Pushing Blocks is NP-Complete for Noncrossing Solution Paths

Erik D. Demaine*

Abstract

We prove NP-hardness of a wide class of pushing-block
puzzles like the classic Sokoban, generalizing several
previous results [4, 5, 7, 8, 13, 15]. The puzzles consist
of unit square blocks on an integer lattice; all blocks are
movable. The robot may move horizontally and verti-
cally in order to reach a specified goal position. In the
Push-k puzzle, the robot can push up to k blocks in
front of it as long as there is at least one free square
ahead. Other variations were introduced to make puz-
zles more tractable, in which blocks must slide their
maximal extent when pushed (PusH-PusH), and in
which the robot’s path must not cross itself (PUSH-X).
We prove that all of these puzzles are NP-hard.

Keywords: Motion planning, combinatorial games,
computational complexity.

1 Introduction

Algorithmic motion planning is a large area of computa-
tional geometry with applications in robotics, assembly
planning, and computer animation; see, e.g., [14] for a
survey. The standard type of problem involves mov-
ing a robot from one configuration to another while
avoiding fixed obstacles. A recent direction introduced
by Wilfong [15] is a class of problems in which robots
are permitted to move some of the obstacles in or-
der to increase maneuverability. As robots become
more powerful at manipulation, an understanding of
such models becomes increasingly important. Current-
day applications include automated warehouse control
and warehouse navigation; see, e.g., [9]. A represen-
tative abstraction of such applications is the popular
Sokoban puzzle [3, 8], which is known to be PSPACE-
complete [3]. In this paper we study several variations
of simpler puzzles, and show all of these models are
NP-hard using a reductions from 3-coloring of planar
graphs [10]. Some variations are additionally known to
be NP-complete, others PSPACE-complete, while the
complexity of most variations is unresolved between NP
and PSPACE.

*Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada, eddemaine@uwaterloo.ca.

TInstitute for Theoretical Computer Science, ETH Zurich,
CH-8092 Zurich, Switzerland, hoffmann@inf.ethz.ch.

Michael Hoffmann?

Problems. Our hardness results are particularly sur-
prising given the simplicity of the model of motion and
obstacle manipulation. Consider a rectangular n x m-
grid in which each square is marked either free or
blocked. A robot can move horizontally and vertically
in the grid, and thereby push up to k blocks in front
of it, for some constant k. See Figure 1, in which the
blocked positions are shaded and the robot is shown as
circle, pushing two blocks.

T I
W m
Sitant =R i

Figure 1: Example of pushing blocks.

The PUSH-k problem [4, 5] is to decide whether there
is a sequence of moves starting at a specified free po-
sition and ending at a specified goal position. If we
omit the restriction on how many blocks the robot can
push at once (i.e., K = 00), we obtain the problem
Pusu-* [2, 6, 7, 12].

To make these basic problems more computationally
tractable, we can impose additional simplifying con-
straints on the robot’s motion. The PUSH-PUSH model
[4, 5, 13] requires that, once a block is pushed, it slides
the maximal extent in that direction. This model can
be thought of representing either sliding blocks on a
frictionless surface, or the situation in which blocks can-
not be pushed by precise amounts but can be consis-
tently pushed against other blocks. The PusH-X model
[4] requires that the robot not cross its own path. This
model is not intended to represent reality, but rather
was proposed to severely restrict the motions in order
to make the problem computationally tractable. In par-
ticular, any version of PUSH-X is automatically in NP,
unlike the general problem.

Related Work. Out of these many problem varia-
tions, several individual cases have been studied. The
original paper by Wilfong [15] studies a more flexible
model in which the blocks can be more general than
squares, and the robot can both push and pull blocks.
Dhagat and O’Rourke [7] initiated the PUSH- line of
models, and proved that PusH-* is NP-hard if some
blocks can be tied to the board, making them unpush-



able. This result was later strengthened to PSPACE-
completeness [2].

Our models disallow blocks from being tied to the
board, making the problem easier to solve and hardness
gadgets more difficult to construct. Progress in this
setting has only been made in the last two years, dur-
ing which NP-hardness was proved for PUSH-PUSH-1
[4, 5, 13], PusH-1 [4], and PusH-* [12]. These results
leave two aspects open: PUSH-k for general k, and
the PUSH-X noncrossing restriction. None of the pre-
vious reductions extend easily to these scenarios, ex-
cept for the PUSH-* reduction [12] which also applies
to PUsH-*-X.

