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Abstract

This bachelor thesis describes a new method for attempting to solve
Sokoban puzzles by means of an efficient algorithm, a task which has
proven to be extremely difficult because of both the huge search tree
depth and the large branching factor. We present a way of solving Sokoban
puzzles that, using several heuristics, starts from the final state of a puzzle,
and from there works its way back to the initial state. This method makes
the time-consuming checking for a large portion of the undesired deadlocks
unnecessary, giving some interesting results.

1 Introduction

We will start with a description of the game of Sokoban and the obstacles
that arise when attempting to solve a Sokoban puzzle by means of an efficient
algorithm. We will then discuss several solving methods, and finally present a
new way of solving these puzzles, eliminating several of the discussed obstacles.
This thesis ends with some results of our solving method and several possible
future challenges when it comes to fine-tuning our solving method.



2 Sokoban

Sokoban is a single player game that was created around 1980 in Japan. Sokoban
is Japanese for warehouse keeper, which is a pretty straighforward name judging
from the fact that the goal of Sokoban is to push boxes around in a room with
obstacles. Other than being a funny game, Sokoban has been an object of study
for those in the field of Computer Science and Artificial Intelligence for quite
some time. The reason for this interest comes from the fact that humans can
often solve these puzzles in a few minutes doing several hundreds of moves.
However, solving a Sokoban puzzle by means of an efficient algorithm has turned
out to be very hard, because of both the huge search tree depth and the large
branching factor.
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Figure 1: Opening screen of the original Sokoban game

2.1 The game

Sokoban has relatively simple rules. The game is played on a two-dimensional
field, usually of size 20 x 20 or smaller. We will describe the field’s cells (squares)
with coordinates (z,y), where the top left corner corresponds to (0,0). A cell
contains one of the following elements:

e An empty square
e A target square

o A wall



e A box
e The man

e The man on a target square

A placed box (combination of a target square and a box)

The amount of boxes is always equal to the amount of target squares. The
man, of which there is only one, can move in four directions (traditionally up,
down, left or right), and he can only move to target squares and empty squares.
Additionally, the man has the ability to push one box at a time. Logically,
pushing a box from position (z,y) while the man is standing at position (x—1,y)
is only allowed if position (z+1,y) is either empty or a target square. The same
of course applies for the y-direction. As one may have guessed, the man cannot
be moved through walls, neither can the boxes. Usually the playing field is
surrounded by walls, so that we will always be bounded by walls and cannot
reach the edge of the field. In each puzzle the man starts at a certain fixed
position. Traditionally, the goal of Sokoban is to use the man to push all of
the the boxes onto the target squares. While doing that, one could also try to
minimize the number of moves, or alternatively, minimize the number of boxes
pushed. In this thesis we will just focus on trying to solve the puzzle.
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Figure 2: Level 1 of the original set of puzzles



2.2 Versions of Sokoban

Upon the game’s release in 1980, it consisted of a set of 90 puzzles. The first
puzzle, which is shown in Figure 2, takes the average human probably less than
five minutes to solve, while the last puzzle can most likely keep one busy for
several hours. While in the easy levels all target squares are grouped together in
some seemingly separate room, more difficult puzzles often have target squares
all over the playing field, which is one of the factors responsible for an increase
in difficulty. Several variations of Sokoban have been made over the past few
years, for example a version in which you can move magically from one point
to another through some kind of portal, or a version in which you can make
a predefined amount of jumps over walls or boxes. Even though these added
features could be an interesting subject of study, we will stick to the standard
set of rules as described in this section.

2.3 Previous work

So far, the best known algorithm, developed at the University of Alberta, is
called Rolling Stone [3]. This algorithm uses the IDA* algorithm along with
several domain-dependent improvements. The IDA* algorithm on its own is
not able to solve any puzzles, but the domain-dependent improvements are
responsible for a large increase in performance, enabling Rolling Stone to solve
59 out of 90 puzzles from the original set. An interesting subclass of Sokoban
puzzles has been introduced [5], of which all puzzles can be solved by means of a
specialized algorithm in a finite amount of time. More about this subclass later.
There has also been some research [7] on finding the shortest Sokoban solutions
for certain puzzles. Japanese researchers claim [8] to have an algorithm that can
solve all 90 puzzles, however, no papers nor program specifications have been
released.

3 Obstacles

3.1 Deadlocks

One of the biggest obstacles any human or algorithm solving a Sokoban puzzle
will experience is the presence of deadlocks.



A deadlock is a position that can not result in a correct solution of
the puzzle.

