problem. It is for this reason that the

brackets are introduced. Simulation of a rewriting system, sdDJect to the conditions stated above,

by a transposition system goes as follows. Tlie string of^symbols up to the leftmost bracket

corresponds to the string of symbols in an ordinary rewrite system. The symbols after the left-

most bracket represent a 'pool' of 'spare' symbols held for possible future use. Note that in a sym-

bol transposition problem the collection of symbols being manipulated remains invariant and so

corresponds more closely to the motion of physical objects.

We set up the following transposition problem:

(a) The (non-bracket) symbols of the transposition problem are as follows:

(a.l) For each symbol A of the rewrite problem, we introduce three symbols Aq, A-^ and Aj.

(a.2) If the j-th production of the production system is AS - AC, we introduce three special

symbols M*q^, A/'jj. and A/'jo- Similarly, if the i-th production of the production system is flA ^CA,

we introduce three special symbols N*(^ , A^i2« ^'^ ^20-

(a.3) We introduce two distinguished nonspecial symbok A and P.

(b) The adjacency rules of the transposition system are as follows:

(b.l) If the nonspecial symbols D, and Ej are adjacent (with £), lying to the left of Ej) in the

portion of the transposition string left of T, then 7 = i+l {mod 3).
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(b.2) Using the notations introduced m (a.2) above: the symbol A/J^ can only have the sym-

bol A, to its left and only the symbols fl^, Q, or any symbol E, with I = k+l (mod 3), to its

right. (Note here that the »-th production is A5 - AC}. Similar rules apply to N*j^, interchanging

left and right in the above.

(c) Given an initial string ABCDE • • • for the rewrite problem we introduce a corresponding ini-

tial string for the transposition problem. This has the form:

(1) AA^:C:DoE, • T [Mm^'n] Whi) ' " iO Wli) Wio] '
'

[[sh][sh] ••• [sh][][] -dU -v

[[s^]m [s?][][] •••,[]] •••

[[5?] [57] ••• [57][][] •••'[]]

Here the sequence A(fi.CyDJS^ • • • of symbols preceding the fu^t bracket duplicates the given

string ABCDE ••
, but with' ad^tion of subscripts 0,1,2 which are attached in the repeating

sequence 0, 1, 2, 0, 1, 2, , .
.'.' .'.^^Tfert fdliow a bracketed sequence of special symbols, one each

of the symbols ^f{^, M*i2, A/':io. *= 1. • .N oocuring. FmaUy, if 5^ 5" is the full sequence

of symbols of the production system, there follows a series of bracketed sequences

[[S{] • [S{][] []], «=0,1,2, and j=l m; each of these sequences has the same

length as the initially given string ABCDE • • and the number of empty brackets in the sequence

is equal to the number of times the symbol S{ appears Ln the initial given string left to F.

Only that part of the string (1) which stands to the left of the symbol V is considered to be

'significant': the remainder is regarded as a mere 'pool' of symbols which can be moved into this

significant part, and also as a 'storage area' into which symbols moved from the significant part of

(1) can be placed. The transposition problem we seek to solve is: can the string (1) be

transformed, by a valid sequence of moves, into

(2) AFfi.H^ofi • • • r [A/^] [MI2] [A/lo] • • • KJ [Ml,] [M'^] •

[[sUish] [sh][][] ••• []] •••

[[s^][s^] m[][] []]

[[S?][S?] [57][][] ••• []]

where FGHU • • • is the target string for the corresponding rewrite problem, and where the



length of the bracketed sequences
[ [5/] [S/] • • • [S{][] • • []] equab the length of the string

FGHU • •
, with the number of empty bradcets bang equal to the number of times 5/ appear* in

the target string FGHU .

To demonstrate the reduction claimed, we must show that (2) can be derived from (1) by a

series of legal moves if and only if FGHU • • can be derived from ABCDE • • by a series of

productions. In one direction this is easy, since the effect df applying any production can be simu-

lated by a series of moves. Suppose for definiteness that the production applied is AY - XZ, that

this is the i-th production of the production system, and that the symbol X of the symbol pair XY

to which it is applied occurs at a position equal tazero mod 3 within some string • • • XYW • • .

Then we can transform the symbols • • • Xf^iY2 • • • ia the- significant part of the corresponding

transposition problem string succe£sive.'y as follows:." : ,;r. -*-j_iC^-=j 5

The string



Hence the only possible moves consist of introducing a special symbol between a pair of

symbols XY that appear on the left hand side of a production. There are only two such possibili-

ties corresponding to the two productions applicable at a given moment. Note that either the left

hand sides of these two productions coincide, in which case the two corresponding special symbols

(which we will denote respectively as M and A/') have to be inserted at the same place, or these

left hand sides overlap at just one symbol X, in which case the locations where M and Af' can be

inserted are separated by X. Recall that in, this latter case both productions would change the same

symbol X.

