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Abstra
t

We prove NP-hardness of a wide 
lass of pushing-blo
k

puzzles like the 
lassi
 Sokoban, generalizing several

previous results [4, 5, 7, 8, 13, 15℄. The puzzles 
onsist

of unit square blo
ks on an integer latti
e; all blo
ks are

movable. The robot may move horizontally and verti-


ally in order to rea
h a spe
i�ed goal position. In the

Push-k puzzle, the robot 
an push up to k blo
ks in

front of it as long as there is at least one free square

ahead. Other variations were introdu
ed to make puz-

zles more tra
table, in whi
h blo
ks must slide their

maximal extent when pushed (Push-Push), and in

whi
h the robot's path must not 
ross itself (Push-X).

We prove that all of these puzzles are NP-hard.

Keywords: Motion planning, 
ombinatorial games,


omputational 
omplexity.

1 Introdu
tion

Algorithmi
 motion planning is a large area of 
omputa-

tional geometry with appli
ations in roboti
s, assembly

planning, and 
omputer animation; see, e.g., [14℄ for a

survey. The standard type of problem involves mov-

ing a robot from one 
on�guration to another while

avoiding �xed obsta
les. A re
ent dire
tion introdu
ed

by Wilfong [15℄ is a 
lass of problems in whi
h robots

are permitted to move some of the obsta
les in or-

der to in
rease maneuverability. As robots be
ome

more powerful at manipulation, an understanding of

su
h models be
omes in
reasingly important. Current-

day appli
ations in
lude automated warehouse 
ontrol

and warehouse navigation; see, e.g., [9℄. A represen-

tative abstra
tion of su
h appli
ations is the popular

Sokoban puzzle [3, 8℄, whi
h is known to be PSPACE-


omplete [3℄. In this paper we study several variations

of simpler puzzles, and show all of these models are

NP-hard using a redu
tions from 3-
oloring of planar

graphs [10℄. Some variations are additionally known to

be NP-
omplete, others PSPACE-
omplete, while the


omplexity of most variations is unresolved between NP

and PSPACE.
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Problems. Our hardness results are parti
ularly sur-

prising given the simpli
ity of the model of motion and

obsta
le manipulation. Consider a re
tangular n�m-

grid in whi
h ea
h square is marked either free or

blo
ked. A robot 
an move horizontally and verti
ally

in the grid, and thereby push up to k blo
ks in front

of it, for some 
onstant k. See Figure 1, in whi
h the

blo
ked positions are shaded and the robot is shown as


ir
le, pushing two blo
ks.

Figure 1: Example of pushing blo
ks.

The Push-k problem [4, 5℄ is to de
ide whether there

is a sequen
e of moves starting at a spe
i�ed free po-

sition and ending at a spe
i�ed goal position. If we

omit the restri
tion on how many blo
ks the robot 
an

push at on
e (i.e., k = 1), we obtain the problem

Push-* [2, 6, 7, 12℄.

To make these basi
 problems more 
omputationally

tra
table, we 
an impose additional simplifying 
on-

straints on the robot's motion. The Push-Push model

[4, 5, 13℄ requires that, on
e a blo
k is pushed, it slides

the maximal extent in that dire
tion. This model 
an

be thought of representing either sliding blo
ks on a

fri
tionless surfa
e, or the situation in whi
h blo
ks 
an-

not be pushed by pre
ise amounts but 
an be 
onsis-

tently pushed against other blo
ks. The Push-X model

[4℄ requires that the robot not 
ross its own path. This

model is not intended to represent reality, but rather

was proposed to severely restri
t the motions in order

to make the problem 
omputationally tra
table. In par-

ti
ular, any version of Push-X is automati
ally in NP,

unlike the general problem.

Related Work. Out of these many problem varia-

tions, several individual 
ases have been studied. The

original paper by Wilfong [15℄ studies a more 
exible

model in whi
h the blo
ks 
an be more general than

squares, and the robot 
an both push and pull blo
ks.

Dhagat and O'Rourke [7℄ initiated the Push- line of

models, and proved that Push-* is NP-hard if some

blo
ks 
an be tied to the board, making them unpush-



able. This result was later strengthened to PSPACE-


ompleteness [2℄.

Our models disallow blo
ks from being tied to the

board, making the problem easier to solve and hardness

gadgets more diÆ
ult to 
onstru
t. Progress in this

setting has only been made in the last two years, dur-

ing whi
h NP-hardness was proved for Push-Push-1

[4, 5, 13℄, Push-1 [4℄, and Push-* [12℄. These results

leave two aspe
ts open: Push-k for general k, and

the Push-X non
rossing restri
tion. None of the pre-

vious redu
tions extend easily to these s
enarios, ex-


ept for the Push-* redu
tion [12℄ whi
h also applies

to Push-*-X.