We can roughly distinguish two kinds of deadlocks. The first kind of deadlock
is related solely to the position of the boxes. For example, the player could push
a box next to a box that is adjecent to a wall. Assuming the boxes are not
both at a target position, this would be an undesired and irreversible position.
Other examples are boxes in a corner, or 4 boxes aligned in a 2 x 2 position,
or other more complex derived positions, of which a few are shown in Figure 3.
Checking for these deadlocks can be extremely difficult for an algorithm, as we
may have placed a box at the entrance of a very long tunnel with a dead end,
so just looking in a 1, 2 or 3 block radius of the box is not near enough. We
can conclude from the above that it is extremely vital to detect these deadlocks
as they arise, but considering that this can be very hard, it would be better if
there was a way to completely avoid these deadlocks. We will present a solution
for this problem later.
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Figure 3: Five possible deadlocks

Other than deadlocks that solely depend on the position of the boxes, one
can also imagine states in which the man is at a certain position from which he
cannot reach the other still unplaced boxes anymore. Obviously we do not want
this second form of a deadlock to occur either, and have to find some way to
check for these situations as well, which can be even harder than checking for
the deadlocks that are solely caused by the position of one or more boxes.



3.2 Amount of moves

During the execution of an algorithm that is attempting to solve a Sokoban
puzzle, we will want to know how close we are to a solution, and whether or
not the current state will likely lead to a correct solution. Therefore it would be
nice to have an indication of the amount of moves that is necessary to solve the
puzzle. If we are trying to find an optimal solution, this would be a nice upper
bound to use. Nevertheless, when looking for just some solution, we can still
use this bound as an indication. Obviously, if we have done 1000 moves while
there is a solution of 16 moves, we are most likely doing something wrong. It is
however extremely hard to derive this upper bound, given some Sokoban puzzle.

3.3 PSPACE-completeness

Sokoban has been proven to be PSPACE-complete [1], which is the hardest set
of problems in PSPACE. PSPACE is the set of decision problems that can be
solved by a deterministic or nondeterministic Turing machine using a polynomial
amount of memory and unlimited time. To put this into context, observe that
PSPACE is a superset of NP.

4 Solving Methods

4.1 Single-Agent brute-force

The first idea that comes to mind of any algorithm designer is a brute-force
approach. The theoretical branching factor in a single-agent search algorithm
for solving Sokoban is 4 (up, down, left and right), but with a little reasoning
we can reduce this to an average factor somewhere in between 2 and 3, as we
will rarely want to move a step back (unless we previously moved a box, and
want to walk away from it again), and cannot move through walls or boxes. If,
for the sake of simplicity, we assume that the branching factor is about 2.5, and
the length of an average solution is about 200 moves, we would end up with
a complexity in the order of 2.5%2°°, an astronomically large number. That is,
assuming we find the right solution, as we may just push a box in a corner,
cause a deadlock, and then consider another 1000 moves before noticing we
did something wrong. Even with some heuristics preventing these rather dumb
mistakes, this single-agent approach is obviously not the most efficient because
of the huge complexity.



4.2 Multi-Agent brute-force

Other than the single-agent approach, we can also look at the game in a multi-
agent way, an approach that is already quite a bit smarter. We see each box
as an invididual that is trying to move towards a target square. In order to
be able to move, the boxes need to get the man to move behind them, and
get the man to push them towards their target positions. Ignoring the checking
for whether or not the man can actually reach the box (and how he can reach
it), with n boxes, this method actually increases the branching factor to 4n (or
2.5n), as at any time in the solution we may want to start moving another box,
or just keep moving the box we previously moved. With an average number of
moves of 200, of which maybe 50 are box moves, this approach would lead to a
complexity of about (2.5n)%°, which would still not be near good enough. This
major branching factor and search tree size obstacle clearly also rules out a pure
brute-force approach. We will have to do better.
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Figure 4: Puzzle 13 of the original set, with unsafe box positions (x and + )

4.3 Heuristics

While trying to solve a puzzle, several heuristics can be applied to both the
single-agent and multi-agent approach. One of these heuristics is marking unsafe
positions. These positions, where we never want a box to be placed, can be
marked using a simple algorithm, which starts by marking corners. Note that a



corner is defined by its two direct neighbours, a position (z,y) is a bottom-left
corner if positions (z —1,y) and (z,y — 1) are walls. We can mark these corners
in advance, we do this with a 4+ symbol in Figure 4. For each pair of marked
corners, we can now check if the squares on the line between these corners are
positioned along a wall. All positions along this wall, assuming they are not
target squares, are also dangerous. We mark these with an x symbol in Figure
4.

