
SOKOBAN and other motion planning problems

Dorit Dor

�

Uri Zwick

�

June 25, 1996

Abstract

We consider a natural family of motion planning problems with movable obstacles and obtain hardness

results for them. Some members of the family are shown to be PSPACE-complete thus improving

and extending (and also simplifying) a previous NP-hardness result of Wilfong. The family considered

includes a motion planning problemwhich forms the basis of a popular computer game called SOKOBAN.

The decision problem corresponding to SOKOBAN is shown to be NP-hard. The motion planning

problems considered are related to the \warehouseman's problem" considered by Hopcroft, Schwartz and

Sharir, and to geometric versions of the motion planning problem on graphs considered by Papadimitriou,

Raghavan, Sudan and Tamaki.

1 Introduction

An instance of a generic motion planning problem consists of a description of an environment, containing

some objects and obstacles, and a description of a desired state, or states, into one of which the environment

is to be transformed. The answer to such an instance is a plan describing the co-ordinated motion of all

the objects and obstacles that satis�es the constraints of the system, or a claim that such a plan does not

exist. The constraints imposed depend on the exact nature of the problem. A constraint that is almost

always used is that objects and obstacles should never overlap.

Various forms of motion planning problems were already considered by many researchers. Geometric

motion planning problems were considered, among others, by Reif [Rei79], Hopcroft, Schwartz and Sharir

[HSS84], Wilfong [Wil91] and Dhagat and O'Rourke [DO92]. A motion planning on graphs which forms an

abstraction of such problems was considered by Papadimitriou, Raghavan, Sudan and Tamaki [PRST94].

In this work we consider a family of motion planning problems obtained by generalising the rules of a

computer game called SOKOBAN.

1

A typical level of SOKOBAN is shown in Figure 1. Each level is

composed of a layout of `warehouse' laid down on a rectangular grid (not shown in the �gure). Each cell of

the grid either forms part of the warehouse's oor, or forms part of a `wall' separating the warehouse into

rooms and halls. Some of the oor cells contain packets. Each packet is a 1� 1 square occupying a single

cell (the packets are shown in the �gure as disks for aesthetic reasons). A poor porter is supposed to move

these packets to certain designated target positions, shown shaded. The initial position of the porter is also

given. The porter has enough strength to push a single packet. She cannot push more than one packet at

once. She is not able to pull packets. The porter may move freely on the warehouse's oor but she is not

allowed to step on packets, i.e., she is not allowed to be in a cell occupied by a packet. Readers interested in

playing SOKOBAN may point their WWW client to http://clef.lcs.mit.edu/~andru/xsokoban.html.

In the SOKOBAN game, all levels, or puzzles, have solutions, though some of them are extremely long.

�

Department of Computer Science, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact

Sciences, Tel Aviv University, Tel Aviv 69978, ISRAEL. E-mail addresses: fddorit,zwickg@math.tau.ac.il. Contact author:

Uri Zwick

1

SOKOBAN, if our sources are correct, is the Japanese word for `a warehouse keeper'.

1

Figure 1: Level 40 of SOKOBAN.

We are looking at the problem of deciding whether a given SOKOBAN puzzle has a solution. We show

that this problem is NP-hard. It is an interesting open problem whether this problem is in NP. It is clearly

contained in nondeterministic PSPACE and therefore, by Savitch's result [Sav70], also in PSPACE.

We let SOKOBAN(k; `) be the following generalisation of SOKOBAN. The packets are still 1� 1 squares

but the porter is now powerful enough to push up to k packets at once. She can also pull up to ` packets.

For example, suppose that positions (x+ 1; y); : : : ; (x+ r; y) all contain packets and that the porter is in

position (x; y). If position (x + r + 1; y) is vacant and r � k, then the porter may push the packets to

positions (x+2; y); : : : ; (x+ r+1; y) and move to position (x+1; y) while doing so. If position (x� 1; y) is

vacant and r � `, then the porter may move to position (x�1; y) while pulling the r packets into positions

(x; y); : : : ; (x+ r � 1; y). The most natural choices for ` are ` = 0 (i.e., no pulling) and ` = 1 (the porter

may pull the packet next to her). Note that SOKOBAN(1; 0) is the original SOKOBAN game. As already

mentioned, we show that SOKOBAN(1; 0) is NP-hard. We also show that SOKOBAN(k; 1) is NP-hard,

for every k � 5, even if the goal is just getting the porter to a speci�c target position.