Results. In this paper, we provide one 
onstru
-

tion that settles the NP-hardness of Push-k, Push-k-

X, Push-Push-k, and Push-Push-k-X, for any �xed

k 2 N . In parti
ular, our results subsume a number

of previous NP-hardness proofs of pushing-blo
k vari-

ations [4, 5, 7, 8, 13, 15℄, and solves the Push-X open

problem from [4℄. Thus, this paper together with [12℄

prove that all pushing-blo
k puzzles des
ribed above

are NP-hard. The new idea in our redu
tion is to for
e

the robot to follow 
onstrained Eulerian tours of pla-

nar graphs and 
arry a 
onstant amount of information

along ea
h edge of the graph. This idea is in 
ontrast

to all previous approa
hes of building 
ir
uits based on

graphs, whi
h seem to inherently require 
rossings.

2 The Redu
tion

We �rst 
onsider the problem Push-1-X, in whi
h the

robot is restri
ted to push only one blo
k at any time.

Later we will des
ribe how to modify the 
onstru
tion

for k > 1.

Our redu
tion is from planar 3-
oloring, whi
h is

known to be NP-
omplete, even if no vertex has degree

larger than four [10℄. We are given a planar embedding

of a 
onne
ted undire
ted graph G = (V; E), and will


onstru
t a Push-1 puzzle from G that is solvable if

and only if G is (vertex) 3-
olorable.

Let

�!

G be the dire
ted planar graph resulting from G

by repla
ing ea
h undire
ted edge by two dire
ted edges

of opposite orientation. By a well-known theorem (
f.

[11℄), there is a Eulerian tour in

�!

G , sin
e for every

vertex the number of in
oming edges equals the num-

ber of outgoing edges. Moreover, we 
laim that there

is always a planar Eulerian tour T in

�!

G , where pla-

nar means that it does not even 
ross itself at verti
es,

i.e., 
an be drawn with a pen
il in one pie
e without


rossing. (The fa
t that edges do not interse
t in their

interior is already implied by the planarity of G.)

Lemma 1 (See also [1℄.)There is a planar Eulerian

tour T in

�!

G = (V;

�!

E ).

Proof. Consider an arbitrary vertex v 2 V and the 
y-


le C

v

visiting all edges from

�!

E adja
ent to v in 
oun-

ter
lo
kwise order as shown in Figure 2(a). Now start

a breadth-�rst traversal of

�!

G from v. Let u 2 V be the

next vertex visited in this traversal. Then the 
y
les C

v

and C

u


an be joined by overlaying and 
utting at their


ommon edges,

�!

u v and

�!

v u as shown in Figure 2(b). No

other edge of C

u


an be in 
on
i
t with an edge from

the tour 
onstru
ted so far, as then u would have been

visited before. After all verti
es have been visited, the

result is a planar Eulerian tour of

�!

G . �

v

C

v

(a) The 
y
le C

v

.

u

v

(b) Joining 
y
les.

Figure 2: Constru
ting a planar Eulerian tour.

The idea is to use T for traversing

�!

G , thereby

� 
hoosing the 
olor of a vertex whenever leaving it

and

� 
he
king that the adja
ent verti
es are 
olored dif-

ferently whenever traversing the se
ond of the both

edges from

�!

G representing an edge from G.

Of 
ourse, we must ensure that the 
olors 
hosen for the

verti
es are 
onsistent, i.e., anytime we leave a spe
i�


vertex, the same 
olor has to be 
hosen.

For this, we let two (dire
ted) edges leaving the same

vertex meet in what we 
all a 
onsisten
y gadget, in or-

der to assure that the same 
olor is 
hosen in both. Of


ourse, it might not be possible to join any pair of edges

leaving a spe
i�
 vertex this way without 
rossings, but

it is suÆ
ient to join the edges su
h that they form a

tree under those jun
tions, and then all edges have to


hoose the same 
olor by transitivity. Refer to the ex-

ample in Figure 3: the edges of the graph G are drawn

as dashed lines, the solid 
urve is a planar Eulerian tour

of

�!

G , and the wiggled segments denote the 
onsisten
y

jun
tions.

Similarly, any pair of edges representing the same

edge of the original graph G are joined; these 
oloring

jun
tions are shown as solid arrows in Figure 3. It

is 
lear how to draw them, sin
e both edges are always

adja
ent in the drawing. Also, 
oloring and 
onsisten
y

jun
tions do not interfere, sin
e all of the latter are 
lose

to a vertex. By pla
ing an appropriate gadget on the


oloring jun
tions, we 
an forbid to 
hoose the same


olor for adja
ent verti
es.