Never considering the positions discussed above while executing an algorithm
is an obvious improvement. However, now consider the position marked with
the % symbol. For the current setup of boxes, moving a box to that position
will lead do a deadlock. We can however not detect this in advance, so during
the execution of an algorithm there will have to be frequent checks for these
deadlocks to make sure they do not occur. Other heuristics for Sokoban that
have been introduced are pattern search, move ordering, deadlock tables (to
quickly on the fly detect local deadlocks), and macro moves. All of these have
been implemented in the Rolling Stone [3] algorithm.

5 Multi-Agent Reversed Solving with heuristics

As described in the previous sections, deadlocks can be extremely annoying
and are therefore never desired. The solving methods above all have to deal
with these deadlocks, and have to apply some kind of deadlock detection. Our
method, Reversed Solving, reverses the game, working from the solution back
to the original puzzle. The man no longer pushes boxes, but pulls them instead.
This method has several advantages, which we will discuss later on. Pulling is
defined as follows:

A box at position (z — 1,y) can be pulled to (x,y) if the man is
standing at position (z,y) and position (x + 1,y) is either empty or
a target square. A similar condition of course applies for pulling in
the y-direction.

This method completely eliminates the need for box deadlock detection and
prevention, as undesired states related to the position of the boxes can never
be reached. In Figure 5, in the first situation, the man can push the box to the
right and create a deadlock. Imagine in the second situation that the man can
only pull. He can pull the box to his right to the left, but no further. The 2 x 2
deadlock can never occur. The third situation illustrates how, when the man
can only pull, the box can never be positioned next to walls or in corners. It
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Figure 5: In situation 1 a deadlock can easily occur. Situation 2 illustrates how
pulling cannot cause the 2x2 deadlock. In Situation 3, imagine the man can only
pull, and observe the box can never be positioned next to walls or in corners.

is of course still possible to lock the man at some position. This is often easily
detected as in the next state(s) there will not be any more feasible moves.

Below is a description of our algorithm, ReversedSolving:

1. Load the Sokoban puzzle, and copy it to keep track of the original.
2. Reverse the puzzle: put all boxes at target positions.

3. While the boxes are not all back at their original position and the man
cannot reach his original starting position:

While Condition X is not satisfied :
Pull the box to positions that have not been visited before.

Change to another box, defined by Condition Y.

This algorithm is still rather general, it just states that we are solving the puzzle
in a reversed order. Condition X and Y together define the complexity of the
algorithm and also determine which puzzles can and which puzzles can not be
solved using our algorithm. In the next two subsections we will give an overview
of the conditions that could be used in our algorithm, after which we will discuss
how to use these conditions together to create a good algorithm.



5.1 Condition X: When to stop moving a box?

We can define several possibilities for determining when to stop moving a box,
not all equally complex, efficient or smart.

1. After each step. This is not the smartest idea, as we often want to pull a
box at least a one step.

2. After n steps, for some smart value of n. This may not seem like the best
condition, but doing this every once in a while when current strategies do
not give a desired result could provide interesting results.

3. Until a box is at a final position. This is very handy for more simple
puzzles.

4. Until a box is k steps away from a final position (where k is any integer
between 0 and n, and n some integer that defines how complex this con-
dition is). This approach generally appears to give the best results with
our algorithm, more about this later.

5. After a random number of moves.

We will denote these possible conditions with X7, Xo, X3, X4(n) and Xs,
respectively.

5.2 Condition Y: Which box is next?

After deciding to stop moving a certain box, we will want to pick a new box to
start moving. We again present several possible choices.

1. Every box, meaning that when we ask for a new box, we will want to con-
sider them all. This includes placed boxes, as sometimes in more complex
puzzles these have to be moved again.

2. Every unplaced box, meaning that when we ask for a new box, we will want
to consider only the boxes that are currently not at the correct square.

3. ’Serve’ the boxes in a lexicographical order, this would pretty much mean
that after moving box i, box ¢ mod m is next (where m is the number of
boxes).
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4. ’Serve’ the boxes in some predefined order, for example determined by the
sum of their current distances to the target squares.

5. The box that is currently closest to some target.

6. A random box.

We will denote these possible conditions with Y7, Y5, Y3, Yy, Y5 and Yg, re-
spectively.

5.3 Combining the conditions

When we combine condition X; and Yj, we will denote this by X;Y; (1 <i <5,
1<j<6).

If we take X1Y7 as condition, we clearly end up with a brute-force multi-agent
approach, but in this case, pulling the boxes instead of pushing them, already
reducing the search space a little. This approach should theoretically always
lead to correct solutions, however, especially for larger puzzles, this approach
would be way too complex, as discussed before.