Hrst consider the situation when the positions are the same. If A/ is inserted to give

• • • WMXZ (where tiie subscripts 0,1,2 are suppressed for the sake of convenience), and

WX^WYisthc corresponding production, then the only possible moves are to remove A/ (a pos-

sibility which we ignore, since this merely 'cancels* the insertion of A/), or to delete X. After X is

deleted the only possible move other than re-inserting it is to insert Y and then to delete A/. This

sequence of moves converts the substring WXZ to WYZ, which is precisely the effect of applying

the production WX - WY. An analogous situation occurs if A/' is inserted instead of A/. Note that,

stricdy speaking, the final deletion of A/ may not be the only possible move after inserting Y. M

can be left where it is. The possibility that this leads to is analyzed carefully in the following para-

graph. In preparation for this discussion we remark that instead of leaving A/ in the string we can

think of A/ as being deleted and then reinserted; since VVy is the left hand side of the production

WY - WX, reinsertion of A/ can simply be viewed as the first step of preparation to apply this pro-

duction, and hence raises exactly that possibility discussed in the following paragraph.

In the case where the positions into which M and A/' may be inserted are separated by a sin-

gle symbol we must also consider the case whereM is inserted and then AT is inserted one symbol

further right or left. Suppose for definiteness that A/' is inserted one symbol to the right of M.

This gives a substring of the form WMXM'Z. However, in this case no further move (other than

deletion of either A/ or A/') is then possible since M (resp. A/') cannot exist in a context in which

W (resp. Z) is removed, whereas removing X would leave A/ and A/' adjacent to one another
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whidi is forbiddoL Thus one oi M ot M' must be deleted before progress can be made, and this

cxmsideration brings us back to the more limited set of possibilities considered above.

Hence the only way of progressing is to insert a special symbol between a pair of symbols

appearing in a production rule. This allows a symbol to be removed and then replaced by the

other symbol in the production rule corresponding to the special symbol just inserted. After this

the only way of continuing to progress is to remove the special symbol. (Note that the nonspedal

characters that are removed from the significant prefix string can always be stored between

appropriate brackets in the second part of the string.) Qearly this sequence of actions will always

simulate application of successive productions drawn from the production system.

This completes the reduction from the production system rewrite problem to the symbol

transposition problem, showing that the latter problem is also PSPACE-haid.

3. Representing the transpositioa problem as a motion problem.

Next we show that the PSPACE-hsid^ transposition problem considered above can be reduced

to the problem of planning the coordinated motion of a disjoint collection of nearly rectangiJar

objects.

For this piupose, consider a set of rectangular blocks constrained to move within a 2-

dimensional rectangular box as shown in Fig. 1. The box is very nearly full: the cross-hatched rec-

tangular region t^jpearing near the right-hand side of the box is the only empty space within the

box.
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box will sometimes be called the upp^ track. The 3x2 blocks to the left of G are called brickt,

and the (ly2)x 1 blocks to the right of D and E are called fillers. The only empty space is the 3x2

cross-hatched area shown left of F and H. The items are packed as closely as has been described

in order to constrain their motions to just those corresponding to the iteps of a transposition prob-

lem. As will now be explained, only two basic motions are possible.

Observe first that the boimdary between C and D can be moved left and right underneath

the it dominoes between A and B. The motion is a kind of simple rotation in which C, D and E all

move in one direction, while G moves in the other direction and the bricks and fillers at the ends

of D, E and G move to compensate. More precisely, this is accomplished by moving C, D, E and

the fillers on the right of D and E\ all these move to the right. A brick from the left of G is

moved up to the new vacant space on the left of C and G is moved left. Twelve small fillers to

the right of Z? and £ are then dropped down into the space between G and H. This process can

be repeated or reversed to position the boundary between C and D below any domino between A

and B. Since each brick to the left of G has the same size as the available aosshatched free space,

accomplishing this motion requires use of all empty space, and hence for this motion to be possi-

ble the blocks must be in a configuration that results from the initial configuration shown in Figure

1 by an appropriate clockwise "rotation" of the sliders C, D, E and G and the corresponding

bricks and fillers.