Finally, we let SOKOBAN

+

(k; `) be a game similar to SOKOBAN but with 1 � 2 rectangular packets

instead of the 1 � 1 square packets of SOKOBAN. We show that SOKOBAN

+

(k; 1), for any k � 2, is

PSPACE-complete.

The rest of this paper is organised as follows. We begin in the next section with the PSPACE-completeness

result for SOKOBAN

+

. In Section 3 we prove that SOKOBAN(k; 1), for k � 5, and also SOKOBAN(1; 1),

are NP-hard. Finally, in Section 4 we show that SOKOBAN(1; 0), i.e., the original SOKOBAN game, is

also NP-hard. A comparison of our results with previously known results is given in Section 5. We then

end with some concluding remarks and open problems.

2 PSPACE-completeness of SOKOBAN

+

In this section we consider a version of SOKOBAN in which the packets are 1� 2 rectangles and in which

the porter has enough strength to push two packets at once (we can allow her to push more packets at once

if we like) as well as the ability of pulling one packet. We show that the decision problem corresponding

to this version is PSPACE-complete.

The two basic gadgets used in the construction are shown in Figures 2 and 3. The construct shown on the

2

I O

I O

Figure 2: A one-way corridor and its schematic description.

I

1

O

2

I

1

O

2

O

1

I

2

O

1

I

2

S

S Sliding Door

Figure 3: A sliding door and its schematic description.

left of Figure 2 is called a one-way corridor as the porter can enter it from the left and leave it from the

right but not vice versa. When the porter enters from the left, she pushes the two packets one position to

the right, goes around and pushes the two packets to their original position and then exits from the right.

If the porter comes from the right, the only thing she can do are the following: she can exit from the right

without moving the packets ; she can push the two packets one position to the left, thereby blocking the

passage through the corridor, in both directions, forever; she can pull the right packet one position to left

but to get out of the bypass she would have to push it back to its original position. In either case, the

porter will not be able to leave the gadget from the left, and will either leave it in its original state, or in a

state in which it could not be used again in either direction. One-way corridors will be used extensively in

the construction of more complicated gadgets. In these constructions, one way corridors will be depicted

schematically as shown on the right of Figure 2.

The gadget shown in Figure 3 is called a sliding door . Its functionality is less natural than that of the

one-way corridor but, as we shall see, many useful and more natural gadgets can be obtained using it. The

�gure shows the sliding door in its open state. In this state, the porter can freely use the passage I

1

! O

1

.

To use the passage I

2

! O

2

, the porter must push the right packet one position to the left, thereby moving

the door to its closed position. In this position the porter can freely use the passage I

2

! O

2

but not

the passage I

1

! O

1

. Finally, the porter can open the door again by coming through the corridor marked

by S, pushing the two packets one position to the right and then pulling the left packet one position to

the left.

By connecting exit O

1

to entrace I

2

of a sliding door, we get a gate, a gadget shown in Figure 4. The

gadget is shown in the �gure in its open position. The porter can now move from I to O but by doing so

she has to move the gate to its closed position. The gate can be opened again only by coming through

the corridor denoted by S.

A gate is usually depicted schematically as a box and a circle, as shown on the right of Figure 4. The

box denotes the gate itself. The circle denotes an activation point of the gate. The dotted line connecting

the gate and its activation point stands for a corridor that connects them. We shall soon describe the

construction of a crossover. Using crossovers we can always construct a corridor connecting a gate and

its activation point. To simplify the diagrams describing our constructions we therefore omit these dotted

lines and do not show these corridors explicitly.

3

S

I O

O

I

S

Figure 4: A gate and its schematic description.

Sliding Door

Sliding Door

S

2

S

1

S

1

S

2

O

1

I

2

I

3

O

3

I

4

O

4

O

1

I

2

I

1

O

2

I

3

O

4

O

3

I

4

I

1

O

2

D A

C B

D A

C B

Figure 5: Constructing a crossover using two sliding doors.