Figure 6: Lishout puzzle: This puzzle can be solved by moving the boxes to their
target positions one by one (in many different orders), without moving any other
boxes along the way.

A special subclass of Sokoban puzzles, referred to as the Lishout subclass,
has been defined in [5] as follows:
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e Goal-ordering-criterium: it must be possible to determine in advance the
order in which the goal squares will be filled without introducing dead-
locks, independently from the position of the stones and the man.

e Solvable-stone-existence: it must be possible to bring at least one stone to
the first selected goal square without having to move other stones.

e Recursive-condition: for each stone which satisfies the previous condition,
the maze obtained by removing that stone and replacing the selected goal
square by a wall must also by in the class.

This subclass of puzzles can exactly be solved by taking condition X3Y5. An
example of a puzzle which is in the Lishout subclass, is the puzzle in Figure 6.

We found X4(n)Y> to be a very interesting condition. Several values can be
used for n. If we take n = 0, we get X4(0)Y> and are just doing the same as
X3Y5, we are solving puzzles in the Lishout subclass. If a puzzle is almost in
the subclass, meaning that we will have to keep one or more boxes one step
away from its target position, then consider some other moves, and then put
the box at its target, the puzzle will be solved easily with n = 1. Even though
complexity will increase when we increase the value of n, and for large values
of n (formally n > S, where S is the largest possible distance between any two
squares) results in a brute-force approach, this condition appeared to perform
quite well.

6 Experimental Results

We implemented Reversed Solving in C++. All game-dependent operations such
as checking what a square contains, checking if a box can be moved, moving a
box, finding a box or moving the man, are implemented in O(1), meaning these
operations do not depend on the size of the puzzle or the amount of boxes. A
relatively small amount of time is spent checking if the man can reach a certain
position. This operation is often needed when switching to another box, as it of
course has to be possible for the man to reach this box.

The complexity of the algorithm comes from the amount of generated states,
and constantly checking if these states have not been explored before. Therefore
we think the amount of inequivalent generated states is a good measurement
for the performance. We can define state equivalence as follows:

One state is equivalent to another state if the positions of the boxes

12



are equal, and the man is in the same part of the reachable space,
meaning the man in the one state can walk to the position of the
man in the other state without moving any boxes.

In Figure 7 the man is in the space marked with number 1. Leaving the boxes
at their current positions, but moving the man anywhere within this space (over
empty squares or target squares) remains the same state. However, if the man
were to be located somewhere in the space marked with number 2 or 3, then
these would be actual different states. This brings the total amount of possible
states for this configuration of the boxes to 3, as there is no other isolated space
in which the man can be located.

As mentioned before, we constantly have to check whether or not certain
states have been visited before. To speed up this process, and prevent us from
having to compare a certain state with a list of all previously visited states, we
have given each puzzle a unique hash value. The hash value is currently equal
to the sum of the positions of the boxes, where a position of a box is a unique
integer. With the hash value we can check in contant time if a state has not been
visited before. Because the function is not collision-free, checking if a state has
been visited is still a little more complex. However, the hash function already
gives a very good speed-up compared to checking the full list of visited states.

We can try to determine how many possible set-ups exist for a certain puzzle.
With set-ups, we refer to the possible inequivalent configurations (states) that
could have been initial positions. Recall that we are working back, from a solved
puzzle to the original state of the puzzle. We present the amount of set-ups in
the first column of the table below. This amount was easily obtained by running
our algorithm with condition X;Y7, without any stopping condition when the
puzzle would normally be solved (back in its original position). The table also
gives an overview of which puzzles were solved (denoted by Y, unsolved: N),
as well as the amount of generated states for a brute-force approach (Condi-
tion X1Y7), Lishout’s approach (Condition X3Y3) and Condition X4(n)Y;. In
this last condition, we used the largest possible value of n, so that we would
theoretically always get a solution.
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| [ Set-ups X\ X3Ys | Xa(n)Ys ]

Lishout (Fig. 6) 28276 2212,Y 54, Y 54, Y
Original 1 (Fig. 2 & 8) 148501 82922, 6331, N | 11001, Y
Original 78 (Fig. 7) 30+ minutes | 304+ minutes | 2197,Y | 2197,Y
microl 39 33, Y 19, N 33, Y
micro? 2103 786, Y 13,Y 13,Y
microl0 374 323, Y 33, N 208, Y
micro25 96 7, Y 34,Y 34,Y
micro35 6721 920, Y 757, N 920, Y
micro75 1625 204, Y 114, N 204, Y
micro78 11270 2441, Y 114, N 215, Y
microl06 8466 5157, Y 25, N 1296, Y

We can conclude several things from the results in the table shown above.
As we expected, the Lishout approach (X3Y3) solves the Lishout puzzle (see
Figure 6) quite easily, but for example not puzzle 1 from the original set (see
Figure 2), as it is not in the defined subclass. This is simply due to the fact that
with condition X3Y5 not all states are generated. Condition X;Y7 also solves
the Lishout puzzle, but generates a considerably larger amount of states in the
progress and thus taking a larger amount of time. The brute force approach
also solves puzzle 1, but again generating a lot of states in the process. Even
though all this is still rather complex, it seems nearly impossible to solve puzzle
1 non-reversed without any heuristics, because of all the possible deadlocks that
can occur.