In addition to this rotating motion, a second significant motion is possible, ^^edfically, a

gap can be opened between C and D by sliding D right, permitting a 2x2 domino to drop down

from the top row. The spjace in the upper row can then be dosed by moving B left, filling the

space to the right of 5 by the small fillers to the right of-F and moving F right. Eight fillers must

then be moved into the space to the left of F to aeate the 2x3 vacant space needed for the rotat-

ing motion described above. Once this has been done, the domino currently between C and D can

be transported left or right (see Fig. 2). FmaUy this domino can be reinserted back into its original

row at a different position. This motion allows us to permute the dominoes among positions

between A and B as required to simulate a transposition problem.
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Fig. 3. Eztrmions and indcnUitions in the vartksJ «ides of a domino.

Even after this has been done, the dominoes can still be permuted provided that during eadi per-

mutation, the extrusions and indentations in adjacent dominoes match up, and provided that C

and D contain notches which allow any domino at all to be inserted between than. This is

because even when C and D are moved apart, A and B can be pulled apart by one half unit to

unlock the short extrusions and indentations in the dominoes, and moreover C and D can be

moved an extra half unit to allow the domino to drop down without interference from the small

extrusions on it. This is accomplished (see Figure 4) by moving the two half-sized fillers at the

right of fl to a position on the right of F (causing F to move left by 1/2 unit). D can then be

moved right two and a half units, aeating a two and a half unit opening between C and D. (This

requires moving four of the small fillers from the area right of D to the area right of E.)

However, whenever the sliders C and D move to transport a domino or to prepare for such

transport, the space between A and fl must be tightly dosed; thus the adjacency rules defined by

the extrusions and indentations on the dominoes must be satisfied during every such move.



13-

Z
i'--:'.

»'

lllllllllllllllllll'
IT

_
I nil

"p

'
I \ I ^

Fig. 4: 'Opemog' the upper trade and the row immediately below

it to permit a -JcatiCHa be extracted from the upper trade and moved down,

even in the presence of flight "tabs' and 'dents' in adjacent dominoes.

Next, we wish to show that by dioosing appropriate shapes for the vertical boundaries of the

dominoes and brackets we can enforce the adjacency rules desoibed m the preceding section. For

this, we simply choose appropriate extrusions and indentations for their tides (and also on the

right edge of the slider C and the left edge of^ slider D). An 'extrusion' or tab' is limply a

wnaii rectangular protrusion, and an 'indentation' or 'dent* is a rectangular indentation of the

same size (as in Figure 3).

Non-^jedal dominoes are given their 0, 1, or 2 parity by partitioning their vertical dimension

into three regions labeled 0, 1, and 2. We then personalize the dominoes (as symbols of a tran-

sposition system) as follows: for the type / domino A, a tab is added on the left side at an other-

wise unused vertical interval in region I. Let J " i+1 (mod 3). Snoe the domino A must permit

adjacendes of type j on its right, for each domino B of type j an indentation is created m A at the

vertical location of B'l tab. Tbus eadi domino A of type I has one identifying tab in region i on

its left and several indentations (corresponding to all possible symbols B of type J) in region j on

its right. Qearly this forces the parity of adjacent nonspedal symbols to be 0,1 or 1,2 or 2,0, but
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allows any nompedal character of a given type can be adjacent to any other nonspedal character

of the appropriate type.

Next we define the shape of spcdaJ dc>rcinoc3. Let Xy - XW be the j-th prodiiction. We will

explain the geometry of a special domino M = M^^i for the case where X is of type and K and W

are of type 1. M has a tab on its left side in region 1 at some location as yet unused. X has an

indentation on its right at this level. Furthermore, X is the only symbol other than a bracket that

has an indentation at this position. M has two indentations in region 1, one to accept a tab from a

W of type 1, the other to accept a K of type 1. In addition, M has indentations in region 2 on its

right to accept any type 2 symbol. Thus the only symbols that can be adjacent to M other than

brackets are an X of the type on the left and Y and W of the tyr^- . on the right or any symbol

of type 2 on the right. ' - ^' "^'^' '

The brackets and also the two spcdal characters^ and T will be rectangles whose width is

that of three dominoes. This prevents the brackets from ever entering the "bucket* which can be

opened up between D and £. For every symbol there will be available sufficiently large set of

brackets with indentations placed to hold that symbol between a corresponding pair of brackets.

This completes the description of the layout of the various objects within the enclosing box. The

parameter it appearing in the specification of the layout has to be chosen to be equal to the total

length of all dominoes and brackets appearing in the upper track of the box between A and B .