The gate described in Figure 4 has a single activation point. By connecting such gates in parallel we can

get gates with an arbitrary number of activation points.

Using two sliding doors we can construct a crossover , as shown in Figure 5. If the porter enters the

crossover through A she must exit through C and if she enters through B she must exit through D. For

example, if she enters through A, she must block the passage I

2

! O

2

when she passes through the upper

sliding door and could only exit through C. If the porter exits while leaving the upper sliding door in its

closed position, she would not be able to use the passage B ! D without previously using the passage

A ! C again. The porter may however move the upper sliding door to its open position by using the

corridor S

1

. Similarly, if she enters through B, she must block the passage I

3

! O

3

when she passes

through the lower sliding door and could only exit from D. She can reset the lower sliding door using the

corridor S

2

.

We now describe a simulation of a linear bounded automata (i.e., a Turing machine with a �xed length

tape) that uses the binary alphabet. The problem of deciding, given such an automata, its initial state,

the initial state of the tape, and the initial position of the head on the tape, whether the head would ever

reach, say, the last (i.e., the rightmost) tape cell is easily seen to be PSPACE-complete.

Let T be a Turing machine with k states. Each cell of T 's tape will be simulated by a construct with k

entrances, k exits to the right and k exits to the left. The right (left) exits of a cell are connected to the

entrances of the cell to its right (left). The connection between three adjacent cells, with k = 3, are shown

4

Figure 6: The simulation of the Turing Machine's tape

A

2;0

A

2;1

A

3;0

A

3;1

A

3;0

A

3;1

A

2;0

A

2;1

B

0

B

0

B

1

q

1

q

2

q

3

go Left into q

3

go Right into q

1

go ...

go ...

go ...

go ...

A

1;0

B

0

B

1

A

1;0

A

1;1

B

0

B

0

B

1

A

1;1

Figure 7: The simulation of each tape cell.

in Figure 6. Each connection shown in the �gure is a one-way corridor. For simplicity, each cell is shown

to have 2k entrances, k at the top and k at the bottom. These however are the same entrances. As we can

implement crossovers we can easily connect each pair of these corridors into the same entrance of the cell.

The structure of each cell of the Turing machine is depicted in Figure 7. We again assume in the �gure

that k = 3 but the construction clearly generalises to other values of k. Each cell of a Turing machine

contains 2k+ 2 gates denoted by B

0

, B

1

and A

i;j

, where 1 � i � k and j = 0; 1. When the cell is entered,

exactly one of the gates B

0

and B

1

is open. Gate B

0

is open if and only if the tape cell contains 0, and

gate B

1

is open if and only if the tape cell contains 1. All the A

i;j

gates are initially closed.

The cell is entered through the i-th entrance if and only if the Turing machine is in state q

i

. When the

porter enters through the i-th entrance, she can open one of the gates A

i;0

and A

i;1

. To be able to leave

the cell, the porter should `guess' the content of the cell and open gate A

i;0

if it is 0 and A

i;1

if it is 1.

The porter must then `read' the content of the cell by passing through either B

0

or through B

1

(recall

that exactly one of them is open). Both B

0

and B

1

are then closed. If the porter guessed correctly the

content j of the cell, she can now pass through gate A

i;j

. Otherwise, she is stuck. The porter is now in one

of 2k corridors, one for each pair (i; j) of state and content. If the Turing machine is supposed to write j

0

,

enter state q

i

0

and move Left (Right), then the porter may now open gate B

j

0

and the corridor she is in is

connected to the i

0

-th entrance of the cell to the left (right) of the current cell. If the Turing machine is

supposed to halt, then this corridor is a dead end.

5

I O

I

O

Figure 8: A one way corridor

O

1

O

2

I

1

I

2

O

2

I

2

O

1

I

1

Figure 9: An orderer and its schematic description

This completes the simulation of Turing machines and the PSPACE-completeness proof. The proof de-

scribed is for the version of the problem in which there is a terminal position for the porter, not for the

packets. It is easy to obtain a version of the proof that works for the version of the problem in which there

are terminal positions for the packets. We can simply add a packet which the porter has to push when

reaching its terminal position. It is easy to verify that the porter may reach her terminal position while

leaving all crossovers in their original position and all gates in their closed position.