Figure 3: Example graph, tour and jun
tions.

The 
onstru
tion uses several gadgets, as des
ribed in

Table 1. In the left 
olumn, we give a symbol to de-

note the type of gadget; in the right 
olumn we list the

gadget's name, in parentheses its number of entries and

exits, and a short des
ription of its fun
tionality. These

gadgets are explained in detail in Se
tions 2.3{2.6.

One-way gadget (1/1); 
an only be passed in dire
-

tion of the arrow. However, on
e this happened,

it is open, i.e. 
an be traversed in both dire
tions

arbitrarily.

?!

Fork gadget (1/3); 
an be left through any of the

three exits, but only one of these paths may be

entered.

X

Xor-
rossing gadget (2/2); a safe, leakage free


rossing, provided that only one of the two paths

is a
tually traversed.

Nand gadget (2/2); joins two paths su
h that at

most one of them 
an be traversed.

Table 1: The gadgets.

Sin
e the robot 
an push at most one blo
k, any two-

times-two square of blo
ks is essentially �xed. Hen
e,

one 
an build the Eulerian tour as a Push-1 puzzle, us-

ing 
orridors that are surrounded by walls of thi
kness

at least two. More pre
isely, ea
h edge

�!

e = (u; v) from

�!

G will be represented by three 
orridors in the puzzle,

as shown in Figure 4; the robot 
an 
hoose to traverse

any of them (but only one) through a fork gadget, this

way assigning a 
olor to the vertex u it leaves. The


orridors of

�!

e are joined to the 
orridors of another

edge f also leaving u (if existent) through a 
onsis-

ten
y gadget whi
h guarantees that only the 
orridors

of mat
hing 
olor 
an be traversed. Similarly, the 
or-

ridors are joined to those 
orresponding to the oppo-

site edge

 �

e := (v; u) through a 
oloring gadget, mak-

ing sure that u and v are 
olored di�erently. Finally,

the three paths rejoin, prote
ted by one-way gadgets

preventing the robot from stumbling ba
kwards in the

wrong dire
tion.

123

1

2

3

1 2 3

123

?!

1

2

3

?!

1

2

3

1

2

3

?!

�!

e
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e

f


olor


on-

sist.

Figure 4: Constru
tion for an edge.

2.1 The Coloring Gadget

This gadget is used to make sure that adja
ent verti
es

do not get the same 
olor. It joins two paths of three

labeled 
orridors ea
h in a symmetri
 way su
h that


orridors with the same label are joined into a Nand

gadget; see Figure 5.

321

123

X

X

X

XX

X

X

X

X

X

X

X

Figure 5: Coloring gadget.

Lemma 2 Both sides of a 
oloring gadget 
an be tra-

versed if and only if the robot 
hooses di�erently labeled

paths.

Proof. Note that entran
e and exit to the gadget are

guarded by a fork gadget, one-way gadget, respe
tively

(see Figure 4). Hen
e, at most one of the 
orridors on

ea
h side 
an be traversed and the Xor-
rossings are

safe. �

2.2 The Consisten
y-Che
k Gadget

This gadget is 
omplementary to the 
oloring gadget.

It is used to make sure that the robot 
annot 
hoose

di�erent 
olors for the same vertex, that is anytime it

leaves the vertex, the same 
olor has to be 
hosen. The

gadget joins two paths of three labeled 
orridors ea
h in

a symmetri
 way su
h that 
orridors with the di�erent

labels are joined into a Nand gadget; see Figure 6.
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2
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XXXX

XXXX
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Figure 6: Consisten
y Gadget.

Lemma 3 Both sides of a 
onsisten
y gadget 
an be

traversed if and only if the robot 
hooses paths with the

same label.

Proof. As in Lemma 2. �

2.3 Nand Gadget

To make sure that only spe
i�
 
ombinations of 
orri-

dors are used by the robot, we need a gadget joining

two 
orridors in su
h a way that at most one of them


an be traversed: a Nand gadget. The layout is shown

in Figure 7; it depends on whether both 
orridors are

to be traversed in the same or in opposite dire
tions.

A

B

C

D

?

?

A

B

C

D

?

?

Figure 7: Nand gadgets.

Lemma 4 Consider the gadgets shown in Figure 7.

The left gadget 
an be traversed either A ! B or

C ! D but not both ways.

The right gadget 
an be traversed either B ! A or

C ! D but not both ways.