It should now be apparent that the transposition problem is solvable if and only if the prob-

lem of moving the objects described above so as to produce a specific sequence of dominoes to the

left of the leftmost bracket is solvable. Hence the domino motion planning problem that we have

described is PSPACE-haid, i.e. we have

Theorem: The problem of deciding whether there exists a continuous motion that takes a collec-

tion of disjoint rigid objects, enclosed within a rectangular region, from one specified configuration

to another, is PSPACE-hax±



4. Redaction of the transposition problem to the motion planning problem for rectangles.

The final stqj reduces the domino-motion planning problem described in the preceding sec-

tion to that of planning the motion of rectangular objects enclosed within a rectangular box. In

the preceding section domino« were realized as non-convex objects, roughly rectangular, but hav-

ing extrusions and indentations that encode the various symbols that these dominoes represent and

that serve to enforce the various adjacency constraints essential to our construction. The final step

uses the same general layout of rectangular pieces enclosed within a rectangular box. However,

each domino is partitioned into a bottom rectangle, a thick vertical spine and a left and right set of

rectangles as shown schematically in Figure 5. In this partitioning, longer rectangles are used to

represent tabs and shorter rectangles are used to represent dents. The width of the spine is chosen

to be larger than four fifths the nominal width of a domino. By properly designing the lengths and

heights of the domino pieces, we shall ensure that all new motions that become possible are

irrelevant, in the sense that motions of domino pieces which do not correspond to motions of full

dominoes always lead to dead-end positions from which no further useful motion is possible unless

one reverses such a sequence of 'domino-fragment' motions completely.
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spacc, then it may be possible to interchange pieces between d- and di-

To prevent these anomalies we introduce a new type of structure, called a spacer. Spacers

consist of rectangular blocks that are much longer than those constituting a domino (say, 10 times

as long). Initially, two of these spacers are placed between each pair of successive dominoes in

the upper track. The structure of each such spacer is as shown in Figure 5. SiiKc all pieces consti-

tuting a spacer are longer than the width of the bucket, none of them can ever be moved out of

the upper track. Furthermore, it is impossible to rearrange the pieces of a spacer or to exchange

pieces between spacers. Hence the gross structure of each spacer remains unchanged as dominoes

are moved.

It is easily seen that whenevCT the sliders C and D are able to move left or right by an

amoimt equal to at least the width of two dominoes, there must occur a moment at which both the

topmost track (which we will caD'-'fe opper track) and the second track from the top of Fig. 1(a)

are filled almost completely. (We will describe this condition by saying that the upper tracks are

closed.) This observation applies both when nothing is present in the space which can be opened

between C and D (which we will call the bucket) and when some portion of a domino (and hence,

as will be seen below, all parts of a domino) are present in the bucket.

As shown in Figure 5, we regard the area in the upper track that contains the dominoes and

the spacers as being divided into a fixed number of horizontal chanmLs, and we number these

channels starting from the bottom. The ;'-th channel has a hdght h-/3'~- where h. is the height of

the first channel; thus the first channel occupies more than half the total height of a domino. Each

rectangle, other than a domino spine or one of the rectangles in channel 2, has a height dL'fering

only infinitesimally from the nominal height of the channel; certain of the rectangles in channel 2

are given a height of only one half the channel height, but even so each of these rectangles occu-

pies something more than the total height of channels 3 through n.

To prevent any
'miring' between the parts of different dominoes, we simply define the

heights of the slah>s constituting a given domino to differ by infinitesimal amounts from the nomi-

nal height of the channel to which they belong, in the foDowing manner: Call the part of the
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domino lying to the left (resp. right) of its spine a left (resp. right) half domino. This divides each

domino into two domino halves, and accordingly divides the r different types of dominoes into 2t

different types of domino halves. (We regard the lowermost slab of the domino, which rxms hor-

izontally across its whole width, as belonging to both its left and its right half.) Let the precise

height of the ;-th slab (exclusive of the domino spine) in the pile representing the k-th type of

domino half be h,,^. Then for any ifc t* m, and for any two proper nonempty subsets S, S' of the

set of channels, we insist that —

(*) SAyi^ SAym
JiS JiS-

(with the obvious exception that equality will occur when k and m denote the two halves of the

same domino, and either both the sets 5 and S' consist of just the first lowermost channel, or both

consist of all the other channels.) Fmally, we insist that for eadi it the sum of hj,^, extended over

all channels ;, be equal to the unit height of the trades appearing in Fig. 1. These properties can

be obtained by choosing the heights A.^ to be ^)propriate infinitesimal perturbations of the nomi-

nal heights of the corresponding channels.