The general structure of the above construction is similar to the general structure of a construction by

Chalcraft and Greene [CG94] (see also [Ste94]). Chalcraft and Greene describe a simulation of a Turing

machine using train sets.

3 NP-hardness of SOKOBAN(1; 1)

In this section we show that SOKOBAN(5,1) is NP-hard. Recall that in this version of SOKOBAN the

packets are 1 � 1 squares and the porter may push up to �ve packets and pull one. The construction

is similar to the constructions of Wilfong [Wil91] and Dhagat and O'Rourke [DO92]. The gadgets used,

however, are completely di�erent. While Wilfong uses objects of many di�erent shapes, some of them not

even rectangular, all the objects that and Dhagat and O'Rourke [DO92] and us use are squares of the same

size. Dhagat and O'Rourke [DO92] obtain however a di�erent result. They show, in our terminology, that

SOKOBAN(1; 0) is NP-hard. The work of Dhagat and O'Rourke [DO92] was inspired by a computer

game for Macintosh called \Beast".

Four basic gadgets are used this time. A one-way corridor is shown in Figure 8. An orderer is shown in

Figure 9. In this gadget, the porter may freely use the passage I

1

! O

1

. It may only use the passage

I

2

! O

2

after using the passage I

1

! O

1

at least once. The passage I

2

! O

2

is opened by pushing the

two packets one position to the right, and then pulling the left packet one position to the left. A switch

is shown in Figure 10. The porter may use only one of the passages I

1

! O

1

and I

2

! O

2

, once one of

these passages is used, the other passage is blocked forever. The reader may care to verify that a similar

construct with two pairs of packets instead of two triplets does not function properly. By joining together

6

O

1

O

2

I

1

I

2

O

2

O

1

O

I

1

I

2

I

1

I

2

Figure 10: A Switch and its schematic description

I

1

O

1

B

O

2

I

2

Figure 11: A Limited crossover

the two exits O

1

and O

2

we get a gadget with two entrances, I

1

and I

2

, and one exit, O. The porter is

now able to use one and only one of the passages I

1

! O and I

2

! O.

A limited crossover is shown in Figure 11. The porter may use the passage I

1

! O

1

as many times as she

wants. In the �rst time the passage I

1

! O

1

is used, the three adjacent packets are pushed one position

to the right thus blocking the exit O

2

. During one of the passages from I

1

! O

1

, the porter may decide

to open the passage I

2

! O

2

. To do this the porter uses the bypass, denoted by B, pushes all �ve packets

one position to the left and then pulls the rightmost packet one position to the right. The porter may then

leave from O

1

. The porter will now be able to use the passage I

2

! O

2

for as many times as she wants

but she will not be able to use the passage I

1

! O

1

again. The porter may also use the passage I

2

! O

2

without previously using the passage I

1

! O

1

. It can be veri�ed that whenever the porter enters from I

1

(I

2

), she must exit through O

1

(O

2

).

Let F be a 3SAT instance. Let C

1

; : : : ; C

m

be the clauses of F and let v

1

; : : : ; v

n

be the variables appearing

in F . We construct a warehouse with m orderers and n switches, as shown in Figure 12. The two entrances

of the i-switch correspond to the literals v

i

and v

i

. The �rst exit of the i-th orderer splits into three corridors

leading to the three literals contained in the i-th clause. Limited crossover, like the ones described above

are used whenever two corridors cross each other. When a corridor coming from the i-th orderer crosses a

corridor coming from the j-th orderer, where i < j, the limited crossover is set so that the corridor coming

from the j-th orderer can be used after using the corridor coming from the i-th orderer.