Proof. In order to traverse the gadget, one of the

blo
ks marked with ? has to be pushed. Wherever this

is done, afterwards the two marked blo
ks are lined up

in sequen
e, making them un-pushable in dire
tion of

their lineup. (Remember that the robot 
annot push

more than one blo
k at on
e.) Sin
e they 
an neither

be pushed apart from the side, there is no way to move

the marked blo
k that has not been pushed so far; but

this would be ne
essary to traverse the gadget on the

other way. �

Remark 1 For Push-k ea
h marked blo
k in the left

gadget would have to be repla
ed by a sequen
e of d

k+1

2

e

blo
ks.

Sin
e it is always 
lear from the Eulerian tour in

whi
h dire
tion an edge is to be traversed, there is

no problem in 
hoosing the appropriate type of Nand-

gadget. Hen
e, we refer to this 
lass of gadgets by the

term \Nand-gadget" as if there was just a single one.

2.4 One-Way Gadget

The one-way shown in Figure 8(a) 
an be traversed in

only one dire
tion, from A to B. But note that on
e it

has been traversed, it is just an open 
orridor that 
an

be traversed in both dire
tions.

B

A

?

(a) One-

Way

B

A

C

?

(b) Fork

B

A

D

C

?

?

(
) Xor-Crossing

Figure 8: The basi
 gadgets (after Figs. 2, 3, 10 of [4℄).

2.5 Fork Gadget

The fork gadget shown in Figure 8(b) allows traversal

from A to B or C, but on
e either of B or C has been

rea
hed, the other is ina

essible from A.

Note that it is possible to go e.g. from A to B and

then from A to C, if the blo
king square is pushed out

of the 
orridor to C in between. But in our 
onstru
-

tion this 
an never o

ur, sin
e the exits of the forked


orridors are prote
ted by one-way gadgets.

Also note that a three-way fork as in Table 1 is just

a 
ombination of two two-way forks.

2.6 Xor-Crossing Gadget

The Xor-
rossing shown in Figure 8(
) 
an be tra-

versed either from A to B or from C to D without

leakage, i.e. it 
annot be traversed from A to C or D

or from C to A or B.

Note that the above statement is true for a single

traversal only or more pre
isely, if the gadget is tra-

versed only from either of A or C. This 
ondition is

ful�lled wherever Xor-
rossings are used in our 
on-

stru
tion, as already dis
ussed in Lemma 2.



2.7 Main Theorems

In order to a
tually de�ne the Push-1 puzzle, we need

a start and a goal position for the robot. This is easily

done by breaking the tour at some arbitrary vertex,

yielding a path with start and goal position at its ends.

Theorem 5 Push-1 is NP-hard.

Proof. For the given planar graph G = (V; E) 
on-

stru
t the Push-1 puzzle as des
ribed above. The size

of the puzzle is determined by the number of gadgets

and the number of gadgets of ea
h single type is linear

in the number of edges in G. Hen
e, the size of the

puzzle is polynomial in the size of G.

If the robot �nds a way to the goal position, by

Lemma 3 ea
h time it leaves a vertex it 
hooses the


orridor 
orresponding to the same 
olor. This de�nes

a mapping 
 : V ! f1; 2; 3g. Moreover, by Lemma 2,

this mapping is a 
oloring.

If on the other hand there is a 3-
oloring 
 : V !

f1; 2; 3g of G, then the robot 
an �nd a way to the goal

position by 
onsistently following at ea
h vertex v the


orridor 
orresponding to 
(v). �

Theorem 6 Push-k is NP-hard for any �xed k 2 N .

Proof. As in Theorem 5. But 
orridors have to sepa-

rated by walls of at least k + 1 blo
ks and the Nand-

gadget has to adopted as indi
ated in Remark 1. �

Corollary 7

� Push-k-X is NP-hard.

� Push-Push-k is NP-hard.

� Push-Push-k-X is NP-hard.

Proof. There is always a path for the robot that does

not 
ross itself and wherever blo
ks are pushed, they

are pushed as far as possible. �

3 Con
lusion

We have shown NP-hardness of a broad 
lass of

pushing-blo
k puzzles. Ex
ept for the non
rossing

Push-X variants, it remains open whether these prob-

lem are in NP. Some of the problems might be

PSPACE-
omplete, as has been shown for the �xed-

blo
k version of Push-* [2℄.

Another still open question is whether there is an

\interesting" puzzle variant that is still tra
table. Up

to now, the only problem known to be in P is if the

robot is restri
ted to monotoni
 paths [7℄, e.g., it 
an

only move up and right.
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