This condition, together with the fact that the slabs on the left and the right of a domino

spine have significantly different lengths, implies that whenever the bucket is nonempty and the

upper tracks are closed, the bucket contains exactly one spine piece, one full-width slab positioned

either above or below the spine, and on one side of the spine all the pieces belonging to one dom-

ino half, and on the other side of the spine all the pieces constituting the other half of exactly the

same type of domino; moreover, the single full-width (channel 1) slab present in the bucket must

belong to the same type of domino as these two pOes of half slabs. This is because the height of

the full-width slab will add up to the full height of the track only when matched with the heights

of the slabs in the left pile and with the heights of the slabs in the right pile of the same domino.

Note also that slabs belonging to spacer piles should be given heights slightly smaller than the

nominal height of the corresponding channels, to allow their vertical positions to be adjusted to

slight (indeed, 'infinitesimal') changes in the vertical positions of adjacent domino slabs.
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Once we begin to move pieces of a domino into or out of the bucket, further motion of C

and D is impossible until dther the bucket becomes entirely empty, or imtil all the pieces of a

cximplete domino have been moved in some consistent order mto the bucket. Hence if motion is

not to cease the pieces in the bucket must all be moved to some one end of some spacer; this end

region must dearly lie either between two spacers or between a spacer and a domino adjacent to

it. This second case can only occur if we place two dominoes d^, d^ next to each other, but it is

easy to see that further motion of the bucket must cease the first time we do this. For this, note

first of all that domino spines are too wide ever to move past the full-width (channel 1) slab con-

tained in a domino; hence in the jnfiguration envisaged both domino spines must lie above a

corresponding channel 1 slab. Moreover condition (•) implies that all the pieces of each domino

d^, ^2 must lie above the channel 1 slab belonging to that domino, and that the domino pieces

drawn from either side (left or right) of each of these two dominoes must be grouped together.

(However, this argxiraent leaves open the possibility that the newly inserted domino should be

reversed right-to-left.) But reference to Figure 5 shows at once that we cannot either reverse the

parts of any single domino or place two dominoes adjacent to each other in a dosed upper track,

since doing so would cause a 'tab' in the upper half of channel 2 to collide cither with a channel 2

block of an adjacent domino or with the left-hand channel 2 block of a spacer.

Note also that this same argximent shows that it is not possible to replace a complete domino

in the upper track by the domino in the bucket. Indeed, to do so would require moving all the

parts of both dominoes into adjacent positions in the upper track at least momentarily and then

moving the bucket, and we have just proved that this is impossible.

Having shown that interchanging pieces of dominoes is impossible, it remains to be shown

that permuting rectangles within a domino is also impossible. Permuting the rectangles is

prevented by using alternate channels as separator diannels and confining all the tabs and dents to

the channels between separator channeb for the tabs and dents. Separator channeb are used

exiusively to force the domino rectangles to remain unpermuted. The lengths of left and right

domino rectangles in separator channels are increased by an amount A that is greater than the dif-
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ferendal used for tabs and dents, and to con^iensate the lengths of rectangles in separator chan-

nels of spacers are reduced by 2A apiece. It follows that when the upper track is dosed, each non-

separator channel must contain nonseparator rectangles exclusively and all domino rectangles must

maintain their original order. Indeed, any permutation of this order would force some separator

slab to (partially) overlap a nonseparator channel, which however is too short to accomodate it.

Hence dominoes must retain their original structure if the upper track is to dose and the bucket to

move.

Note also that the dimensions of separator and nonseparator channels permit a domino to be

inserted between two adjacent spacers, and that in our initial configuration two spacers are placed

between every pair of dominoes in the upper track. This is dene to allow a spedal domino to be

placed between two other dominoes. If only one spacer was present, we would be forced to place

a domino immediately adjacent to another, but as just seen this would terminate motion.

We remark m condusion that since the spacer rectangles in nonseparator channels have

exactly the same length as the total length of the spacer, it follows that when the upper track is

dosed, a domino d^ can only foDow a domino dg (with any number > of spacers between them)

if for each nonseparator channel, the sum of the length D^ of the right-hand slab of <f^ in this

channel, plus the length £); of the left-hand slab of dg in the same channel, is less than or equal to

3J. But this is exactly the condition of compatibility between tabs and dents of adjacent dominoes,

which completes verification of the assertion that every significant configiiration available to our

partitioned dominoes is also available to the corresponding intact dominoes.

We have therefore proved our desired result:

Theorem: The coordinated motion planning problem for a collection of 2-D rectangular objects

moving inside a 2-D rectangular box is PiPACE-hard.
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