The porter starts at position A. She is supposed to reach position B. It is easy to see that to reach position

B, the porter must �rst use the passage 1! 2, then 3 ! 4, and so forth. After using the passage 1 ! 2,

7

A

B

2

1 3

4

5

6 8

7

v

2

v

1

v

3

v

n

Figure 12: A representation of a 3SAT instance

the porter must assign the value \true" to at least one of the literals appearing in C

1

. Similarly, after using

the passage 5! 6, the porter must assign the value \true" to at least one of the literals appearing in the

C

2

. The porter can not assign to value \true" to a literal and its negation. It follows therefore that the

porter can reach B if and only if the 3SAT formula F is satisfyable.

In the construction described there is again a terminal position for the porter, not for the packets. It is

again possible to alter the proof so that it would also apply to the version of the problem with terminal

positions for the packets. The changes required this time are non-trivial and require a few more gadgets.

We only give a sketch of them here. We add service entrances to all the gadgets used in the current

construction. The porter can access these entrances only after reaching her terminal position. Coming

through a service entrance of a gadget, the porter may push the packets contained in the gadget into

appropriate terminal positions within the gadget. We add a corridor that connects the service entrances

of all the gadgets used in the construction. This corridor may of course cross corridors of the original

construction. We need a new crossover gadget to handle these crossings.

4 NP-Hardness of SOKOBAN(1; 0)

In this section we show that the SOKOBAN(1; 0), i.e., the original SOKOBAN game, is NP-hard by giving

a polynomial time reduction to it from the planar 3SAT problem (P3SAT for short) which is de�ned

before. A di�erent NP-harness proof for SOKOBAN(1; 0) was independently obtained recently by Fryers

and Greene [FG95].

The P3SAT problem is a sub-problem of the 3SAT problem. An instance I = (C;X) of 3SAT consists of

a set of clauses C = fC

1

; : : : ; C

m

g and a set of variables X = fx

1

; : : : ; x

n

g. Each clause C

i

consists of at

most three literals l

i;1

; l

i;2

; l

i;3

where a literal l

i;j

is either a variable x

k

or its negation x

k

. The problem is

to determine whether C is satis�able, that is, whether there exists a Boolean assignment to the variables

which simultaneously satis�es all the clauses in C. A clause is satis�ed if one or more of its literals has

value \true".

For the P3SAT problem, we consider only instances I = (C;X) of 3SAT whose connection graph, G

I

=

8

OI

x

xx

I O

x

Figure 13: A selector and its schematic representation.

(V;E), is planar. The vertex set of the graph G

I

is V = X [C. The edge set of G

I

is

E = f(x

i

; x

i+1

) j 1 � i � ng [f(x

j

; C

i

) j x

j

2 C

i

or x

j

2 C

i

g ;

where the index of x

i+1

is interpreted modulo n. The graph G

I

contains an edge between each variable x

and each clause that contain either x or x. It also contains a simple cycle passing through all the variables.

Lichtenstein [Lic82] showed that the P3SAT problem is NPC. Moreover, he showed [Lic82] that the P3SAT

problem is NPC even when, at every variable vertex x, all edges representing positive instances of the

variable are incident to one `side' of the node and all edges representing negative instances of the variable

are incident to the other `side' of the node, or more precisely, if there is an embedding of G

I

in the plane

in which for each variable x, either all clauses containing x are inside the cycle passing through all the

variables and all clauses containing x are outside this cycle, or vice versa.

Given an instance I of P3SAT, we construct an instance S

I

of the SOKOBAN game which has a solution

if and only if I is satis�able. Two types of gadgets are used in this construction. For each variable x, the

SOKOBAN instance includes a selector , a gadget shown on the left of Figure 13. A selector is connected to

the outside world by four corridors denoted by I , O, x and x. Corridor I is main entrance and corridor O is

the main exit of the selector. The other two exits are the x-exit and the x-exit. In contrast to the previous

constructions, all the corridors used in this construction are two-way and the porter may therefore enter a

selector via an exit. This possibility will of course be taken into account. A selector contains four terminal

positions, two in the x-exit and two in the x-exit. Three packets are initially placed in each selector, one

in the entrance and one in each of the literal exits. The selectors will be depicted schematically as a box,

as shown on the right of Figure 13.