A relatively big puzzle from the original set, puzzle 78, which is shown in
Figure 7, was solved quite fast with condition X3Y5, as it was in the Lishout
subclass. With a brute force approach, analyzing this puzzle took more than 30
minutes (on a 2.4GHz machine), analyzing over 200,000 different states. This
shows how seemingly complex puzzles can be solved quite fast with the Lishout
approach, but take way too much time with the brute force approach. The
drawback is of course that it does not solve all puzzles, as opposed to condition
X1Y;. It would be nice if we could do a little better.

Quite some puzzles appear to be almost in the Lishout subclass. Take for
example puzzle 1 from the original set (Figure 2), again shown in Figure 8,
after pushing two boxes once. The puzzle is now in the Lishout subclass, and
can easily be solved with condition X3Y5. The problem is, how do we get the
algorithm to work back to the position of Figure 87 This is where condition
X4(n)Ys comes in handy. Observe that this method does solve puzzle 1 in a
reasonable amount of time, as opposed to the brute force approach.

The numbered micro-puzzles (puzzles from a big set of puzzles called Mi-
croban [6]) were added to illustrate the difference between the discussed ap-
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Figure 7: Puzzle 78 of the original set: This puzzle is in the Lishout subclass
and therefore solved using Condition X3Y5.

proaches and how well the conditions perform compared to the amount of pos-
sible set-ups. Our algorithm can solve all of these puzzles in less than a second
with Condition X4(n)Ya, which is basically a middle man between X;Y7 and
X3Y5. Puzzles in the Lishout subclass are solved just as fast as with X3Y5, while
complex puzzles will still take a large amount of time and end up being solved
brute-force, as higher values of k have to be used, ultimately resulting in the
same amount of states as X1Y7. This is for example the case for puzzle micro35,
the amount of generated states is equal to that of the brute force approach.
However, micro78 from the same set gets solved over 10 times faster than the
brute force approach, so X4(n)Y> is a definate improvement compared to the
complexity of X1Y; and the limited amount of puzzles that can be solved with
X3Ys.

7 Conclusion & Future Work

Sokoban puzzles are an extremely interesting subject for the field of Game The-
ory and Artificial Intelligence, as a perfect algorithm has never been — and can
probably never be — found. In this thesis we have presented a new method
for solving Sokoban puzzles, called Reversed Solving. This method first puts all
boxes at target positions, and then tries to work its way back to the original
puzzle by, instead of pushing, pulling the boxes. Even though this method is
already a big improvement compared to a regular brute force approach, it has
to be adjusted with smart heuristics to give decent results.
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Figure 8: Puzzle 1 of the original set (Figure 2), after moving up, left, left, left,
up, up, up, left, up, left, left, down.

We have defined two conditions that determine both the solvability and the
complexity of the algorithm, and can be used to specify heuristics: “When to
stop moving the current box” (Condition X), and “What box to start mov-
ing next” (Condition Y). We have shown how we can define these conditions
to completely solve a certain subclass of puzzles. We also experimented with
several other conditions, and presented some results of this. The results can be
compared to the total amount of possible set-ups for a certain puzzle, giving a
good indication of how good certain conditions are. We have for example shown
that certain puzzles can be solved very quickly using condition X3Y>, but are
nearly insolvable using X;Y;. We have also demonstrated how puzzles that are
too complex for X;Y] and do not belong to the subclass of X3Ys (for example
puzzle 1 from the original set), can be solved relatively fast using X,(n)Ys, a
method which basically “tries” to get the puzzle into the Lishout subclass, a
class of puzzles that can be solved very fast.

For our algorithm, the complexity lies within checking whether or not states
have been visited before, and the amount of states is therefore a good complex-
ity indication. An interesting piece of future work would be to speed up this
checking process, to make the algorithm run faster. For example, an improved
hash function could be created. However, currently, the biggest open problem
lies within the fine-tuning of Conditon X and Y. What is the best heuristic,
and where lies the best trade-off between solvability and complexity?
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