Results. In this paper, we provide one construc-
tion that settles the NP-hardness of PUSH-k, PUSH-k-
X, PUsH-PUSH-k, and PUsH-PUsH-k-X, for any fixed
k € N. In particular, our results subsume a number
of previous NP-hardness proofs of pushing-block vari-
ations [4, 5, 7, 8, 13, 15], and solves the PUSH-X open
problem from [4]. Thus, this paper together with [12]
prove that all pushing-block puzzles described above
are NP-hard. The new idea in our reduction is to force
the robot to follow constrained Eulerian tours of pla-
nar graphs and carry a constant amount of information
along each edge of the graph. This idea is in contrast
to all previous approaches of building circuits based on
graphs, which seem to inherently require crossings.

2 The Reduction

We first consider the problem PUSH-1-X, in which the
robot is restricted to push only one block at any time.
Later we will describe how to modify the construction
for k> 1.

Our reduction is from planar 3-coloring, which is
known to be NP-complete, even if no vertex has degree
larger than four [10]. We are given a planar embedding
of a connected undirected graph G = (V, E), and will
construct a PUSH-1 puzzle from G that is solvable if
and only if G is (vertex) 3-colorable.

Let G be the directed planar graph resulting from G
by replacing each undirected edge by two directed edges
of opposite orientation. By a well-known theorem (cf.
[11]), there is a Eulerian tour in G, since for every
vertex the number of incoming edges equals the num-
ber of outgoing edges. Moreover, we claim that there
is always a planar Eulerian tour 7" in G, where pla-
nar means that it does not even cross itself at vertices,
i.e., can be drawn with a pencil in one piece without
crossing. (The fact that edges do not intersect in their
interior is already implied by the planarity of G.)

Lemma 1 (See also [1].) There is a planar Eulerian
tour T in G = (v, ﬁ)

Proof. Consider an arbitrary vertex v € V and the cy-
cle C, visiting all edges from E adjacent to v in coun-
terclockwise order as shown in Figure 2(a). Now start
a breadth-first traversal of G from v. Let u € V be the
next vertex visited in this traversal. Then the cycles C,
and C', can be joined by overlaying and cutting at their
common edges, 0 and % as shown in Figure 2(b). No
other edge of €', can be in conflict with an edge from
the tour constructed so far, as then u would have been
visited before. After all vertices have been visited, the
result is a planar Eulerian tour of G. a

(a) The cycle Cy.

(b) Joining cycles.

Figure 2: Constructing a planar Eulerian tour.

The idea is to use T" for traversing ﬁ, thereby

e choosing the color of a vertex whenever leaving it
and

e checking that the adjacent vertices are colored dif-
ferently whenever traversing the second of the both
edges from G representing an edge from G.

Of course, we must ensure that the colors chosen for the
vertices are consistent, i.e., anytime we leave a specific
vertex, the same color has to be chosen.

For this, we let two (directed) edges leaving the same
vertex meet in what we call a consistency gadget, in or-
der to assure that the same color is chosen in both. Of
course, it might not be possible to join any pair of edges
leaving a specific vertex this way without crossings, but
it is sufficient to join the edges such that they form a
tree under those junctions, and then all edges have to
choose the same color by transitivity. Refer to the ex-
ample in Figure 3: the edges of the graph G are drawn
as dashed lines, the solid curve is a planar Eulerian tour
of GG, and the wiggled segments denote the consistency
junctions.

Similarly, any pair of edges representing the same
edge of the original graph G are joined; these coloring
Junctions are shown as solid arrows in Figure 3. It
is clear how to draw them, since both edges are always
adjacent in the drawing. Also, coloring and consistency
junctions do not interfere, since all of the latter are close
to a vertex. By placing an appropriate gadget on the
coloring junctions, we can forbid to choose the same
color for adjacent vertices.



Figure 3: Example graph, tour and junctions.

The construction uses several gadgets, as described in
Table 1. In the left column, we give a symbol to de-
note the type of gadget; in the right column we list the
gadget’s name, in parentheses its number of entries and
exits, and a short description of its functionality. These
gadgets are explained in detail in Sections 2.3-2.6.

One-way gadget (1/1); can only be passed in direc-
E tion of the arrow. However, once this happened,
it is open, i.e. can be traversed in both directions
arbitrarily.

Fork gadget (1/3); can be left through any of the
three exits, but only one of these paths may be
entered.

XoRr-crossing gadget (2/2); a safe, leakage free
crossing, provided that only one of the two paths
is actually traversed.

EE‘ NAND gadget (2/2); joins two paths such that at
most one of them can be traversed.

Table 1: The gadgets.