The SOKOBAN instance S

I

includes a chain of selectors corresponding to the variables x

1

; : : : ; x

n

, as

shown in Figure 15. The main exit of the i-th selector is connected to the main entrance of the i + 1-st

selector. The x

i

-exit is the upper exit of the i-selector if and only if the clauses that contain x

i

are inside

the cycle of G

I

that passes through all the variables. The main entrance of the �rst selector is connected

to a reservoir containing n +m packets. The main exit of the n-th selector is a dead-end (we could have

connected it, via a `valve', back to the reservoir but as this is not required we choose not to do it). For each

clause, the instance S

I

contains a gadget like the one shown in Figure 14. Each such gadget contains one

terminal position. To solve the puzzle, the porter would therefore have to push a single packet to each one

of the clauses. From each literal, we connect corridors to all the clauses containing it. All these corridors

are wide enough so that the porter can push a packet through all the necessary turns. The clauses are

positioned according a planar embedding of the graph G

I

. There are no intersections therefore between

the di�erent corridors and no crossovers should therefore be used. The initial position of the porter is

inside the reservoir.

It is easy to see that if the P3SAT instance is satis�able, then the SOKOBAN puzzle constructed is solvable.

The porter begins by taking a stroll through the chain of selectors. In each selector the porter pushes the

packet initially placed at the entrance of the selector and blocks one its literal. The porter blocks the literal

exit that corresponds to the literal that gets the value \false" under a satisfying assignment of the P3SAT

9

Figure 14: A clause gadget and its schematic representation.

formula. Each literal exit that corresponds to a \true" literal remains unblocked, though it still contains

the packet initially placed at that exit. The porter may push the original packet placed in such a literal

exit to one of the clauses containing this literal. She may then push packets from the reservoir through

this literal exit to all the other cluases containing this literal. As the unblocked literal exits correspond to

a satisfying assignment of the P3SAT formula, the porter may push a packet to each one of the clauses.

After satisfying all the clauses, the porter pushes additional packets from the reservoir and blocks all the

literal exits of the selectors. This constitues a solution to the SOKOBAN puzzle.

We now show that if the SOKOBAN instance S

I

is solvable then the P3SAT instance I is satis�able.

We begin by showing that in any solution of the SOKOBAN puzzle, the �rst entrance to each selector

contained in the chain of selectors must be through its main entrance and that before leaving the selector

for the �rst time, the porter must block one of its literal exits. Note that the �rst entrance to a selector

cannot be through one of its literal exits. If the porter enters a selector for the �rst time from a literal

exit, she would have to push the packet initially placed in this exit into a corner. The packet could never

be moved out of such a corner and the sequence of moves made by the porter could not be completed to a

solution of the puzzle. If a selector is �rst entered through its main exit, then one of the selectors following

it in the chain must have been entered, for the �rst time, though one of their literal exits, a contradiction.

It follows therefore that each selector is indeed �rst entered through its main entrance. Consider now the

�rst entrance to the i-th selector. As this entrance is through its main entrance, the porter must push the

packet initially placed at the entrance of the selector. If the porter pushes this packet past the two literal

exits then this packet and the packet placed at the entrance to the i+ 1-st selector could never be pushed

to terminal positions (the packet at the entrance of the i+ 1-st selector must still be there as the i+ 1-st

selector was not visited yet). The porter must therefore block one of the literal exits of the selector, as

claimed.

Finally, we observe that a packet can be pushed into a clause only through one of the literal exits that

correspond to the literals that appear in it. Each solution of the SOKOBAN puzzle yields therefore a

satisfying assignment of the P3SAT formula.

5 Comparion with related works

As mentioned, SOKOBAN is similar to a motion planning problem with `movable obstacels' studied by

Wilfong [Wil91]. In Wilfong's problem the porter (or robot , as she is called there) is allowed to push

obstacles. She is also allowed to grasp an obstacle and move along with it, as though they were a single

object. In our formulation, grasping is replaced by pulling, which we think is more basic. We obtain a

PSPACE-completeness result while Wilfong only gets an NP-hardness result. In his NP-hardness results,

Wilfong uses objects of several di�erent shapes, not all of them rectangles. Our proof uses only 1 � 2

rectangles. Our proof holds even if grasping is allowed and hence Wilfong's original problem is also

PSPACE-complete. Dhagat and O'Rourke [DO92] consider motion planning problems in which the porter

is allowed to push objects but not to pull them.