Since the robot can push at most one block, any two-
times-two square of blocks is essentially fixed. Hence,
one can build the Eulerian tour as a PusH-1 puzzle, us-
ing corridors that are surrounded by walls of thickness
at least two. More precisely, each edge @ = (u, v) from

will be represented by three corridors in the puzzle,
as shown in Figure 4; the robot can choose to traverse
any of them (but only one) through a fork gadget, this
way assigning a color to the vertex u it leaves. The
corridors of @ are joined to the corridors of another
edge f also leaving w (if existent) through a consis-
tency gadget which guarantees that only the corridors
of matching color can be traversed. Similarly, the cor-
ridors are joined to those corresponding to the oppo-
site edge ¥ := (v, u) through a coloring gadget, mak-
ing sure that u and v are colored differently. Finally,
the three paths rejoin, protected by one-way gadgets
preventing the robot from stumbling backwards in the
wrong direction.

Figure 4: Construction for an edge.

2.1 The Coloring Gadget

This gadget is used to make sure that adjacent vertices
do not get the same color. It joins two paths of three
labeled corridors each in a symmetric way such that
corridors with the same label are joined into a NAND
gadget; see Figure 5.

Figure 5: Coloring gadget.

Lemma 2 Both sides of a coloring gadget can be tra-
versed if and only if the robot chooses differently labeled
paths.

Proof. Note that entrance and exit to the gadget are
guarded by a fork gadget, one-way gadget, respectively
(see Figure 4). Hence, at most one of the corridors on
each side can be traversed and the XOR-crossings are
safe. d

2.2 The Consistency-Check Gadget

This gadget is complementary to the coloring gadget.
It is used to make sure that the robot cannot choose
different colors for the same vertex, that is anytime it
leaves the vertex, the same color has to be chosen. The
gadget joins two paths of three labeled corridors each in
a symmetric way such that corridors with the different
labels are joined into a NAND gadget; see Figure 6.



Figure 6: Consistency Gadget.

Lemma 3 Both sides of a consistency gadget can be
traversed if and only if the robot chooses paths with the
same label.

Proof. As in Lemma 2. O

2.3 NaND Gadget

To make sure that only specific combinations of corri-
dors are used by the robot, we need a gadget joining
two corridors in such a way that at most one of them
can be traversed: a NAND gadget. The layout is shown
in Figure 7; it depends on whether both corridors are
to be traversed in the same or in opposite directions.

A A

B * B ™
* D i D
C C

Figure 7: NAND gadgets.

Lemma 4 Consider the gadgets shown in Figure 7.
The left gadget can be traversed either A — B or
C — D but not both ways.
The right gadget can be traversed either B — A or
C — D but not both ways.

Proof. In order to traverse the gadget, one of the
blocks marked with x has to be pushed. Wherever this
is done, afterwards the two marked blocks are lined up
in sequence, making them un-pushable in direction of
their lineup. (Remember that the robot cannot push
more than one block at once.) Since they can neither
be pushed apart from the side, there is no way to move
the marked block that has not been pushed so far; but
this would be necessary to traverse the gadget on the
other way. O

Remark 1 For PUsH-k each marked block in the left
gadget would have to be replaced by a sequence of [%1
blocks.

Since it is always clear from the Eulerian tour in
which direction an edge is to be traversed, there is
no problem in choosing the appropriate type of NAND-
gadget. Hence, we refer to this class of gadgets by the
term “NAND-gadget” as if there was just a single one.

2.4 One-Way Gadget

The one-way shown in Figure 8(a) can be traversed in
only one direction, from A to B. But note that once it
has been traversed, it is just an open corridor that can
be traversed in both directions.

(¢) X0oRr-Crossing

Figure 8: The basic gadgets (after Figs. 2, 3, 10 of [4]).

2.5 Fork Gadget

The fork gadget shown in Figure 8(b) allows traversal
from A to B or C, but once either of B or C' has been
reached, the other is inaccessible from A.

Note that it is possible to go e.g. from A to B and
then from A to C, if the blocking square is pushed out
of the corridor to C' in between. But in our construc-
tion this can never occur, since the exits of the forked
corridors are protected by one-way gadgets.

Also note that a three-way fork as in Table 1 is just
a combination of two two-way forks.

2.6 XORr-Crossing Gadget

The XOR-crossing shown in Figure 8(c) can be tra-
versed either from A to B or from C to D without
leakage, i.e. it cannot be traversed from A to C or D
or from C to A or B.

Note that the above statement is true for a single
traversal only or more precisely, if the gadget is tra-
versed only from either of A or C. This condition is
fulfilled wherever XOR-crossings are used in our con-
struction, as already discussed in Lemma 2.



2.7 Main Theorems

In order to actually define the PUSH-1 puzzle, we need
a start and a goal position for the robot. This is easily
done by breaking the tour at some arbitrary vertex,
yielding a path with start and goal position at its ends.

Theorem 5 PUSH-I is NP-hard.

Proof. For the given planar graph G = (V, E) con-
struct the PUSH-1 puzzle as described above. The size
of the puzzle is determined by the number of gadgets
and the number of gadgets of each single type is linear
in the number of edges in G. Hence, the size of the
puzzle is polynomial in the size of G.