Hopcroft, Schwartz and Sharir [HSS84] consider a problem they call the \Warehouseman's problem". The

problem considered by Hopcroft et al. is a generalization of the famous 15-puzzle. A large rectangle

contains many small rectangles of many di�erent sizes, together with some gaps between them. Recangles

10

x

i

x

1

x

1

x

i

x

i+1

x

n

x

i+1

x

n

Figure 15: A representation of a P3SAT instance.

may be slid, either horizontally or vertically, into gaps. Rectangles are not allowed to overlap. Hopcroft

et al. show that the problem of deciding whether there exists a coordinated motion of the rectangles

between given initial and �nal con�gurations is PSPACE-complete. A major di�erence between their

problem and SOKOBAN is that they have no porter. The rectangles are moved by an agent which is, in

a sense, outside the system. The techniques used by Hopcroft et al. and the techniques used by us in the

PSPACE-completeness proofs are completely di�erent.

Papadimitriou, Raghavan, Sudan and Tamaki [PRST94] consider a natural motion planning problem on

graphs. An instance of the problem is an undirected graph. There is robot in one of the vertices of the

graph. Several other vertices contain movable obstacles . In each step, an object (i.e., the robot or an

obstacle) may be moved along an edge into a currently unoccupied vertex. Two objects may never reside

in the same vertex. The goal is to move the robot to a designated vertex, pushing obstacles out of the way,

using a minimum number of steps. Papadimitriou et al. show that it is easy to decide whether the robot

can at all be moved to its designated vertex (it can be decided in linear time). They also show that deciding

whether the problem can be solved using at most k steps, where k is part of the input, is NP-complete.

Although a `robot' appears in the statement of this problem, its role is di�erent from the role played by

the robot, or porter, in our problem. Objects are moved by some outside agent and not by the robot.

There are a few natural ways of de�ning versions of SOKOBAN that are played on general graphs, not

necessarily on rectangular grids. Studying these versions may be interesting direction for further research.

6 Concluding remarks and open problems

SOKOBAN

+

is perhaps the simplest PSPACE-complete motion planning problem. The exact status of

original version of SOKOBAN remains a chalanging open probelm. We have shown that it is NP-hard and

that it is in PSPACE. Is it in NP? Is it PSPACE-complete?

Acknowledgement

We would like to thank Micha Sharir and Pankaj Agarwal for the relevant computational geometry refer-

ences, and Michael Greene for a stimulation exchange of e-mail messages.

11

References

[CG94] D.A. Chalcraft and M.T. Greene. Train sets. Eureka, 53:5{12, 1994.

[DO92] A. Dhagat and J. O'Rourke. Motion planning amidst movable square blocks. In Proceedings of

the 4th Canadian Conference on Computational Geometry, pages 188{191, 1992.

[FG95] M. Fryers and M.T. Greene. Sokoban. Eureka, 54, 1995. To appear.

[HSS84] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. On the complexity of motion planning for multiple

indepandant objects; PSPACE-hardness of the \Warehouseman's problem". The International

Journal of Robotics Research, 3:76{88, 1984.

[Lic82] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11:329{343,

1982.

[PRST94] C.H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki. Motion planning on a graph

(extended abstract). In Proceedings of the 35th Annual IEEE Symposium on Foundations of

Computer Science, Santa Fe, New Mexico, pages 511{520, 1994.

[Rei79] J. Reif. Complexity of the movers' problem and generalizations. In Proceedings of the 20th

Annual IEEE Symposium on Foundations of Computer Science, San Juan, Puerto Rico, pages

421{427, 1979.

[Sav70] W.J. Savitch. Relationship between nondeterministic and deterministic tape complexities. Jour-

nal of Computer and System Sciences, 4:177{192, 1970.

[Ste94] I. Stewart. A subway named Turing. Scienti�c American, pages 104{107, September 1994.

[Wil91] G. Wilfong. Motion planning in the presence of movable obstacles. Annals of Mathematics and

Arti�cial Intelligence, 3:131{150, 1991.

12