If the robot finds a way to the goal position, by
Lemma 3 each time it leaves a vertex it chooses the
corridor corresponding to the same color. This defines
a mapping ¢ : V — {1, 2, 3}. Moreover, by Lemma 2,
this mapping is a coloring.

If on the other hand there is a 3-coloring ¢ : V —
{1, 2, 3} of G, then the robot can find a way to the goal
position by consistently following at each vertex v the
corridor corresponding to c¢(v). O

Theorem 6 PUSH-k is NP-hard for any fized k € N,

Proof. As in Theorem 5. But corridors have to sepa-
rated by walls of at least k + 1 blocks and the NAND-
gadget has to adopted as indicated in Remark 1. O

Corollary 7
e PusH-k-X is NP-hard.
e PUSH-PUSH-k is NP-hard.
o PUSH-PUSH-k-X is NP-hard.

Proof. There is always a path for the robot that does
not cross itself and wherever blocks are pushed, they
are pushed as far as possible. |

3 Conclusion

We have shown NP-hardness of a broad class of
pushing-block puzzles. Except for the noncrossing
PusH-X variants, it remains open whether these prob-
lem are in NP. Some of the problems might be
PSPACE-complete, as has been shown for the fixed-
block version of PusH-* [2].

Another still open question is whether there is an
“interesting” puzzle variant that is still tractable. Up
to now, the only problem known to be in P is if the
robot is restricted to monotonic paths [7], e.g., it can
only move up and right.

Acknowledgments

We thank Martin Demaine and Joseph O’Rourke for
helpful discussions.

References

[1] BiEDL, T., KAUFMANN, M., AND MUTZEL, P. Draw-
ing planar partitions ii: Hh-drawings. In Proc. 24th
Internat. Workshop Graph-Theoret. Concepts Comput.
Sci. (1998), vol. 1517 of Lecture Notes Comput. Sci.,
Springer-Verlag, pp. 124-136.

[2] BREMNER, D., O’ROURKE, J., AND SHERMER, T.
Motion planning amidst movable square blocks is
PSPACE complete. Draft, 1994.

[3] CULBERSON, J. Sokoban is PSPACE-complete. In
Proc. Internat. Conf. Fun with Algorithms (Elba, Italy,
June 1998), N. S. E. Lodi, L. Pagli, Ed., Carelton Sci-
entific, pp. 65-76.

[4] DEMAINE, E. D., DEMAINE, M. L., AND O’ROURKE,
J. PushPush and Push-1 are NP-hard in 2D. In Proc.
12th Canad. Conf. Comput. Geom. (2000), pp. 211-
219.

[5] DEMAINE, E. D., DEMAINE, M. L., AND O’ROURKE,
J. PushPush is NP-hard in 2D. Technical Report
065, Dept. Comput. Sci., Smith College, Northamp-
ton, MA, Jan. 2000.

[6] DEMAINE, E. D., AND O’ROURKE, J. Open problems
from CCCG’99. Technical Report 066, Dept. Comput.
Sci., Smith College, Northampton, MA, Mar. 2000.

[7] DHaGgAT, A., AND O’ROURKE, J. Motion planning
amidst movable square blocks. In Proc. 4th Canad.
Conf. Comput. Geom. (1992), pp. 188-191.

[8] Dor, D., AND ZWICK, U. Sokoban and other motion
planning problems. Computational Geometry: Theory
and Applications 15, 4 (1999), 215-228.

[9] EVERETT, H. R., AND GAGE, D. W. From laboratory
to warehouse: Security robots meet the real world. In-
ternat. J. Robotics Research 18, 7 (July 1999), 760-768.

[10] GArReYy, M. R., AND JounsoN, D. S. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York, NY, 1979.

[11] HARARY, F. Graph Theory. Addison-Wesley, Reading,
MA, 1972.

[12] HoFFMANN, M. Push-# is NP-hard. In Proc. 12th
Canad. Conf. Comput. Geom. (2000), pp. 205-210.

[13] O’'ROURKE, J., AND THE SMITH PROBLEM SOLVING
GRrOUP. PushPush is NP-hard in 3D. Technical Report
064, Dept. Comput. Sci., Smith College, Northampton,
MA, Nov. 1999.

[14] SHARIR, M. Algorithmic motion planning. In Hand-
book of Discrete and Computational Geometry, J. E.
Goodman and J. O’Rourke, Eds. CRC Press LLC,
Boca Raton, FL, 1997, ch. 40, pp. 733-754.

[15] WILFONG, G. Motion planning in the presence of mov-
able obstacles. Ann. Math. Artif. Intell. 3 (1991), 131-
150.



